
PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

1. INTRODUCTION

Peptoids are artificial proteins synthesised in the chemical labs, first de-
veloped around 20 years ago Zuckermann et al. [1994]. To endorse them
with important chemical functions such as binding the ends of selected side
chains with a particular metal ion, their side chains need to be of certain
types to be able to stablize in positions that are close to the binding con-
figurations. When the peptoids’ low energy states resemble these bind-
ing configurations, they are more likely to bind with the metal ion since
chemical structures always tend towards their low energy states. Various
metal bindings are observed in natural proteins and their binding positions
are recorded. Thus we can synthesise peptoids whose low energy states
resemble these observed binding positions in natural proteins. However,
for one potential peptoid design the choices of the side chains on the cho-
sen backbone can be of an exponential order and hence impossible to be
tested through trial-and-error lab experiments. Therefore we need an effi-
cient methodology to predict the low energy states of the peptoid designs.
Predicting the low energy state configurations of proteins is often called the
“protein folding problem”, which is the problem we are trying to solve in
the case for peptoids.

Our approach in the peptoid design is a two-step process. In the first step,
we consider the most influential energies in the peptoid and conduct an effi-
cient geometric search to eliminate all the impossible designs. In the second
step, designs that passed the quick initial screening will be further examined
in the comprehensive protein folding software called Rosetta. This two-step
process efficiently saves all the time that the majority impossible designs
would take to be evaluated by Rosetta.

2. ADAPTIVE GEOMETRIC SEARCH

In peptoids, since the energies of the bond angles and the bond lengths are
larger than the energies of the torsion angles and other energies by an order
of 102, in the first step we are going to consider only the lowest energy bond
lengths and bond angles with the torsion angles as variables in the energy
function. This makes our approach very different from that of Rosetta’s.
The rotamer space is based on physical chemistry considerations, e.g. trans
is more stable than cis. Ours is purely geometrical.

1

2 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

FIGURE 1. A 3-reside binding site for iron in natural pro-
tein. The dotted blue polygon is called the “binding configu-
ration” and each vertex of the polygon is called the “binding
node.” Taking the right one of the two binding nodes in the
top side chain as the designated node, the dotted white trian-
gle is the “target polygon.”

As seen in Figure 1, we can consider the binding configuration as a poly-
gon whose vertices are the binding nodes. For each side chain, all the possi-
ble positions of one binding node (often the end node of the side chain) form
a manifold in 3D. If there are multiple binding nodes from the same side
chain (as seen in Figure 1), we designate one binding node and positions
of all other binding nodes from the same side chain depend on the position
of the designated node. Thus the task is to find one potential binding node
from each manifold such that they form a “desirable configuration” (and
later possibly check that all dependent nodes have good positions). Then
let P = {P1, P2, . . . , Pn} be the target polygon. In this paper all polygons
are denoted by putting curly brackets around their ordered vertices. We de-
fine the error ε of a configuration or a polygon S = {S1, S2, . . . , Sn} by its
distance to the target configuration P defined as

ε = max
1≤i,j≤k

|PiPj − SiSj|.

Following the standard notation, we use capital letters to denote points in
space and we write AB to denote the length of the line segment joining the
points A and B. Let εT be the maximum error we allow to account for the
smaller energies we are ignoring and errors due to the discretisation of the

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 3

manifolds. If ε < εT , we call the configuration or polygon S a “desirable
configuration”.

In addition to the most basic exhaustive search method, the canonical
way to search for two points that are distance l apart from two sets of N
points each is to apply well-separated pair decompositions resulting in a
computational complexityO(N logN) in terms ofN Callahan and Kosaraju
[1995]. With an approximation margin ηεT , our algorithm improves the
complexity to O(N) in terms of N .

We are going to use octrees in this algorithm, which is one of the popular
data structures for computation on 3D objects. Octrees are tree structures
whose nodes correspond to 3D cubes. Each node has eight children by sub-
dividing each side of the cube by the middle in the x, y and z dimensions.
All the 3D objects are stored in the leaf nodes in the octrees. Octrees have
various stopping criteria to stop the tree from splitting including threshold-
ing the maximum number of objects in a node, i.e. the octree splits only the
nodes containing more than a certain number of objects. For our problem
the 3D objects are points in 3D space and the stopping criterion is the mini-
mum cube length `s, that is, the octree splits a node only if its corresponding
cube has sides of length at least 2`s. Moreover, all empty nodes, i.e. nodes
whose corresponding cubes contain no points, in the octrees are discarded.

To search for the desirable configurations, the algorithm first samples
points from each manifold and then builds an octree for each manifold
based on these sample points with the stopping criterion of the minimum
cube length `s. Notice that with this stopping criterion all leaf cubes are on
the lowest level in the trees. Then the algorithm compare two octrees at a
time by searching adaptively into the cubic regions that pass the necessary
condition 1 (see below). We call a pair of cubes that pass the necessary con-
dition 1 a “possible pair”. The algorithm finds all the possible cube pairs
on each level until it ends up with the set of all possible pairs of leaf cubes.
Then the sufficient condition 2 (see below) is tested on all these pairs of leaf
cubes to determine whether to accept or reject all the pairs of points inside
them. At the end all the pairwise desirable cubes are combined through a
matrix product.

Given a target polygon P = {P1, P2, . . . , Pn}, a tolerance εT ≥ 0 and
one edge (Pi, Pj), let Ci, Cj be two nonempty cubes with size ` and the
distance between their centers d, where i, j ∈ [1, 2, . . . , n], i 6= j. Then we
have the following theorems.

4 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

FIGURE 2.

Theorem 1. If d < PiPj − εT −
√
3 ` or d > PiPj + εT +

√
3 `, then there

are no pairs of points (G,H) ∈ Ci × Cj such that |GH − PiPj| ≤ εT .

Proof. For any two points G ∈ Ci, H ∈ Cj as shown in Figure 2, if d <
PiPj − εT −

√
3 `, by the triangle inequality we have,

GH ≤ d+
√
3 ` < PiPj − εT −

√
3 `+

√
3 ` = PiPj − εT .

If d > PiPj + εT +
√
3 `, again by the triangle inequality,

GH ≥ d−
√
3 ` > PiPj + εT +

√
3 `+

√
3 `−

√
3 ` = PiPj + εT .

�

Theorem 1 suggests a “necessary condition” for any two cubic regions on
the same level of the trees to contain any desirable pairs of points. We are
going to call it the “necessary condition 1” in the future to refer to the con-
dition defined in Theorem 1. There are other necessary conditions based on
the positions of all the points in the cubes, but in comparison this condition
is a tighter condition and is more efficient for computation. On the other
hand, we have the following “sufficient condition 2” for all pairs of points
from two leaf cubes to be desirable.

Theorem 2. If PiPj − εT +
√
3 ` ≤ d ≤ PiPj + εT −

√
3 `, then all pairs

of points (G,H) ∈ Ci × Cj satisfy |GH − PiPj| ≤ εT .

Proof. As shown in Figure 1, for any points G ∈ Ci, H ∈ Cj , we have
d−
√
3 ` ≤ GH ≤ d+

√
3 `. If PiPj − εT +

√
3 ` ≤ d ≤ PiPj + εT −

√
3 `.

Substituting the tighter bound of d on each side of the inequality we have
PiPj − εT ≤ GH ≤ PiPj + εT . �

Notice that the condition of Theorem 2 is only possible when PiPj−εT+√
3 ` ≤ PiPj + εT −

√
3 `, or when ` ≤ εT/

√
3. Since the leaf cubes of the

octrees must have length `T ≤ 2ls, we require `s ≤ εT/(2
√
3).

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 5

Let ti be the octree generated from manifold Ai for i = 1, 2, . . . , n. Al-
gorithm 1 gives the pseudo code of the adaptive geometric search algorithm.
Figure 3 illustrates the algorithm.

Algorithm 1 Adaptive Geometric Search ({A1,A2, . . . ,An},P , εT)
1: trees = [t1, t2, . . . , tn]
2: h = depth of the octrees ti for i = 1, 2, . . . , n
3: for i, j ∈ [1, 2, . . . , n], i 6= j do
4: pairs = []
5: l∗ = PiPj
6: combos = [[] for x in range(h+ 1)]
7: combos[0] = [(ti, tj)]
8: for k ∈ [1, 2, . . . , h] do
9: for (b0, b1) in combos[k] do

10: combos[k + 1] += Compare1(b0, b1, l
∗, εT)

11: end for
12: end for
13: for (b0, b1) in combos[h] do
14: pairs += Compare2(b0, b1, l

∗, εT)
15: end for
16: Append all (p, q) ∈ pairs as edges to the graph G
17: end for
18: Search G for the desirable polygon

19: # Check the necessary condition 1
20: function COMPARE1(b0, b1, l∗, εT)
21: return [(ci, cj) for (ci, cj) in b0.children × b1.children if
|(ci.center, cj.center)− l∗| ≤ εT +

√
3 ci.length]

22: end function

23: # Check the sufficient condition 2
24: function COMPARE2(b0, b1, l∗, εT)
25: if |(b0.center, b1.center)− l∗| ≤ εT −

√
3 b0.length then

26: return [(b0, b1)]
27: else
28: return []
29: end if
30: end function

6 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

FIGURE 3. An illustration of the adaptive search between
two octrees. Dotted lines point out the possible cube pairs
on each level. Solid lines link the desirable leaf cube (gray
nodes) pairs that pass the sufficient condition 2.

3. ANALYSIS OF THE ALGORITHM

The adaptive geometric search algorithm has three parts, building the
octrees, adaptively searching every two octrees and the graph search. Let
N be the number of sample points from each manifold. For convenience we
build all octrees with the same initial cube length `0. The time complexity
of building an octree with initial cube length `0 and minimum cube length
`s is O(log2(`0/`s)N).

Next we compute the time complexity of the adaptive search between any
two octrees (without losing generality) called t1, t2. Let the corresponding
polygon edge length be l∗. Then we have the following results.

Theorem 3. In terms of the initial cube length `0 and the minimum cube
length `s, the time complexity of the adaptive search algorithm 1 isO ((`0/`s)

6).

Proof. Let d be the depth of the octrees t1, t2. Let ψk(t) be the number of
nodes on the k-th level in the octree t. Recall that `0 denotes the length of
the root cubes of the octrees t1, t2. Since all the cubes have the minimum
length `s, we have `0/2d ≥ `s, or d ≤ log2(`0/`s). Then the total number
of computations N satisfies

N = O(
d∑

k=1

ψk(t1)ψk(t2))

= O(
d∑

k=1

8k · 8k)

= O(64d)
= O(64log2(`0/`s))
= O((`0/`s)6).

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 7

�

Theorem 4. If we set `s = η εT
4
√
3

for any 0 < η < 1, then the adaptive
geometric search algorithm 1 returns all the pairs of points whose distances
are within the set [`∗ − (1 − η)εT , `∗ + (1 − η)εT], and some but possibly
not all the pairs of points whose distances are within the set [`∗ − εT , `∗ −
(1− η)εT) ∪ (`∗ + (1− η)εT , `∗ + εT] with time complexity O

(
(`0
η εT

)6
)

.

Proof. Let `T be the length of the leaf cubes. By the definition of ls, we
have `T < 2ls = η εT

2
√
3
. Thus `T < εT/

√
3 and the sufficient condition

2 can be tested. If the sufficient condition 2 is rejected on a pair of cubes
C1, C2, then the distance d between them satisfies d > `∗ + εT −

√
3 `T or

d < `∗−εT +
√
3 `T . LetG,H be any two points such thatG ∈ C1, H ∈ C2.

By the triangle inequality, we have

GH ≥ d−
√
3 `T > `∗ + εT − 2

√
3 `T > `∗ + (1− η)εT ,

or

GH ≤ d+
√
3 `T < `∗ − εT + 2

√
3 `T < `∗ − (1− η)εT .

Therefore, in rejecting all pairs of points in C1 × C2 we may have rejected
some pairs of points whose distances are within the set [`∗ − εT , `∗ − (1 −
η)εT) ∪ (`∗ + (1− η)εT , `∗ + εT]. From Theorem 3 the time complexity of
the algorithm is O((`0/`s)6). Substituting in `s = η εT

4
√
3
, we have the time

complexity equal to O
(
(`0
η εT

)6
)

. �

Now we consider the last part of the algorithm, the graph search. Let
sij be the number of possible leaf cube pairs between octrees ti, tj for
i, j ∈ [1, 2, . . . , n], i 6= j. Then by induction the complexity of comput-
ing desirable n-tuple cubes is O(

∏
i,j∈[1,2,...,n],i 6=j sij). If we pick at most

M points from each cube and pass them through a basic no-clashing, no-
crossing quality check, then to produce desirable polygons we need to per-
form a further computation of complexity O(Mn).

8 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

Therefore if we view l0 as a constant, the total time complexity of the
algorithm is

O

n log2(`0`s)N + n2

(
`0
η εT

)6

+

 ∏
i,j∈[1,2,...,n]

i 6=j

sij +Mn

= O

n log2(4
√
3 `0

η εT
)N +

n2

(η εT)6
+

 ∏
i,j∈[1,2,...,n]

i 6=j

sij +Mn

= O

n (1− log2(η εT))N +
n2

(η εT)6
+

 ∏
i,j∈[1,2,...,n]

i 6=j

sij +Mn

 .

In practice we usually search for a triangle or a 4-sided polygon as the target
polygon, i.e. n = 3 or 4. When n = 3, depending on the parameters η, ε and
N the computation time varies but all three terms in the complexity formula
are typically of the same order. When there are large numbers of possible
pairs si’s and/or often when n = 4, the term O(

∏
i,j∈[1,2,...,n],i 6=j sij) in the

last term of the complexity formula becomes the dominating term.

REFERENCES

P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential
fields. Journal of the ACM, 42:67–90, 1995.

R. N. Zuckermann, E. J. Martin, et al. Discovery of nanomolar lig-
ands for 7-transmembrane g-protein-coupled receptors from a diverse n-
(substituted)glycine peptoid library. J. Med. Chem., 37(17):2678–2685,
1994.

	1. Introduction
	2. Adaptive geometric search
	3. Analysis of the Algorithm
	References

