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1 Introduction

Recommender Systems have been a prevalent area of research since the mid-1990s, beginning with

the first papers on collaborative filtering (Adomavicius & Tuzhilin, 2005). Since then, recommender

systems have been applied to various dimensions, ranging from marketing, education, social media,

financial services, and more. At a high-level, recommendation systems are pieces of software that

aim to recommend products or information to users, based on certain preferences.

This research project is centered on two publicly available datasets from Twitter concerning

social commerce and “Pay-by-Tweet” services. The project has three main goals: (1) to show a

connection between users’ personalities and their purchasing decisions; (2) to correlate purchases

with a user’s influence over their followers; and (3) to develop a recommender system which esti-

mates the probability of purchase for each user and item grouping and then recommends the items

with the highest probabilities. This research will culminate in a final paper that will discuss the

experimental methodology and intuition behind the recommender system. This proposal will cover

my background, the motivation for the project, and the project’s expectations.

2 Background

During my time at Gallatin, I have studied the deeply intertwined nature of computer science

and mathematics, and how to utilize these two fields to analyze and learn from data. In today’s

terms, we recognize this as data science. In a truly interdisciplinary nature, data science research

has implications way beyond computer science and mathematics alone, as these are just the tools

employed to solve some of the most challenging problems in our world today. In fact, data science

has been used to solve problems in genomics, finance, public policy, and even high-energy physics.

Data science has grown exponentially over the past few years in part due to new developments

made in machine learning. Recommender systems are a highly active area of research within the

broader field of data science and machine learning. I hope to add valuable research and insight to

this research community through my senior project.

The motivation for this project developed out of the work done in my two previous independent

studies with Tuzhilin and Adamopoulos: Recommender Systems and Recommender Systems II.

Recommender Systems, which took place in the Fall 2014 semester, mainly focused on developing
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an understanding of the recommender systems literature at a more general level. We covered

topics such as content-based recommender systems, collaborative filtering (both memory-based

and model-based), dimensionality reduction, online learning, context-aware recommender systems,

and the evaluation recommender systems. I took a course, Data Mining for Business Analytics,

in the Spring 2014 semester with Adamopoulos, which motivated this original independent study.

Recommender Systems II, which is currently in progress this semester, has focused on understanding

ensemble learning theory, and how to apply it to recommender systems. We are currently working

on a project to provide more diverse recommendations by modifying a standard k-NN approach to

select neighbors that minimize generalization error, as determined by the bias-variance-covariance

decomposition as described by Ueda and Nakano.

3 Motivation

Over the past 20 years, there has been much research within the field of recommender systems (RS),

and a wide variety of algorithms have been designed to improve recommendations (Adomavicius

& Tuzhilin, 2005). There has been much social and business success as a result of the use of

recommenders, due to the fact that we live in an age of information overload. In this age of

information overload, we use many strategies to make choices about “what to buy, how to spend

their leisure time, and even whom to date.” We rely on recommender systems to automate some

of these decisions with hopes of gaining high-quality, personal recommendations (Jannach, Zanker,

Felfernig, & Friedrich, 2010). While recommenders have achieved acceptance, there is still much

work to be done to create more useful recommendations.

Social media represents one of the most transformative impacts of information technology on

business because it has drastically changed how consumers and firms interact (Aral, Dellarocas, &

Godes, 2013). Thus, we see that companies are constantly competing in this space for consumers’

attention and brand engagement (Adamopoulos & Todri, 2014). Recently, both American Express

and Amazon partnered with Twitter to introduce a novel way of connecting social media and

e-commerce. American Express, directly through Twitter’s platform, allowed customers to buy

products, while Amazon allowed them to add products to their Amazon carts. However, both of

these methods allowed the companies to capture the power of social media, by spreading the word
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about the service and their products.

We hope to use publicly available data from Twitter collected on these two services to help

better understand users’ purchasing decisions. By leveraging the power of users’ past tweets, we

can better understand the personalities of these users. Thus, we can then try to correlate personality

types to certain product purchases. Further, we can also take advantage of a user’s social network

by observing their followers. By determining the influence a user has over his or her followers,

we can observe how that influence dictates purchasing decisions by a user’s network. Through

these two factors, we can model a probability of purchase for each user and item pair. Using a

hybrid recommender technique, we can then recommend items with high purchasing probabilities

to corresponding users.

4 Expectations

The output of this project will be a research paper that discusses the results of the three main

project aims as discussed in the introduction. In order to ensure substantial progress is being made

throughout the semester, the student and mentor will generally meet once a week in a conference

room on the 8th floor of KMEC, which hosts Stern’s Department of Information, Operations, and

Management Sciences. We hope to submit this paper to several conferences, such as RecSys and

WWW, to receive peer feedback on the experimental design and results1.

The project that has been described above is very much attainable to complete in one semester.

Since the past two semesters have been spent engaging with the field’s literature, much of the time

can be spent on the experimental process. This, coupled with my previous research experience

at Brookhaven National Laboratory2, gives me full confidence that I will be able to complete this

project within one semester. The next page provides a general schedule that will be followed to

assure that the project goals can be completely in a timely manner.

1Some of these conferences will take place after the deadline for this project, but it is still critical to receive such
feedback.

2I conducted high-energy particle physics research at Brookhaven National Laboratory on Long Island, NY in
2011-2012. There, I worked as a part of the Electric Dipole Moment (EDM) Collaboration, and wrote an awarded
paper entitled “The Optimization of Spin Precession and Beam Polarization for the Proton Electric Dipole Moment
Experiment”.
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4.1 Schedule

We provide a general schedule to help display the feasibility of completing the project within one

semester. To our advantage, we have begun to consider important factors of the experiment this

semester, and will continue to develop these ideas throughout the summer. Thus, we plan to have

the Twitter data for users’ timelines and their social networks’ timelines scrubbed and mined by the

end of September. Therefore, by Fall Recess we plan to start utilizing IBM Watson’s Personality

Insights to determine personality traits of the users (see Section 4.2). We will then spend the rest

of October concentrating on building our recommender system and fine tuning our models. This

is where we will start to obtain most of our experimental results. Then, we will spend much of the

month of November writing and revising the research paper that will discuss our observations made

from testing, as well as the theoretical background underpinnings of our recommender. Finally,

we plan to submit the paper to be considered for honors by Tuesday, December 1st, which is two

weeks prior to the last day of Fall classes.

4.2 Development Stack

When developing a recommender, much of its roots lies in mathematics and information theory.

However, it is absolutely imperative to test and evaluate the algorithm on several datasets. In this

case, we will be developing the algorithm using the Python programming language. Python has

exceptional libraries for machine learning (sklearn3) as well as numerical and scientific computing

(numpy4 and scipy5). We will also be utilizing IBM Watson’s Personality Insights API6 for deter-

mining users’ personality characteristics.

The two datasets we will be using were obtained from publicly available data on Twitter. One

dataset involves purchases made by users using the hash tag #AmazonCart7. The second dataset

contains tweets corresponding to all of the offers through American Express8 (e.g., hash tags like

#AMEXSamsClub).

3See http://scikit-learn.org/stable/
4See http://numpy.org/
5See http://www.scipy.org/
6See: http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/personality-insights.html
7See: http://www.amazon.com/gp/socialmedia/amazoncart
8See: http://people.stern.nyu.edu/padamopo/blog/2013-02-27-AmExTwitter.html
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5 Conclusion

We hope to provide meaningful research to the recommender systems community through this

project. The field of recommender systems is extremely interdisciplinary, with research spawning

from computer science, information systems, management sciences, psychology, economics, and

marketing. In an age of information overload, providing more accurate and diverse recommenda-

tions is more important than ever–especially when we know that algorithms can dictate consumer

preference (Bettman, Luce, & Payne, 1998). By exploring social commerce data, we hope to gain

insights into how users’ personalities and social power dictate purchasing decisions. We can then

exploit this information to better recommend relevant products to users. Further, we hope to pro-

vide a recommender that is more aware to human decision-making processes. Gallatin’s mission,

as taken from the Gallatin website9, is:

A Gallatin education is designed to help students become life-long learners by developing

their capacities for creative self-development, for self-reflection about their aspirations,

practices, and the worlds they inhabit. Gallatin’s approach to student learning is there-

fore holistic, individualized, and interdisciplinary.

I hope to finalize my holistic, individualized, and interdisciplinary education through this project. If

any further information can be provided, please contact Peter Mountanos10 or Panagiotis Adamopou-

los11.

Please see the following page for a listing of relevant sources. Note, we have provided annotations

for eleven of the works. We include several other works that we find to be important and will

consider throughout the research process. However, even still this list is not exhaustive, and there

will be likely many more citations in the final paper.

9See http://gallatin.nyu.edu/about/mission.html
10Email: peter.mountanos@nyu.edu
11Email: padamopo@stern.nyu.edu
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