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Abstract 

During the past decade, researchers have asked fundamental questions about the nature of 

Rubel’s extended analog computer, the EAC. The questions have made it clear that the 

design, implementation, and applications of the EAC are based on a paradigm unfamiliar 

to most users of conventional digital computers. The basic difference is that the EAC’s 

components visibly implement only a few explicit functions. The rest are implicit, being 

properties of nature that are described mathematically. A new approach to bridge the 

“paradigm gap” is needed. This paper introduces the !-digraph, a directed graph that can 

be labeled to show how both unconventional and conventional computers relate nature, 

mathematics and computer architecture. The !-digraph defines a semantic hierarchy that 

bridges the paradigms of analogy and algorithm. It shows how many applications for the 

EAC are developed by choosing the semantics for an analogy, rather than programming 

an algorithm. Finally, concise case studies show how society is in the early stages of 

adopting the EAC. These applications suggest the future for unconventional computers. 
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1. Introduction 

What is the EAC? Why does it work, since some of its components do not obviously 

perform computation? How are applications developed? What can it teach us about the 

nature of computing? 

These questions arise because previous publications about the EAC and its predecessors, 

the Kirchhoff-Lukasiewicz machine (KLM) [1] and Lukasiewicz logic arrays (LLAs) [2], 

[3], [4], did not explain how to think about its paradigm, analogy. Although the 

paradigm it used was unfamiliar, it was not explained. As a result, the typical reader 

found that the EAC was too confusing to understand, even though the idea of an 

unconventional computer was appealing. A new way of thinking about the EAC is 

needed. So far, it has only been acquired after hands-on experience by the people who 

have used it. 

This paper takes a new tack by disassembling the EAC prototype to reveal its parts. Next, 

the !-digraph is derived, which is a visual diagram that helps distinguish the explicit and 

implicit functions of the EAC. The !-digraph is then used to explain the unconventional 

paradigm analogy, as contrasted to the conventional computing paradigm of algorithm. 



Applications of the EAC are shown to be semantic constructs chosen by the user and 

mapped to simple machine configurations. The configurations are simple, but may be 

difficult to find, and are often evolved rather than programmed.  

2. At first glance 

Pictured below is the current implementation of Rubel’s extended analog computer 

(EAC) designed by Bryce Himebaugh at Indiana University in 2005 [5]. It is connected 

to a digital computer host, either a PC or a Macintosh, which runs the EAC operating 

system (jEAC) designed by Ryan Varick at Indiana University in 2006 [6]. 

 

                  Figure 1. (a) EAC to left of Macintosh                   (b) jEAC Interface in operation 

The EAC is the board to the left of a Macintosh computer (Figure 1a). The blue LEDs 

indicate that the EAC configuration is actively computing a neural-tissue model of 

exclusive-OR. The components of the EAC that perform the computation will be 

revealed in the next section with photographs of the disassembled board.  

The jEAC operating system, running on the Macintosh iBook to the right (Figure 1b), 

provides a visual interface to the EAC. It is based on a coordinate array, similar to a 



spreadsheet. The user may assign one function to each of the twenty-five connections to 

the conductive foam sheet. Users may also access the interface language of the EAC, and 

configure its operation automatically. 

However, many functions of the EAC are invisible to the human eye. They are implicit in 

the properties of materials, described by laws of nature that have emerged from the 

observations, experiments and mathematical descriptions of scientists (see Feynman [7] 

and [8]). The !-digraph relates these functions to the visible components of the EAC. 

3. The visible components of the EAC 

The EAC R002 (research prototype, version 002) is constructed with a two-sided 

motherboard. Both the top and the bottom sides are covered with clear Plexiglas to 

protect the components. A square area is covered with a separate translucent Plexiglas 

sheet to diffuse the light emitted by an output array of blue LEDs (Figure 2). The four 

holes that contain small pins are visible as dark spots on the middle LEDs along each 

edge of the translucent Plexiglas. They allow boards to be interconnected at the north-

south-east-west edges for use as a cellular automaton, or stacked for 21/2D applications. 

 

                                             Figure 2. Upper side of EAC R002 during operation 



When the protective sheets are removed (Figure 3a), the five-by-five input/output array 

of LEDs, programmable current sources and sinks and the surface mounted capacitors is 

exposed. To the left are the analog-to-digital and digital-to-analog converters (ADCs and 

DACs). In the lower middle of the board, beneath the input/output array, is the 

microprocessor that controls the array and the USB interface. It also digitally generates 

Lukasiewicz logic array (LLA) functions using interpolation tables, and stores the 

configuration parameters for the EAC. At the lower right are the power regulator and the 

USB interface circuits. A serial port used for testing is at the bottom of the board. 

      

           Figure 3. (a) Upper side of EAC R002                           (b) Underside of EAC R002 

Attached to the opposite side of the board (Figure 3b), underneath the input/output array, 

is the primary computing element of the EAC, a sheet of conductive plastic foam. Other 

materials have been used, including silicon chips, gelatin [9] and slime mold [10]. The 

foam is the same substance often used to package digital integrated circuits. It is 

approximately 120mm x 120mm square, but unlike conventional digital computers, its 

dimensions are not critical. If one looks carefully, the irregular edges are apparent. This 

piece was cut from a larger sheet of foam with a pair of scissors. 



The foam does not appear to be a computing element, especially to a naïve user. It is just 

some black “stuff” that has no apparent function. (Some users have asked if it can be 

removed after shipping?–No.) The connections to the circuitry on the top of the board, a 

five-by-five array of short pins, pierce the foam but do not extend through it. 

That is all there is to the EAC. As described so far, the machine appears to be little more 

than a flexible user interface with some vague kind of computation performed by a piece 

of foam, and Lukasiewicz logic functions emulated with a digital microprocessor (in 

earlier designs, the Lukasiewicz logic functions were reconfigurable analog circuits [4]). 

A user’s block diagram of the components used when the board is operated summarizes 

the design (Figure 4a and 4b). A detailed diagram may be found in a recent paper [11]. 

 

          Figure 4. (a) Diagram of upper side of EAC R002     (b) Diagram of underside of EAC R002 

The visible components of the EAC are simple. However, no study of analog computers 

from 1845 [12] through the 1950s [13], up to the author’s own research prior to this 

paper, ever questioned why these analog components worked. An exhaustive list of the 



“Great Principles” of computing proposed by Denning primarily addressed the design 

and engineering of digital computers, but neither the physics nor the semantics of 

computers was discussed [14], [15]. Many philosophers and computer scientists have 

argued about what constitutes a computer. One view is mechanistic and functional: a 

computer is a distinct device, a “large” form of calculator (see Searle [16] and Piccinini 

[17]). Another view is that computing devices are defined semantically, but no formalism 

is given that defines how the semantics relate to the mechanism (see Shagrir [18]). In a 

concept paper Costa and Mycka [19] suggested that natural objects compute by 

“endowment”—that is, by semantic attribution—but did not pursue the idea further: 

“ When we observe natural phenomena and endow them with computational 

significance, it is not the algorithm we are observing but the process. [But in the 

1940’s it was] digital technology and theory that was to become the main 

paradigm of computation…[processing] information transformed and coded in 

binary. With analog machines, on the contrary, there would be few or no steps 

between natural objects and the work and structure of computation.” 

A novel argument was proposed by Crowcroft [20], stating that the nature of computing 

is a unique universe of discourse, detached from physical reality: 

“ Computing has never established a simple connection between the natural and 

the mathematical. …computing represents a third place in the world of 

discourse—distinct from the natural and the artificial of science and 

engineering. Computing involves (virtual) systems that may never exist, either 

in nature or through human creation.” 



Prior discussions of the meaning of computation are relevant, but not helpful without a 

formalism to understand the semantics of real computers, both unconventional and 

conventional. The persistent questions about the EAC indicate that the “Great Principles” 

of digital computing are insufficient to understand it. A simple connection between 

nature, mathematics and computer architectures must be found to comprehend this simple 

machine. We need a way to define “computational significance” in the function and 

structure of natural objects used as computers. We need a tool to study analogy. 

4. The “invisible components” of the EAC 

The rest of the components of the EAC are inherent functions of the materials that it is 

composed of, which is to say that they are mental constructs that can only be understood 

as properties of nature whose representations are physical and mathematical principles. 

The primary method of identifying these inherent functions is through the computing 

paradigm of analogy. The only visible form of any specific analogy is a configuration of 

the EAC, that is, a set of inputs, outputs and Lukasiewicz logic functions assigned 

according to a topology of the conductive sheet. More complex analogies may need 

multiple EACs. Thus, the major parts of most analogies are invisible to the user. They 

reside in the properties of nature and the semantics that are assigned to the EAC. 

This has proved confusing to most prospective users. Previous papers did not clarify 

matters because a single application merged multiple semantic levels that were overlaid 

onto the visible components of the EAC. This paper presents the !-digraph to define the 

implicit functions of the EAC. The !-digraph also illustrates the nature of its computing 



paradigm analogy, which will be contrasted with algorithm, and used to “dissect” the 

semantics of the EAC’s components and two EAC applications. 

This is a departure from the strategy used in earlier papers, which began by describing 

Rubel’s mathematical model of the EAC [23], naming all visible components (and 

confusing the components with their inherent functions), then presenting one or two 

applications without an explanation of their semantics. In this paper, the paradigm to 

understand the EAC will be derived before discussing the model. This will allow the 

reader to distinguish the EAC (and other unconventional computers) from traditional 

digital computers. It will clarify the relationship between the EAC’s components (shown 

in Figures 3 and 4), Rubel’s mathematical model of the EAC (which will be given) and 

the properties of the materials whose inherent functions perform the computation. 

5. Deriving the !-digraph 

The !-digraph originated in a difficult question, “How are partial differential equations 

compiled to the extended analog computer?” The first application of the EAC, butterfly 

wing pattern morphogenesis, was designed by translating a visual model of the butterfly 

wing to the conductive sheet. The model was developed by Nijhout [21], who had also 

presented a system of PDEs for pattern generation based on work by Turing [22]. 

Mathematical models are extracted from physical systems by scientists, not automatically 

recognized by a computer (in fact, Turing had no computer capable of this task). The first 

path in the diagram (Figure 5), developing partial differential equations (PDEs) from 

nature, is a task for natural intelligence. In the second path in the diagram, the author 

mapped Nijhout’s model through topology-preserving deformations to a material that had 



properties similar to the diffusion of chemicals found in a butterfly’s wing. However, for 

the third path, no method was evident to compile the system of PDEs to the EAC. 

 

Figure 5. Developing a specific analogy for the EAC 

This diagram was used in conference presentations for several years before realizing that 

it contained the key to the problem. Three things define the large-scale semantics of any 

computing paradigm, whether it is analog or digital: 

1. Mathematics, which is a language to express mental ideals that rigorously 

describe objects, processes and the relationships between them; this includes 

logic and theoretical models of computing such as Turing’s machine, Rubel’s 

EAC, etc.),  

2. Nature, which is everything found in the physical universe; it includes those 

objects that are used for computation as well as those that are not, including 

artificial constructs, and 



3. Computer architectures, which are either objects that are expressly built for 

computation (solving problems), or objects, materials and processes that are used 

for computation by structuring them or ascribing a semantics to their behavior; 

thus all computer architectures are embedded in nature. 

The diagram in Figure 5 and these ideas are formalized as the !-digraph (Figure 6). It is a 

set of tuples, each composed of an order-3 directed graph whose edges and vertices are 

labeled with definitions for the specific semantics of one “level” i in a computing system: 

{((V0, E0), LV0, LE0), ((V1, E1), LV1, LE1), ((V2, E2), LV2, LE2), …, ((Vn, E n), LV n, LE 

n), (Ea, Lb)} where |Vi | = 3, |Ei | " 0, |LVi | " 0, |LEi | " 0, |Ea| " 0 and  |Lb| " 0 

 

Figure 6. One level of a general !-digraph 

Experience has shown that the semantics of a computing system may be known only 

partially. The possibility of a partial, incomplete semantics is permitted by allowing the 

number of edges and labels to be zero at any level. No upper bound is set on the number 

of tuples, nor within each tuple on the number of edges and labels, although they must be 



finite. Composition of tuples is permitted using an additional tuple in the set whose edges 

and labels define “overloaded” meanings in both the paradigms analogy and algorithm.  

The leftmost and topmost nodes in the diagram are not restricted to any specific sub-

discipline of natural science or mathematics. The rightmost node is restricted to computer 

architectures, since that is the discipline we are investigating. However, one could change 

it to "swimming machines" or "buildings" or any artificial device whose semantics one 

wants to define. The diagram is used by restricting the three vertices and edges with a 

labeling, and then seeing what semantics the relationships defined by the labeling will 

yield. Conversely, a semantics such as “digital computer modeling weather prediction” 

can be mapped to the !-digraph, and the unlabeled parts of the diagram explored. 

6. Applying the !-digraph to understand analogy 

The computing paradigm analogy differs from algorithm because it uses implicit 

computation, the idea that the properties of nature inherently perform computation. An 

analogy is a specific relationship binding a computer architecture directly to nature. As 

the term is employed here, an analogy is restricted to devices that do not need to be 

programmed, but may need to be configured. A configuration specifies the structure of 

functional elements, thus selecting the spatial arrangement of the elements, their inputs, 

and outputs, and the means of measuring or observing the machine. The computational 

complexity is hidden in the material out of which the EAC is fabricated. Here is the !-

digraph for the paradigm analogy as illustrated by butterfly wing pattern morphogenesis 

modeled on the EAC. The explicit, “active” parts of the analogy are shown in red, while 

the implicit relationships are shown in black (Figure 7). 



  

Figure 7. Diagrammatic representation of the computing paradigm analogy 

An analogy may be simple, yet the system may be complex. Consider an EAC that 

models embryonic growth at the cellular level. It might need tens of thousands of 

conductive sheets, each with several Lukasiewicz logic elements, to react to temporally 

varying conditions, but such a machine is composed of simple components (like a cellular 

automaton). It need not even use more silicon area than a digital computer; it would 

simply use it in a different manner. Its behavior is complex, not its computer architecture. 

7. Applying the !-digraph to understand algorithm 

The paradigm algorithm differs from analogy because the computing device must be 

explicitly “instructed” to perform each operation, and to explicitly generate an output 

representation (a device using analogy often, but not always, displays its output in the 

material out of which it is composed). The visual display of a modern computer 



originates in its numeric output, usually large tables, matrices or lists, which are 

translated into colors at positions on a graphical display. The paradigm algorithm for 

butterfly wing pattern morphogenesis expressed using the !-digraph is shown below 

(Figure 8). Where the EAC, once configured, has no further need to use the mathematical 

model, a conventional digital computer will repeatedly perform computations based on 

some algorithm that is a direct translation of the equations in the model. Initially, a 

human must write the specification—a computer program—based on the equations. It 

does not matter what language the person uses, nor does it matter that in most cases today 

the program is translated automatically—compiled—into a form that the digital computer 

recognizes. The explicit, “active” relationships in this example are shown in red. 

  

Figure 8. Diagrammatic representation of the computing paradigm algorithm 



The point is that the paradigm algorithm cannot escape from the need to execute the 

specification. Its original form is a mathematical model composed of smaller objects 

whose semantics are given by logic and arithmetic. The EAC does not do this; it “runs” 

its configuration using the properties of matter. Using analogy, nature computes. 

8. Understanding implicit and explicit functions 

To understand why the components of the EAC work, the difference between the explicit 

and implicit functions of the components in digital and analog computer architectures 

must be understood. Intuitive and diagrammatic definitions are given below: 

A function is explicit if the structure of the component is one-to-one, reflexive 

and symmetric with its definition in the model. (The need for a component 

defined by the model is identified with a separate edge). The significant relations 

are shown with two edges in the !-digraph. One connects the model to the 

component, defining its structure. The second connects the component to the 

model, indicating that its definition can be extracted from the component. 

A function is implicit if the structure of the component that implements it does 

not directly correspond to the definition given in the mathematical model. There 

are no defining edges in the !-digraph between the model and component that 

are one-to-one, reflexive and symmetric. The structure of the component is not 

entailed by the definition given in the model. The operation of the component is 

denoted by some path in the !-digraph that leads to the model, but the definition 

in the model cannot be extracted from component’s structure. 



Two examples will clarify these definitions, and illustrate the difference between a 

conventional digital computer and the EAC. First, consider the explicit function of 

addition in a conventional digital computer (Figure 9). It is specified by a complex 

expression in Boolean logic that defines the physical structure of the adder in terms of 

logic gates. In turn, from this structure the logical definition of addition can be extracted. 

 

Figure 9. Explicit addition 

In contrast, addition in an analog computer is an implicit function (Figure 10). 

 

Figure 10. Implicit addition 



Addition can be implemented with a three-wire junction, but there is no sentence in 

Boolean logic that directly (or usefully) corresponds to its structure. This adder-without-

binary-bits uses the Law of Conservation of Energy, specifically, Kirchhoff’s Current 

Law. Moreover, while a three-wire junction performs addition, it is not a logical necessity 

that it do so. For example, it may apply a common voltage to the gates of two field-effect 

transistors in a current mirror. 

A more complex arithmetic function in the EAC is multiplication (Figure 11). It can be 

implemented in several ways. One is by scaling an input with the conductive sheet, an 

implicit function. Another is with the slope of a Lukasiewicz logic function, an explicit 

function. A two-level !-digraph with the pertinent vertices and edges highlighted in red 

shows the semantic hierarchy of Lukasiewicz logic used define multiplication. From the 

structure of the LLA circuit, the logical definition of multiplication can be extracted.  

 

Figure 11. Explicit analog multiplication 



9. The explicit functions of the EAC 

Rubel’s EAC [23] is such a simple device that there is some degree of implicitness in all 

of its functions. However, paraphrasing Orwell’s novel Animal Farm, some functions are 

more explicit than others. The degree to which a component of the EAC uses the 

properties of matter to “carry” a computing function, and the visibility of the function’s 

operation with respect to the component, together with the relationship criteria of the 

function typing (Section 8), determines its classification as explicit or implicit. 

Initial setting and constants. Initial settings s1, s2, s3, … and constants c1, c2, c3, … are 

fixed, arbitrary real numbers that are not required to be rational or digitally computable, 

that is, able to be generated by a Turing machine. In nature, this assumption may not hold 

true, which is beyond the scope of discussion in this paper (see Siegelmann and Sontag 

[24] and Landauer [25] for different perspectives). The distinction between the initial 

settings and constants is that initial settings are only produced at the first level, N=0, in 

the machine, while constants may be produced at any level. Both are explicit inputs to the 

EAC. In EAC R002, their values are produced by the output of DACs that are precise to 

ten bits, which control current sources of slightly less precision due to noise. These 

outputs are connected to the conductive sheet and the Lukasiewicz logic units.  

Independent variables. These variables, x1, x2, x3, …, are arbitrary real numbers 

produced at any level N of the EAC. Rubel did not require that they be measurable. 

Independent variables explicitly correspond to measurement points in the EAC. In the 

current version of the EAC, they are voltages measured directly by ADCs that are precise 



to 12 bits, or to currents that can be computed digitally from measured voltages using 

Ohm’s Law and sent back as inputs to a DAC.  

Hook-ups and feedback (wires). The initial settings, constants, independent variables, and 

the inputs u1, u2, u3, … and outputs v1, v2, v3, … of all the varieties of “black boxes” are 

explicitly connected with wires defined by pairs (wi, wj) from the Cartesian product 

W = (s1, s2, s3, … ! c1, c2, c3, …! x1, x2, x3, … ! u1, u2, u3, … ! v1, v2, v3, …). There 

are three constraints: (1) the outputs of any level N can only be used as inputs at level 

N+1/2, N+1 and higher, (2) no two outputs can be connected to the same input, and (3) 

each input must be connected to at least one output. 

Rubel was vague about the topology of interconnections, but stated that there was “a 

great deal of feedback.” Yet, according to his definition, feedback is only possible locally 

within a half-level N or N+1/2, but not more widely. Our implementations have not 

followed this restriction, although in general the machine operates without feedback as 

computation progresses “upward” from one level to the next. Finally, in the EAC R002, 

the topology of the connections is configurable. 

Wires are explicit functions in the connections between components, but are implicit 

functions within the conductive sheet, where all connection points in the foam sheet are 

“wired together” by its conductive properties. 

Lukasiewicz logic arrays (LLAs). Lukasiewicz logic arrays are not part of Rubel’s 

definition of the EAC. The piecewise linear logic functions they compute are explicit 

functions (as was shown earlier for multiplication, Figure 11). LLAs are included because 

of a theorem by McNaughton [26], which proved that sentences in Lukasiewicz logic 



approximate algebraic differential equations (ADEs) arbitrarily closely. Because the EAC 

computes ADEs as wells as PDEs, this functionality is necessary to complete the 

implementation of an EAC. 

10. The implicit functions of the EAC 

“Boundary-value problem” box. Rubel considered this component to be the most 

significant element of the EAC, saying that ‘The quintessential black box is the 

“boundary-value-problem” box...[that] solves a finite system " of PDEs (maybe 

including some ODEs)…’” [23]. The EAC R002 implements the implicit solution of both 

PDEs and ODEs using the conductive foam sheet. A specific system " of PDEs is solved 

by defining various configurations of the EAC, and selecting a new analogy (semantics). 

The “boundary-value problem” box—a conductive sheet—has been known since the 

1950’s to solve Laplacian and Poisson PDEs using materials such as carbon paper or 

resistive films [13]. In the EAC, silicon and conductive plastics apply this historical 

technique with modern materials, directly accessing the properties of conducting or 

semiconducting materials (charge recombination-regeneration, drift and diffusion). With 

oscillating inputs, the foam solves the wave equation. ODEs are solved implicitly, too, 

but can be defined for direct explicit solution [27]. 

Adders. Adders sum the vectors u1(x1, x2, x3, … xk) and u2(x1, x2, x3, … xk) to yield u1 

(x1, x2, x3, … xk) + u2 (x1, x2, x3, … xk) This operation is similar to the concatenated 

adders in a general-purpose analog computer. Adders are implicitly implemented in the 

conductive sheets and the Lukasiewicz logic units, whose operation is governed by 

Kirchhoff’s Current Law, itself based on the Law of Conservation of Energy. 



Multipliers. Multipliers input the vectors u1 (x1, x2, x3, … xk) and u2 (x1, x2, x3, … xk) to 

yield u1 (x1, x2, x3, … xk) · u2 (x1, x2, x3, … xk). This is similar to the concatenated 

multipliers in a general-purpose analog computer. Multipliers are implicit functions of the 

conductive sheet (scaling by a resistive constant) and explicit functions of the 

Lukasiewicz logic functions (scaling by the slope of a curve). 

Differentiators. For ƒ(x1, x2, x3, … xk) a differentiator outputs a possibly mixed partial 

derivative Dƒ(x1, x2, x3, … xk) produced by: 

 Dƒ  =     #a1+a2+a3+$…+anƒ    

  #x1
a1 #x2

a2 #x3
a3 … #xn

an) 

Holding a variable xi fixed is implemented by forcing it to a constant k, or, over a series 

of points in space, a function of the variable ƒ(xi) such that it is not influenced by the 

partial derivatives of the other variables. Differentiators are implicit in the conductive 

sheets [28]. Simpler versions are implicit semantic attributions of Lukasiewicz logic 

elements, which model Laplacian differentiators, well known as edge detectors [4]. 

Substituters. For a vector of values v(x1, x2, x3, … xl) and the input vector u1(x1, x2, x3, 

… xk), …, ul(x1, x2, x3, … xk) the EAC replaces each xi in v(x1, x2, x3, … xl) with the 

corresponding value ui(x1, x2, x3, … xk) to yield v(u1(x1, x2, x3, … xk), …, ul(x1, x2, x3, 

… xk)). Substituters are implicit functions of the explicit connections—the wires—from 

one component, such as a conductive sheet, to another, introducing the value(s) to be 

substituted from the outputs of other conductive sheets or Lukasiewicz logic functions. 

Inverters. For a well-defined C" function, the inverter “locks down” the outputs and 

generates the inverse of the function, yielding the inputs u1(x1, x2, x3, … xk), …, ul(x1, 



x2, x3, … xk) that yield ƒ(u1(x1, x2, x3, … xk), …, ul(x1, x2, x3, … xk)). Inverters are 

semantic attributions of a level of the EAC, which implicitly solves the inverse of a 

function, for example, by implementing backpropagation in a neural network as used to 

implement a character recognizer with a single-pixel retina [28]. 

Set theoretic operators: >0, #0, union, intersection, projection. The set theoretic 

operators provide comparison and combinations of functions of variables ƒ(x1, x2, x3, … 

xk). It should be noted that in finite time it is not possible to exactly compare any value to 

zero, because the sequence of digits in a real number such that its partial representation is 

0.00000000… may have some digit beyond those checked that is non-zero. This is not an 

issue for a theoretical model, but is an example of the limits of measurability for a 

physical implementation. These operators are implicit in the connections through 

Lukasiewicz logic functions that have a constant value along a piecewise interval. 

Restricted limits. The restriction on taking limits is enforced by only permitting boundary 

values that have been computed at the immediately prior level N–1 in the EAC. 

Permitting an unbounded series of boundary value computations would permit the EAC 

to compute all C"-functions. Then, as Rubel wrote, “we would have no “computer” at 

all” [23]. In implementation, this is an implicit constraint on the physical connections 

between components—and one that is ignore in the implementation, as there are too few 

levels, even in the proposed EAC supercomputer [11], to take “unrestricted” limits. 

Analytic continuation. The analytic continuation “black box” is a mathematical property 

of a function such that one point defines other points with a neighborhood. Practically, 

this is a condition of interpolation, and barring discontinuities in the material from which 



the EAC is fabricated, is implicit in the regularity of matter at the macroscopic, classical 

level, and the Laws of Symmetry and Conservation of Energy. 

Extremely well-posed determinism. This form of determinism enforces a compact space 

on the output at any point in the computation. This does not say that there cannot be sharp 

gradients or rapid changes in a function, but it does demand that any perturbation by 

some small amount # produces a change in the resulting output that is a C"-function ƒ(#). 

Extremely well-posedness is an implicit function enforced by the Law of Conservation of 

Energy, which prevents gross discontinuities in the output of the EAC. For example, 

taking the derivative of a 0-to-1 step function, such as occurs at the edge of an image, is 

theoretically infinite but in practice is limited by the available power in the circuit. This 

was observed in Lukasiewicz logic arrays acting as Laplacian differentiators (Figure 20). 

11. Examples of analogy in unconventional computers 

Here are two problems solved with analogy, which are “dissected” using the !-digraph. 

The first is Hamiltonian Circuit, an NP-complete problem that on the surface does not 

seem to be isomorphic with Butterfly Wing Morphogenesis. The link is the semantic 

concept of an abstract alphabet (see Section 13 in this paper). Students unwittingly 

revealed the first abstract alphabets by using Sandved’s Butterfly Alphabet [29] (Figure 

19a) to solve assignments on the EAC [30]. They needed a technique similar to the 

“Hello, world!” program used to introduce beginning students to programming languages 

such as C++ or Fortran. Morphogenesis served this purpose although its semantics are 

only now explained here for the first time (Figure 12). The author’s students intuitively 

used the alphabet for these and other applications because no formalization existed. 



 

Figure 12.Semantic hierarchy of the EAC analogy for Hamiltonian Circuit 

Abstract alphabets and the !-digraph together open interesting areas for research. What 

kinds of alphabets are there—spatial? Temporal? Three-dimensional? What grammars 

can be found that apply to different problems? Can semantic complexity classes be 

rigorously defined for analogy, in a manner similar to the complexity classes known for 

digital computers? Is P=NP in analogy, or do P and NP contain different classes of 

problems? Even for the same problem, does analogy separate its solutions into distinct 

complexity classes? (Costa and Mycka [19] outline a research program in this area.) 



The second example shows that the !-digraph is useful to model other systems. Here, a 

slime mold, Physarum sp., computes Minimum Spanning Tree [10], [31] (Figure 13). 

Only two levels in the semantic hierarchy are needed. The slime mold becomes a 

computer by configuring the structure of the organism’s environment, then ascribing a 

meaning—an analogy—to the behavior of this living unconventional computer. The !-

digraph also shows how an EAC could be mapped to this problem (compare Figure 12). 

 

Figure 13. Semantic hierarchy of the Physarum sp. analogy for Minimum Spanning Tree 

12. Practicality of the EAC  

No unconventional computer will be adopted for its novelty. First, it must be understood 

to be useful. The !-digraph was developed because current and potential users of the 



EAC have requested a starting point to develop their applications. But why was the EAC 

attractive to users in industry and the military? Is the EAC a practical computer? 

Eight reasons have emerged that answer this question, “Yes.” The EAC is fast, cheap, 

robust, low power, reconfigurable, scalable, “low tech,” that is, capable of being 

fabricated with older VLSI process technology, and, in some cases, it is disposable. 

Three of these reasons go hand-in-hand. They are speed, cost and robustness, which are 

all due to its simple structure. The EAC is a naturally fast architecture because it omits 

several of the levels of computation that are used in conventional digital computers 

(Figure 14). This physical result can also be observed semantically in the !-digraph, and 

has implications for the complexity of unconventional computing [19]. 

 

Figure 14. Computational bottlenecks 

Not only does the EAC have fewer computational bottlenecks, the one it does have is 

wider (Figure 15). In applications without feedback, it resembles a fluid pipeline. 



 

Figure 15.    (a) von Neumann bottleneck                                 (b) EAC bottleneck 

The two-dimensional bottleneck of the conductive sheets is shown in these VLSI circuits, 

which were fabricated over a decade ago (Figure 16). 

 

Figure 16. VLSI circuits that preceded EAC R002 

Their simplicity makes them fast and cheap. Their large transistors and large areas of 

“empty space,” that is, areas on the chip that have no transistors, only wires and ohmic 

connections, means that the die yield of an EAC is over 95%. If an error compensation 

map is used to correct outputs by interpolation, the yield is 100%. Of the twenty MOSIS 

prototypes fabricated, the yield was a flawless 100%. The LLA’s H-tree structure can 

also tolerate a failed node, and experiments have demonstrated that the LLA H-tree 

increases precision and accuracy by “narrowing” the Gaussian error distribution [32]. 



Silicon and foam conductive sheet are not significantly affected by defects. Experiments 

showed that a foam sheet functioned without error after 78% of its area was removed, 

then worked with slightly less accuracy until its connections were cut [33] (Figure 17). 

 

               Figure 17.      (a) Intact conductive sheet                          (b) Sheet after random damage 

Radiation does not appreciably affect the continued functioning of a VLSI EAC (it will 

affect its output temporarily if it is not shielded, but a known level of radiation can be 

compensated for), nor will slight physical damage affect its operability. VLSI circuits 

fabricated in 1995 continue to work, even after being washed with distilled water to 

remove dust! Digital circuits are not this robust. While the EAC may not be self-healing, 

a property that one military agency seeks, it is a computer that is very difficult to “kill.” 

13. Techniques used to apply the EAC  

Over time, general techniques useful in a wide variety of applications have been 

discovered, similar to classes of algorithms for digital computers. Four are listed in order 

of the scope of their usefulness: generate-and-recognize, analog alphabets, dynamically-

evolving reconfiguration, and the solution of ordinary differential equations for feedback 

controllers. The first two, which are the most interesting techniques, are discussed here. 



Generate-and-recognize originated in the original design of the EAC single-pixel retina 

shown in Figure 16 [28]. The original design operates by generating a manifold gradient 

when an image is projected onto it. The gradient is sampled and recognized by LLAs 

whose functions are selected in a form of training similar to backpropagation. 

The retina was intended to be a biologically-inspired chip for robot control [4], [34], but 

soon found use as a general pattern recognizer. The breakthrough insight for robot control 

and many other applications was that inputs to the circuit did not have to be photovoltaic, 

but could come from any source of current. In the design for a proprioceptic (self-

sensing) Stiquito robot (Figure 18a), EAC “retinas” were used to create the umwelt, the 

robot’s sense of the world and its position in it. The cognitive schematic  (Figure 18b) 

shows visual and “tactile” sensors in black. Internal EAC “retinas” are used for mapping 

the spatial location of objects and associating them with positive and negative responses 

to generate behavior (shown in red). Only one EAC acts as a visual recognizer; the rest 

handle data with other semantics, such as the robot looking at its legs as they move. 

   

Figure 18. (a) Proprioceptic Stiquito design               (b) Cognitive schematic of proprioceptic robot 



An EAC retina can also “look at” digital values that are translated by a digital-to-analog 

converter. For example, one EAC can process thirty-two bytes from a packet of Internet 

data in parallel to generate its “image.” The speed at which the EAC operates and its two-

dimensional input stream has led us to study its application to data mining, where 

multiple EACs categorize query results by visualizing them. This is an abstract analogy. 

Abstract alphabets were derived from the generate-and-recognize technique, inspired by 

the butterfly wing morphogenesis model. Other alphabets, that is, series of distinct 

manifolds generated by the EAC’s conductive sheets, were used to distinguish valid from 

invalid local connections in Hamiltonian Cycle [30], protein folding, military-versus-

civilian aircraft configurations, etc. In Figure 19 the evolution of an abstract alphabet for 

detecting distributed denial of service (DDoS) attacks is shown in subfigures (a) to (d). 

 

Figure 19. (a) Butterfly alphabet        (b) Foam “A”              (c) Hamiltonian Cycle       (d) DDoS alphabet 

Note that although the precision of a single EAC is limited to no more than sixteen bits, 

and is usually less, a large array of EACs has a “shallow” precision over the aggregate 

machine that can reach tens of thousands of bits. The number of individual EACs in the 

machine is directly related to the machine’s increased computational “word” size. 

This allows temporal and spatial sequences of “characters” to scale up to larger problem 

instances. An EAC architecture composed of multiple elements, each an EAC similar to 



the research prototype EAC R002, is applied to “inspect” problem instances for legal 

strings from the relevant analog alphabet. This is also an abstract form of analogy. 

14. Concise EAC case studies  

Five concise case studies illustrate the reasons that the EAC was of interest to an adopter, 

and the techniques that were used in each application. These are not blue-sky proposals, 

but actual applications for which the EAC was either considered, adopted, or is currently 

being evaluated. To address concerns for privacy and intellectual property rights, the 

specific details of the applications and the identity of the adopters are not given. 

The applications for which the EAC was not chosen fell victim to natural “causes,” 

usually a decision not to risk a new technology, but sometimes due to economic factors 

outside the adopters’ control (downturns, lack of commercial availability of VLSI EACs, 

etc.). Still, it is a fact that the potential of the machine was attractive. As interest grows, 

the first commercial VLSI EAC, even a small embedded controller, is expected to create 

a sharp upturn in its use, as these case studies show. Its practicality is no longer in doubt. 

Spall detector for ceramic impeller (1992). A military agency needed a replacement for a 

spall detector when they switched from ferrous to ceramic high-speed pump impellers. 

Old detectors relied on magnets to capture the chips that were broken from the ferrous 

impeller blades due to cavitation. These detectors no longer worked with non-magnetic 

ceramic spall. A publication about an LLA retina suggested that it was fast enough to 

distinguish between spall and bubbles in the lubricant flow, and would be robust enough 

to work in the hostile mechanical environment [4]. However, the retina used discrete 

Lukasiewicz implication cells (Figure 20a), and detected only edges (Figure 20b, a–h). 



 

Figure 20. (a) LLA retina cell                                 (b) Edges detected by the LLA retina cell 

Using edges to distinguish between smooth bubbles and ragged spall required massive 

processing outside of the LLA chip.  The task of image recognition for the hybrid 

processor was daunting. The EAC, generate-and-recognize and abstract alphabets that 

could have defined “characters” for bubbles and spall (or “not bubbles”) had not yet been 

developed. The LLA retina was not suitable for this task. It was not adopted. 

Embedded quality-of-service controller for Internet router and fuzzy categorizer (2000, 

2006). A telecommunications firm in Canada evaluated the EAC for use as a quality-of-

service (QoS) controller in an Internet router, and as an in-phone, low power fuzzy 

categorizer that would learn when and where users wished to accept calls. The factors of 

interest in the router were speed, and reconfigurability; the device had to evaluate QoS 

service constraints and network traffic levels dynamically in the nanosecond time 

domain. For the mobile call categorizer, the low power of the EAC and its ability to 

evolve rules as abstract alphabets were the most important factors. The EAC initially was 

not adopted due to the dot.com “bust,” but interest has recently been revived. The 

company now has an EAC R002 board. 



Programmable field logic sensor/controller (2006). The technology research office of a 

multinational semiconductor firm in the People’s Republic of China, which employed at 

least one of the author’s students, became interested in using the EAC as a programmable 

logic device for feedback control. Factors that led to the evaluation included low cost, 

robustness, “low tech” fabrication, and reconfigurability. However, the firm needed to 

perform adaptive control by computing the poles of functions, which meant that explicit 

solutions to ordinary differential equations (ODEs) were needed. The author and an 

engineer flown to Indiana University from the People’s Republic of China jointly 

developed a new technique based on McNaughton’s theorem that allowed an arbitrary 

algebraic ODE to be represented in a compact form using the EAC. The firm now has an 

EAC R002 board, and is evaluating designs based on it. 

Evolved embedded systems controller (2006). An electronics design firm in the United 

States believed that the EAC could be used as a low-cost embedded controller configured 

using evolutionary algorithms. The firm’s chief scientist began an eighteen-month series 

of visits to Indiana University An individual with long experience in computing, the chief 

scientist first saw the EAC as a kind of 1950’s general purpose analog computer (GPAC), 

then an odd form of digital computer, and finally, in what he called “an epiphany,” a 

machine with its own paradigm of computing. Shortly afterwards, the firm and Indiana 

university filed an application patent. The firm has purchased a number of EAC R002 

boards, and is seeking a partnership with a major semiconductor manufacturer. Factors in 

the EAC’s adoption include its low cost, dynamically evolvable reconfigurability, and 

ability to tolerate harsh industrial and military environments. If a low cost VLSI EAC is 



fabricated commercially, it will enable construction of an analog supercomputer, just as 

today’s digital video games have spawned a new generation of digital supercomputers. 

Protein folding (2007). An Argentinean pharmaceutical consortium, whose chief 

executive officer explained that it is too expensive to obtain state-of-the-art 

supercomputers, was interested in the EAC because it is fast, cheap, scalable, and can be 

fabricated with “low tech” process technology (in fact, the group is now looking for older 

two or three micron photolithography equipment). An EAC supercomputer composed of 

an array of individual processors, each similar to, but simpler than, an EAC R002 board, 

would use both local and global generate-and-recognize for an abstract “protein folding” 

alphabet. The protein would be represented by a 21/2D model, with local bond bending 

inspected for global interference between molecular groups. Although this problem is 

computationally complex for a digital computer, the EAC array operates using an 

“organic” analogy. The string computes in parallel, as does a real molecule. While it now 

takes the consortium’s digital computers hundreds of days to design one protein, they 

estimate that an EAC array could perform the same computation in hours. The group has 

chosen to build its own EAC array using information available in articles and patents (the 

EAC is in the public domain; the LLAs were not patented internationally). The possibility 

of becoming a vendor of “Third World” supercomputers was a factor in their decision. 

15. The future of the EAC 

It has been necessary to go backward to go forward. The speed of the EAC R002 is a step 

backward from previous VLSI circuits that operate in a nanosecond or less due to their 

simplicity and the materials used to fabricate them [35]. Experience showed that 



sacrificing speed for an open user architecture was a great leap forward. Its flexible 

digital interface enabled the development of software tools and interfaces. 

However, EAC R002 is a machine built for flexibility, not speed. Users of this board 

control all facets of its configuration, including the ability to make arbitrary connections 

to the conductive sheet and to upload new Lukasiewicz logic functions at run time. 

However, there is a price for this flexibility, and that price is speed.  

The embedded microprocessor that controls the interface and emulates the Lukasiewicz 

Logic Arrays is slow. Its response time is further reduced because it polls-and-controls 

each of the twenty-five elements in the conductive sheet’s input/output array. The 

inexpensive ADCs and DACs are slow. Finally, the serial USB interface limits 

throughput to the host computer. The jEAC user interface operates at about four updates 

per minute. Faster speeds are possible by writing a program to interact with the EAC, but 

the input/output and emulation bottlenecks set a limit of about 1000 updates per minute. 

Still, Himebaugh’s design succeeded beyond our expectations, as the case studies show, 

and as adopters in academia confirm. 

Adopters in academia (as of 2007). The EAC is so inexpensive that a number of 

universities now own EAC R002 boards. At the time of writing, these include The 

University of the West of England (UK), the University of York (UK), The Polish 

Academy of Sciences (Warsaw), the École Polytechnique Fédérale de Lausanne 

(Switzerland) and Indiana University–Purdue University, Indianapolis (USA). Professor 

Andrew Adamatzky at the University of the West of England has developed an open 

EAC interface, and Dr. Simon Harding created an “evolutionary harness” that evolves 



EAC configurations that are the solutions to symbolic equations (Figure 21) [36]. In this 

case, a function of the voltage V at the position (x,y) on the foam was evolved: 

V(x,y) = ((x – 3)2 + 3(x – 3)) ÷ (y + 1) 

 

Figure 21. Harding’s “evolutionary harness” evolving the solution to a symbolic equation on EAC R002 

Dr. Harding is the first researcher to bridge the semantic gap between symbolic 

mathematical functions and the EAC architecture. That gap was illustrated at the start of 

this paper with the PDEs that describes butterfly wing morphogenesis (Figure 5). 

16. In conclusion 

The EAC R002 allows computer scientists in industry and academia to inexpensively 

explore the paradigm analogy, and create new interfaces, tools, and applications. The !-

digraph simplifies understanding of the EAC’s operation, and the semantics of its 

applications.  With its dual symbolic and diagrammatic forms, the !-digraph also serves 



as the basis for a new approach to the theory of the EAC and, possibly, other 

unconventional computers (as was shown in Figure 13). New directions include: 

• a primitive spatial and temporal version of Lukasiewicz’ logic to describe 

both the EAC’s structure and its operation, 

• semantic complexity classes defined visually (as an undergraduate, the 

author rewrote Smale’s proof that Satisfiability is NP-complete in the 

form of semantically-connected clause matrices, rather like LEGO®[39]), 

• new theories to rigorously model the visualization of analogies (for recent 

work related to this direction see Giaquinto [37] and Kulvivki [38]), 

• a philosophical approach to analog computing, its logic and its visual 

meaning based on an extension of the works of Wittgenstein (the literature 

is extensive; useful introductions to his Picture Theory in the early and 

later writings can be found in Pears [41] and Kenny [42]). 

• a version of Ashcroft and Wadge’s Lucid dataflow programming language 

[40] for the EAC, and 

• “natural pragmas” that add properties of materials to symbolic languages; 

these languages would resemble Lucid or HTML rather than C++ or 

Fortran, with the natural pragmas providing a way to translate “dusty 

deck” code to the EAC, 

What is the next step that should be taken to expand society’s use of the EAC? 

Researchers and engineers in academia and industry may choose to study the lessons 

learned from EAC R002, and its present tools and interfaces. It is now time for a fast 



VLSI EAC and its system interface. Every advance in the past ten years has made it 

easier to go “back to the future” and build a complete VLSI EAC-R002-on-a-chip. When 

that happens, the vision of a very unconventional analog VLSI supercomputer that solves 

trillions of partial differential equations per second [11] will become a reality. 
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Figure captions 

Figure 1. (a) EAC to left of Macintosh                   (b) jEAC Interface in operation 

Figure 2. Upper side of EAC R002 during operation 

Figure 3. (a) Upper side of EAC R002                           (b) Underside of EAC R002 

Figure 4. (a) Diagram of upper side of EAC R002     (b) Diagram of underside of EAC R002 

Figure 5. Developing a specific analogy for the EAC 

Figure 6. One level of a general !-digraph 

Figure 7. Diagrammatic representation of the computing paradigm analogy 

Figure 8. Diagrammatic representation of the computing paradigm algorithm 

Figure 9. Explicit addition 

Figure 10. Implicit addition 

Figure 11. Explicit analog multiplication 

Figure 12.Semantic hierarchy of the EAC analogy for Hamiltonian Circuit 

Figure 13. Semantic hierarchy of the Physarum sp. analogy for Minimum Spanning Tree 

Figure 14. Computational bottlenecks 

Figure 15.    (a) von Neumann bottleneck                                 (b) EAC bottleneck 

Figure 16. VLSI circuits that preceded EAC R002 



Figure 17.      (a) Intact conductive sheet                          (b) Sheet after random damage 

Figure 18. (a) Proprioceptic Stiquito design               (b) Cognitive schematic of proprioceptic robot 

Figure 19. (a) Butterfly alphabet        (b) Foam “A”              (c) Hamiltonian Cycle       (d) DDoS alphabet 

Figure 20. (a) LLA retina cell                                 (b) Edges detected by the LLA retina cell 

Figure 21. Harding’s “evolutionary harness” evolving the solution to a symbolic equation on EAC R002 


