
PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

1. INTRODUCTION

Peptoids are artificial proteins synthesised in the chemical labs, first de-
veloped around 20 years ago (ref). To endorse them with important chemi-
cal functions such as binding the ends of side chains with metal ions, their
side chains need to be of certain types to be able to stablize in positions
close to the binding configurations. When the peptoids’ low energy states
resemble these binding configurations, they are more likely to bind with
metal ions since chemical structures tend towards low energy states. Var-
ious metal bindings are observed in natural proteins so we can measure
these binding positions. Then we can synthesize peptoids whose low en-
ergy states resemble these observed binding positions in natural proteins
that bind. However, for one peptoid design the choices of side chains on
one particular backbone are exponential and impossible to be carried out
in labs with the brute force of synthesising and testing them all. Therefore
we need an efficient methodology to predict the low energy states of these
peptoids to be synthesised. Predicting the low energy states of proteins is
often called the hard problem of protein folding, which is the problem we
are trying to solve in the case for peptoids.

Our approach in peptoid design is a two step process. In the first step, we
consider the most influential energies in protein folding. Then an efficient
geometric search is conducted to eliminate all the impossible designs. In
the second step, designs that passed the quick initial screening will be fur-
ther examined in the comprehensive protein folding software called Rosetta.
This two step process efficiently saves all the time that the majority impos-
sible designs would take to be evaluated by Rosetta and to be synthesised.

2. ADAPTIVE GEOMETRIC SEARCH

In peptoids, since energies of bond angles and bond lengths are larger
than energies of torsion angles etc. by a magnitude of 100 or more(be more
precise), in the first step we are going to consider just the torsion angles
as variables in the energy function. Furthermore we are going to consider
only the lowest energy bond lengths and bond angles because with all other
minor energies ignored, this condition gives the lowest energy configuration
of the peptoid.

1

2 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

Without loss of generality, consider the binding configuration as a poly-
gon whose vertices are the binding sites of the configuration. For each
binding site or each vertex of the polygon, all the possible positions of the
potential binding node (often the end node) on all possible side chains form
a manifold. The task is to find one potential binding node from each mani-
fold such that the polygon whose vertices are these potential binding nodes
is a “desirable configuration.” Let P = {P1, P2, . . . , Pn} be the target bind-
ing configuration. In this paper all polygons are denoted by putting curly
brackets around their vertices. We define the error ε of a configuration or
polygon S = {S1, S2, . . . , Sn} by its distance to the target configuration P ,
that is,

ε = max
1≤i,j≤k

|PiPj − SiSj|.

Following the standard notation, we use capital letters to denote a point in
space and two points written next to each other to denote the length of the
line segment connecting them. Let εT be the maximum error we allow due
to the negligence of smaller energies and the discretisation of manifolds
in computing. If ε < εT , we call configuration or polygon S a “desirable
configuration”.

To search for the desirable configurations, the algorithm first builds an
octree with initial length `0 for each manifold based on sample points with
the stopping criterion the minimum cube length `s. Notice that the octrees
are balanced and all leaf cubes are on the lowest level in the tree. Then
the algorithm searches adaptively by refining the cubic regions that pass
the necessary condition 1 until it reaches the leaf cubes. Then the sufficient
condition 2 is tested on all pairs of the leaf cubes. Based on this condition
we either accept or reject all pairs of points inside the leaf cubes. Moreover
we compare two octrees at a time and then combine all the pairwise results
through the matrix product trace.

Given a target polygon P = {P1, P2, . . . , Pn}, a tolerance εT ≥ 0 and
one edge (Pi, Pj). Let Ci, Cj be two cubes with side length ` and the distance
between their centers d. Then we have the following theorems.

Theorem 1. If d < PiPj − εT −
√
3 ` or d > PiPj + εT +

√
3 `, then there

are no polygons {P̃1, P̃2, . . . , P̃n} within εT distance from polygon P where
P̃i ∈ Ci, P̃j ∈ Cj .

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 3

FIGURE 1.

Proof. As illustrated in Figure 1, if d < PiPj − εT −
√
3 `, by triangle

inequality for any points G ∈ Ci, H ∈ Cj ,

GH ≤ d+
√
3 ` < PiPj − εT −

√
3 `+

√
3 ` = PiPj − εT .

If d > PiPj + εT +
√
3 `, by triangle inequality for any points G ∈ Ci, H ∈

Cj ,

GH ≥ d−
√
3 ` > PiPj + εT +

√
3 `+

√
3 `−

√
3 ` = PiPj + εT .

So either way GH can not be an edge of any polygon {P̃1, P̃2, . . . , P̃n}
which is within εT distance from polygon P . �

Thus Theorem 1 suggests a necessary condition to determine whether two
cubic regions are possible to contain any desirable pairs of points. There are
other necessary conditions based on positions of points in the cubes, but in
comparison this condition is tighter and more efficient for computation. On
the other hand, there are also sufficient conditions based on the distance d
between the centers of the pairs of cubes.

Theorem 2. If PiPj − εT +
√
3 ` ≤ d ≤ PiPj + εT −

√
3 `, then all pairs

of points from Ci, Cj are within εT distance from PiPj .

Proof. As illustrated in Figure 1 above, for any points G ∈ Ci, H ∈ Cj ,
we have d −

√
3 ` ≤ GH ≤ d +

√
3 `. If PiPj − εT +

√
3 ` ≤ d ≤

PiPj + εT −
√
3 `, then substituting the tighter bound of d on each side of

the inequality we have PiPj − εT ≤ GH ≤ PiPj + εT . �

Notice that the condition of Theorem 2 is only possible when PiPj −
εT +

√
3 ` ≤ PiPj + εT −

√
3 `, or ` ≤ εT/

√
3. Since the leaf cubes of

the octree must have length `T ≤ 2ls, we require `s ≤ εT/(2
√
3) so that we

have `T ≤ εT/
√
3 and Theorem 2 can be applied.

4 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

Let t1, t2, . . . , tn be the octrees generated by each manifold. Algorithm 1
gives the pseudo code of the adaptive geometric search algorithm.

Algorithm 1 Adaptive Geometric Search ({A1,A2, . . . ,An},P , εT)
1: trees = [t1, t2, . . . , tn]
2: for i in range(n) do
3: pairs = []
4: l∗ = PiP(i+1)modn

5: t1, t2 = trees[i], trees[(i+1) mod n]
6: combos = [[] for x in range(t1.depth+ 1)]
7: combos[0] = [(t1.root, t2.root)]
8: for i in range(t1.depth) do
9: for (b0, b1) in combos[i] do

10: combos[i+ 1] += Compare1(b0, b1, l
∗, εT)

11: end for
12: end for
13: for (b0, b1) in combos[t1.depth] do
14: pairs += Compare2(b0, b1, l

∗, εT)
15: end for
16: Mi = {Mi,j = 1 for (pi, pj) ∈ pairs;Mi,j = 0 otherwise}n×n
17: end for
18: Trace(

∏n
i=1Mi)

19: function COMPARE1(b0, b1, l∗, εT)
20: return [(ci, cj) for (ci, cj) in b0.children × b1.children if
|(ci.center, cj.center)− l∗| ≤ εT +

√
3 ci.length]

21: end function

22: function COMPARE2(b0, b1, l∗, εT)
23: if |(b0.center, b1.center)− l∗| ≤ εT −

√
3 b0.length then

24: return [(b0, b1)]
25: else
26: return []
27: end if
28: end function

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 5

3. ANALYSIS OF THE ALGORITHM

The algorithm has three parts, building the octrees, the adaptive search
on two octrees and the matrix product trace computation. First let’s con-
sider the adaptive search part of the algorithm. Let N be the number of
sample points in each manifold. The time complexity of building an octree
with initial cube length `0 and minimum cube length `s isO(log2(`0/`s)N).

Next we compute the time complexity of the adaptive search.

Lemma 3. For any cube C1 in an octree t1, there are at most 4
3
π · (3

√
3

2
+ `∗+εT

`s
)3

many cubes C2 on the same level from another octree t2 such that (C1, C2)
are possible pairs.

Proof. Let ` be the length of C1. For any possible cube C2 on the same level
from t2, the distance between them d must satisfy that d ≤ `∗ +

√
3 `+ εT .

Thus all possible cubes C2 must be contained in the sphere S of radius
`∗ +

√
3 ` + εT +

√
3
2
`. Since there are no overlapping cubes on the same

level in t2, the maximum number of the possible cubes nmax satisfies

nmax ≤
V ol(S)
V ol(C2)

=
4
3
π(`∗ +

√
3 `+ εT +

√
3
2
`)3

`3

=
4

3
π · (3

√
3

2
+
`∗ + εT

`
)3

≤ 4

3
π · (3

√
3

2
+
`∗ + εT
`s

)3.

�

For convenience we define Cm = 4
3
π · (3

√
3

2
+ `∗+εT

`s
)3 for the following

theorems.

Theorem 4. In terms of the minimum cube length `s, the time complexity of
the adaptive search algorithm is O ((`0/`s)

3).

Proof. Let d1 be the depth of the octree t1. Recall that `0 denotes the length
of the root cube of t1. Since all cubes have minimum length `s, we have
`0/2

d1 ≥ `s, or d1 ≤ log2(`0/`s). Then by Lemma 3, the total number of
computations N satisfies

N ≤ O(82 + Cm × 82 ×
d1−1∑
k=1

8k)

= O(8d1) ≤ O
(
8log2(`0/`s)

)
= O((`0/`s)3).

�

6 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

Theorem 5. If we set `s = η εT
4
√
3

for any 0 < η < 1, then Algorithm 1
returns all pairs of points whose distances are within [`∗ − (1− η)εT , `∗ +
(1− η)εT], and some but not all pairs of points whose distances are within
[`∗ − εT , `∗ − (1 − η)εT) ∪ (`∗ + (1 − η)εT , `∗ + εT] with time complexity
O
(
(`0
η εT

)3
)

.

Proof. Let `T be the length of the leaf cubes. Then we have `T < 2ls =

η εT
2
√
3
. Thus `T < εT/

√
3 and hence the sufficient condition 2 is possible. If

the sufficient condition 2 is rejected, then the distance d between a pair of
cubes C1, C2 satisfies d > `∗+ εT −

√
3 `T or d < `∗− εT +

√
3 `T . Let G,H

be two points such that G ∈ C1, H ∈ C2. By the triangle inequality and the
above inequalities, we have

GH ≥ d−
√
3 `T > `∗ + εT − 2

√
3 `T > `∗ + (1− η)εT ,

or
GH ≤ d+

√
3 `T < `∗ − εT + 2

√
3 `T < `∗ − (1− η)εT .

Therefore, in rejecting all pairs of points in C1 × C2 we may have rejected
pairs of points whose distances are within [`∗ − εT , `∗ − (1− η)εT)∪ (`∗ +
(1− η)εT , `∗ + εT]. From Theorem 4 the time complexity of the algorithm
is O((`0/`s)3). Substituting in `s = η εT

4
√
3

and we have the time complexity
equal to O((`0

η εT
)3). �

Now we consider the last part of the algorithm, computation of the ma-
trix product and its trace. Let si be the number of ones in matrix Mi for
i = 1, 2, . . . , n. Since Mi’s are sparse matrices, computing their product
has time complexity at most O(

∑n
i=1 siN). The complexity of computing

the trace of
∏n

i=1Mi is linear in N . Thus the second part has time complex-
ity O(

∑n
i=1 siN + N). The trace of

∏n
i=1Mi gives us the total number of

desirable polygons that’s at most εT away from the target polygon. In par-
ticular if the trace yields a positive number, then there exists such desirable
polygons in the current peptoid design.

Therefore the final time complexity of the algorithm is

O(log2(
`0
`s
)N + (

`0
`s
)3 +

n∑
i=1

siN +N)

= O(log2(
4
√
3 `0

η εT
)N + (

4
√
3 `0

η εT
)3 +

n∑
i=1

siN +N)

= O

((
1 +

n∑
i=1

si − log2(η εT)

)
N + (

1

η εT
)3

)
.

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 7

4. EXPERIMENT

5. APPLICATIONS IN COMPUTATIONAL GEOMETRY

We solved the following problem. Given n sets Si, i = 1, 2, · · · , n of
points. The problem is to find all n-tuples of points, (p1, p2, . . . , pn), pi ∈ Si
for any i, that make a certain polygon shape within an error tolerance εT and
an approximation margin η εT . The problem is closely related to approxi-
mate spherical range search (e.g. Sunil Arya [2000]). A naive implemen-
tation of the approximate range search for our problem would be for every
two manifoldsA1,A2 conducting two approximate spherical range searches
in the set of sample points A2 for every point of A1, resulting in total time
complexity O(N logN + (1/(εTη))

3N).

6. APPLICATIONS IN COMPUTATIONAL ALGEBRA

We can use adaptive geometric search to solve particular kinds of systems
of equations. In many of these cases, computing Groebner bases is too slow
to check if the system is consistent and looking for a solution.

If a system of equations includes at least one equation that can be written
into the following form

k∑
i=1

(fi(x)− gi(y))2 = C,

then it can be viewed as a distance equation between points (f1(x), f2(x), . . . , fk(x))
and (g1(y), g2(y), . . . , gk(y)). Thus we separate the system of equations
into the distance equations and the rest. We can always generate a set of
manifolds based on the rest of the equations and use the adaptive geometric
search algorithm to find all tuples of points, which are the solutions of the
system, that satisfy the distance equations and lie on the manifolds. More
specifically, after possibly needed changes of variables, let S1 be the set of
variables that appear in any of distance equations. Let S2 be the set of vari-
ables that appear in all the other equations in the system. If S2 ⊂ S1, then
we are ready to apply the adaptive geometric search algorithm. If however
S2 6⊂ S1, then all variables in S2 \ S1 need to be scanned in a grid search
before applying the adaptive geometric search algorithm, which may be in-
convenient or not.

To generalize, we can view a system of equations as consisting of two
parts. One part describes the manifolds, and the other part describes the
geometric shape on the manifolds that we search for. If one can formulate a
set of necessary conditions on geometric regions to contain solutions, then
we can devise the adaptive geometric search algorithm according to these

8 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

necessary conditions. In this way we can perhaps solve a broader category
of systems of equations using adaptive geometric search algorithm.

REFERENCES

D. M. M. Sunil Arya. Approximate range searching. Computational Ge-
ometry: Theory and Applications, 17:135–163, 2000.

	1. Introduction
	2. Adaptive geometric search
	3. Analysis of the Algorithm
	4. Experiment
	5. Applications in Computational Geometry
	6. Applications in Computational Algebra
	References

