
PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

1. INTRODUCTION

Peptoids are artificial proteins synthesised in the chemical labs, first de-
veloped around 20 years ago (ref). To endorse them with important chemi-
cal functions such as binding the ends of side chains with metal ions, their
side chains need to be of certain types to be able to stablize in positions
close to the binding configurations. When the peptoids’ low energy states
resemble these binding configurations, they are more likely to bind with
metal ions since chemical structures tend towards low energy states. Var-
ious metal bindings are observed in natural proteins so we can measure
these binding positions. Then we can synthesize peptoids whose low en-
ergy states resemble these observed binding positions in natural proteins
that bind. However, for one peptoid design the choices of side chains on
one particular backbone are exponential and impossible to be carried out
in labs with the brute force of synthesising and testing them all. Therefore
we need an efficient methodology to predict the low energy states of these
peptoids to be synthesised. Predicting the low energy states of proteins is
often called the hard problem of protein folding, which is the problem we
are trying to solve in the case for peptoids.

Our approach in peptoid design is a two step process. In the first step, we
consider the most influential energies in protein folding. Then an efficient
geometric search is conducted to eliminate all the impossible designs. In
the second step, designs that passed the quick initial screening will be fur-
ther examined in the comprehensive protein folding software called Rosetta.
This two step process efficiently saves all the time that the majority impos-
sible designs would take to be evaluated by Rosetta and to be synthesised.

2. ADAPTIVE GEOMETRIC SEARCH

In peptoids, since energies of bond angles and bond lengths are larger
than energies of torsion angles etc. by a magnitude of 100 or more(be more
precise), in the first step we are going to consider just the torsion angles
as variables in the energy function. Furthermore we are going to consider
only the lowest energy bond lengths and bond angles because with all other
minor energies ignored, this condition gives the lowest energy configuration
of the peptoid.

1

2 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

Without loss of generality, consider the binding configuration as a poly-
gon whose vertices are the binding sites of the configuration. For each
binding site or each vertex of the polygon, all the possible positions of the
potential binding node (often the end node) on all possible side chains form
a manifold. The task is to find one potential binding node from each mani-
fold such that the polygon whose vertices are these potential binding nodes
is a “desirable configuration.” Let P = {P1, P2, . . . , Pn} be the target bind-
ing configuration. In this paper all polygons are denoted by putting curly
brackets around their vertices. We define the error ε of a configuration or
polygon S = {S1, S2, . . . , Sn} by its distance to the target configuration P ,
that is,

ε = max
1≤i,j≤k

|PiPj − SiSj|.

Following the standard notation, we use capital letters to denote a point
in space and two points written next to each other to denote the length of
the line segment connecting them. Let εT be the maximum error we allow
due to the discretisation of manifolds in computing. If ε < εT , we call
configuration or polygon S a “desirable configuration”.

Given a target polygon P = {P1, P2, . . . , Pn}, a tolerance εT ≥ 0 and
one edge (Pi, Pj). Let Ci, Cj be two cubes with side length l and the distance
between their centers d. Then we have the following results.

Theorem 1. If d < PiPj − εT −
√
3 l or d > PiPj + εT +

√
3 l, then there

are no polygons {P̃1, P̃2, . . . , P̃n} within εT distance from polygon P where
P̃i ∈ Ci, P̃j ∈ Cj .

FIGURE 1.

Proof. As illustrated in Figure 1, if d < PiPj − εT −
√
3 l, by triangle

inequality for any points G ∈ Ci, H ∈ Cj ,

GH ≤ d+
√
3 l < PiPj − εT −

√
3 l +

√
3 l = PiPj − εT .

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 3

If d > PiPj + εT +
√
3 l, by triangle inequality for any points G ∈ Ci, H ∈

Cj ,

GH ≥ d−
√
3 l > PiPj + εT +

√
3 l +

√
3 l −

√
3 l = PiPj + εT .

So either way GH can not be an edge of any polygon {P̃1, P̃2, . . . , P̃n}
which is within εT distance from polygon P . �

Theorem 1 suggests a necessary condition to determine whether two cu-
bic regions are possible to contain any desirable pairs of points. There are
other necessary conditions based on positions of points in the cubes, but in
comparison this condition is tighter and more efficient for computation. On
the other hand, sufficient conditions exist for all pairs of points from a pair
of cubes being desirable. Again we use the sufficient condition based on
the center positions of cubes.

Theorem 2. If PiPj − εT +
√
3 l ≤ d ≤ PiPj + εT −

√
3 l, then all pairs of

points from Ci, Cj are within εT distance from PiPj .

Proof. As illustrated in Figure 1 above, for any points G ∈ Ci, H ∈ Cj , we
have d−

√
3 l ≤ GH ≤ d+

√
3 l. If PiPj−εT+

√
3 l ≤ d ≤ PiPj+εT−

√
3 l,

then substituting the tighter bound of d on each side of the inequality we
have PiPj − εT ≤ GH ≤ PiPj + εT . �

Notice that the condition of Theorem 2 is only possible when PiPj −
εT +

√
3 l ≤ PiPj + εT −

√
3 l, or l ≤ εT/

√
3. Thus we design an adaptive

search algorithm which searches for possible cubic regions on each level
according to Theorem 1, and checks for sufficiency when the cube length
l satisfies l ≤ εT/

√
3. Pairs of cubes that satisfy the necessary condition

but not the sufficient condition are refined into sub-cubes, until when they
contain so few points such that a thorough search over every pair of points
is not costly. This suggests limiting the maximum number of points in
all the cubes, which in turn suggests using the data structure of an octree.
However in octrees two nodes in comparison can be of different status, that
is, comparison of an intermediate node with a leaf node on the same level.
To efficiently refine an area in relation to a point, we need the following
theorem.

Theorem 3. Given a point G, a cube C with length l and the target distance
PiPj . Let d be the distance fromG to the center of C. If d > PiPj+εT+

√
3
2
l

or d < PiPj−εT−
√
3
2
l, then there are no polygons {P̃1, P̃2, . . . , P̃n} within

εT distance from polygon P where P̃i ∈ C, P̃j = G. If PiPj − εT +
√
3
2
l ≤

d ≤ PiPj + εT −
√
3
2
l, then GH for all points H ∈ C are within εT distance

from PiPj .

4 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

Proof. The proof is similar to the proofs of Theorem 1 and 2, except now
G is a fixed point and thus GH ∈

[
d−

√
3
2
l, d+

√
3
2
l
]

for any point H ∈
C. �

Again we check both the necessary and sufficient conditions when com-
paring a point to sub-cubes of a cubic region. If necessary but not sufficient
conditions are satisfied by some cube, we refine the search there until on
the last level all cubes either violate the necessary condition, or satisfy the
sufficient condition, or are leaf nodes in the octree and all points are exhaus-
tively searched.

Let t1, t2, . . . , tn be the octrees generated by each manifold. Note that
each node in the octree represents a corresponding cube. In particular, the
root nodes represent the initial cubes. Recall that a manifold is a set of
potential binding sites corresponding to a side chain. We offer two adaptive
search algorithms below, a basic version Algorithm 1 and a full version
Algorithm 2 that takes into consideration of sufficient conditions and point-
cube adaptive search. Notice that the algorithm can be further optimized by
checking and deleting cubes on each level over all n octrees.

Algorithm 1 Adaptive Geometric Search ({A1,A2, . . . ,An},P , εT)
1: trees = [t1, t2, . . . , tn]
2: for i in range(n) do
3: pairs = []
4: l = PiP(i+1)modn

5: t1, t2 = trees[i], trees[(i+1) mod n]
6: depth = min(t1.depth, t2.depth)
7: combos = [[] for x in range(depth+1)]
8: combos[0] = [(t1.root, t2.root)]
9: for i in range(depth+ 1) do

10: for (b0, b1) in combos[i] do
11: if b0, b1 are not leaves then
12: combos[i+ 1] += Compare(b0, b1, l, εT)
13: else
14: pairs += SearchWithin(b0, b1, l, εT)
15: end if
16: end for
17: end for
18: Mi = {Mi,j = 1 for (pi, pj) ∈ pairs;Mi,j = 0 otherwise}n×n
19: end for
20: Trace(

∏n
i=1Mi)

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 5

21: function COMPARE(b0, b1, l, εT)
22: return [(ci, cj) for (ci, cj) in b0.children × b1.children if
|(ci.center, cj.center)− l| ≤ εT +

√
3 ci.length]

23: end function

24: function SEARCHWITHIN(b0, b1, l, εT)
25: return [(pi, pj) for (pi, pj) in b0.containedPoints ×

b1.containedPoints if |pipj − l| ≤ εT]
26: end function

Algorithm 2 Adaptive Geometric Search ({A1,A2, . . . ,An},P , εT)
trees = [t1, t2, . . . , tn]

2: for i in range(n) do
pairs = []

4: l = PiP(i+1)modn

t1, t2 = trees[i], trees[(i+1) mod n]
6: depth = min(t1.depth, t2.depth)

combos = [[] for x in range(depth+1)]
8: combos[0] = [(t1.root, t2.root)]

for i in range(depth+ 1) do
10: for (b0, b1) in combos[i] do

lb =
√
3 b0.length

12: d = distance between b0, b1
if l − εT + lb ≤ d ≤ l + εT − lb then

14: pairs += [(pi, pj) for (pi, pj) in b0.containedPoints×
b1.containedPoints]

else if neither b0, b1 are leaves then
16: combos[i+ 1] += Compare(b0, b1, l, εT)

else if b0, b1 are both leaves then
18: pairs += SearchWithin(b0, b1, l, εT)

else
20: for p in leaf bi, i = 0 or 1 do

pairs += AdaptSearchP (p, b1−i, l, εT)
22: end for

end if
24: end for

end for
26: Mi = {Mi,j = 1 for (pi, pj) ∈ pairs;Mi,j = 0 otherwise}n×n

end for
28: Trace(

∏n
i=1Mi)

6 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

function COMPARE(b0, b1, l, εT)
30: return [(ci, cj) for (ci, cj) in b0.children × b1.children if
|(ci.center, cj.center)− l| ≤ εT +

√
3 ci.length]

end function

32: function SEARCHWITHIN(b0, b1, l, εT)
return [(pi, pj) for (pi, pj) in b0.containedPoints ×

b1.containedPoints if |pipj − l| ≤ εT]
34: end function

function ADAPTSEARCHP(p, b, l, εT)
36: pairs = []

combos = [[] for x in range(b.depth+ 1)]
38: combos[0] = [b]

for i in range(b.depth+ 1) do
40: for c in combos[i] do

lc =
√
3/2× c.length

42: d = distance between p and c.center
if l − εT + lc ≤ d ≤ l + εT − lc then

44: pairs += [(p, q) for q ∈ c.containedPoints]
else if c is not a leaf then

46: combos[i+ 1] += CompareP (p, c, l, εT)
else

48: pairs += SearchPWIthin(p, c, l, εT)
end if

50: end for
end for

52: return pairs
end function

54: function COMPAREP(p, c, l, εT)
return [bi for bi in c.children if |(p, bi.center) − l| ≤ εT +√

3/2 bi.length]
56: end function

function SEARCHPWITHIN(p, c, l, εT)
58: return [(p, q) for q in c.containedPoints if |pq − l| ≤ εT]

end function

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 7

3. ANALYSIS OF ALGORITHM

The algorithm has two parts, the adaptive search on two octrees and the
matrix multiplication (including the computation of the trace) part. Let si be
the number of ones in matrixMi for i = 1, 2, . . . , n. LetN be the number of
sample points in each manifold. In the peptoid model, we have N = nk−1s

where ns is the number of torsion angles we sample for each side chain
node and k is the length of the side chains. Since Mi’s are sparse matrices,
computing their product has time complexity at most O(maxni=1 siN). The
complexity of computing the trace of

∏n
i=1Mi is linear in N . Thus the sec-

ond part has time complexity O(maxni=1 siN +N). The trace of
∏n

i=1Mi

gives us the total number of desirable polygons that’s at most εT away from
the target polygon. In particular if the trace yields a positive number, then
there exists such desirable polygons in the current peptoid design. Now let’s
consider the adaptive search part of the algorithm.

3.1. Any distribution. First we consider that the sample points can come
from any distribution. In the worst case scenario, the algorithm finds all
pairs of cubes from t1, t2 possible, and consequently compares exhaustively
every pair of points fromA1,A2. Note that although the sufficient condition
Theorem 2 helps save computations that need to be done, it doesn’t improve
the time complexity of the algorithm since we still have to report all pairs of
points inside the two cubes. The reporting step does less computation than
comparing the distance between every pair of points by a constant factor.

Now let l∗ be the target polygon edge length. The following examples
show how the worst case scenario may happen. Let A1,A2 be two solid
balls that are l∗ distance apart with radii εT/2. Then all pairs of points are
going to be compared no matter how many points we sample from the two
manifolds since they are all desirable. Another example is the following.
Let A1 be a solid ball with radius εT . Let A2 be a sphere concentric with
A1 of radius l∗. Then again all pairs of points are going to be compared no
matter how many sample points are produced. Hence in order to avoid the
worst case scenario we need to add some additional assumption.

3.2. Minimum cube length. To analyze the time complexity of the algo-
rithm, we modify the adaptive geometric search algorithm by adding a sec-
ond stopping criteria to the octrees and restricting the minimum cube length
on the octrees to some constant ls, i.e. any node with cube length l < 2ls
stops splitting and becomes a leaf node.

Lemma 4. For any cube C1 in an octree t1, there are at most 73 cubes C2 on
the same level from another octree t2 such that (C1, C2) are possible pairs.

8 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

Proof. For any cube C1 in t1, let l be the length of C1. For any possible cube
C2 on the same level from t2, the distance between them d must satisfy that
d ≤ l∗ +

√
3 l + εT . Thus all possible cubes C2 must be contained in the

sphere S of radius l∗ +
√
3 l + εT +

√
3
2
l. Since there are no overlapping

cubes on the same level in t2, the maximum number of the possible cubes
nmax satisfies

nmax ≤
V ol(S)
V ol(C2)

=
4
3
π(l∗ +

√
3 l + εT +

√
3
2
l)3

l3

=
4

3
π(

3
√
3

2
+
l∗ + εT

l
)3

≤ 4

3
π · (3

√
3

2
)3 =

27
√
3

2
π.

Since nmax must be an integer, nmax ≤ 73. �

Theorem 5. Given any manifolds A1,A2, and the corresponding octrees
t1, t2, the adaptive geometric search algorithm doesn’t search through all
pairs of cubes from t1, t2 for arbitrarily large N1, N2.

Proof. From Lemma 4, if the adaptive search algorithm searches through all
pairs of cubes on each level, then the maximum width wm of both octrees
must satisfy wm ≤ 73. Let the length of the root cube of t1 be l0 and the
depth of t1 be d. Then since all cubes have minimum length ls, we have
l0/2

d ≥ ls, or d ≤ log2(l0/ls). Hence the total number of cubes in the oc-
tree t1, denoted by nm, must satisfy nm ≤ wmd ≤ 73 log2(l0/ls). Let nl be
the number of leaf nodes in t1. Let nT be the maximum number of points
per cube in t1. Then we conclude

N1 ≤ nT nl ≤ nT nm ≤ 73nT log2

(
l0
ls

)
.

The same derivation holds forN2. Therefore the worst case scenario that all
pairs of cubes from t1, t2 being possible only occurs for bounded N1, N2.

�

Theorem 6. The time complexity of the adaptive search algorithm isO ((l0/ls)
3).

Proof. Let ψk(ti) denote the number of cubes on level k in the octree ti for
i = 1, 2. Let di be the depth of the octree ti for i = 1, 2. Recall from
Theorem 5 that di ≤ log2

(
l0
ls

)
for i = 1, 2. In this proof we assume that

when a leaf node from one octree and an intermediate node from the other
octree make a possible pair, we keep refining the leaf node as many times
as required. This procedure would result in a less efficient algorithm and

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 9

thus gives an upper bound of the time complexity of the current algorithm.
Then by Lemma 4, the total number of computations N satisfies

N ≤ O(ψ1(t1)ψ1(t2) + 73× 64

d1−1∑
k=1

ψ1(t1))

= O(
d1−1∑
k=1

ψk(t1))

≤ O(
d1−1∑
k=1

8k)

= O(8d1)
≤ O(8log2(l0/ls))
= O((l0/ls)3).

�

If we set ls to be a constant factor of the ”average distance” between sam-
ple points, which is l0/

3
√
N , then we can calculate the time complexity in

terms of N .

Corollary 7. If we set ls = Cl0/
3
√
N for some constantC, then the adaptive

geometric search algorithm’s time complexity is O(N).

Proof. By Theorem 6 the time complexity of the algorithm is upper bounded
by O((l0/ls)3), which is equal to O(N) after substituting in ls = Cl0/

3
√
N .
�

3.3. Rotational invariance. Often we are building the same side chains
that grow from different take-off sites and thus have different rotation an-
gles with the backbone. In this case the manifolds are rotational copies of
each other and thus their octrees have roughly the same structure. Under
this condition and not assuming any regularity of the distribution of sample
points, we have the following theorem.

Theorem 8. If octrees t1, t2 have the same structure, then the ratio of the
total number of the possible pairs of cubes over the total number of all pairs
of cubes is bounded by C/N for some constant C. Furthermore, the total
number of the possible pairs of cubes is bounded by C ′N for some constant
C ′.

Proof. Let N be the total number of sample points in the octree ti, d be the
depth of the octree ti and ψk be the total number of cubes on level k in the
octree ti, for i = 1, 2. Let nT be the stopping threshold for both octrees,

10 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

i.e. the maximum points per cube. Since the total number of cubes in either
octree, denoted by nm, satisfies nm ≥ N/nT , we can conclude that there
exists a k∗ ∈ [0, d] such that ψk∗ ≥ nm/d ≥ N/(nTd). Let np be the
number of all possible pairs of cubes between t1, t2, and n be the number of
all pairs of cubes between t1, t2. Then by Lemma 4 the ratio np/n satisfies

np
n
≤ 73

∑d
k=0 ψk∑d

k=0 ψkψk
≤ 73N

ψ2
k∗
≤ 73N

(N/nTd)2
=

73n2
Td

2

N
.

Now we bound the total number of pairs of cubes n by

n =
d∑

k=0

ψ2
k ≤ d max

k∈[0,d]
ψ2
k ≤ dN2.

Note that ψk ≤ N for any k ∈ [0, d] since all cubes are nonempty and no
points are contained in two cubes on the same level. Recall from Theorem
5 that d ≤ log2

(
2l0

(3√nT−1)δ

)
. Therefore we have

np ≤
73n2

Td
2

N
· n

≤ 73n2
Td

2

N
· dN2

≤ 73n2
T

(
log2

(
2l0

(3
√
nT − 1)δ

))3

N.

�

4. EXPERIMENT

5. APPLICATIONS IN COMPUTATIONAL GEOMETRY

We basically solved the following problem. Given n sets Si, i = 1, 2, · · · , n
of points. The problem is to find all n-tuples of points, (p1, p2, . . . , pn), pi ∈
Si for any i, that make a certain polygon shape within an error tolerance.
One distinction from other more efficient algorithms for approximate spher-
ical range search (e.g. ?) is that our algorithm searches out all and only the
n-tuples that are within the error tolerance, whereas most of the other faster
methods produce only some results within the tolerance. So ask a result of
using these approximate methods, we can miss some working designs of
peptoids. The adaptive geometric search method increased both the time
and space complexity from the exhaustive search.

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 11

6. APPLICATIONS IN COMPUTATIONAL ALGEBRA

We can use adaptive geometric search to solve particular kinds of systems
of equations. In many of these cases, computing Groebner bases is too slow
to check if the system is consistent and looking for a solution.

If a system of equations includes at least one equation that can be written
into the following form

k∑
i=1

(fi(x)− gi(y))2 = C,

then it can be viewed as a distance equation between points (f1(x), f2(x), . . . , fk(x))
and (g1(y), g2(y), . . . , gk(y)). Thus we separate the system of equations
into the distance equations and the rest. We can always generate a set of
manifolds based on the rest of the equations and use the adaptive geometric
search algorithm to find all tuples of points, which are the solutions of the
system, that satisfy the distance equations and lie on the manifolds. More
specifically, after possibly needed changes of variables, let S1 be the set of
variables that appear in any of distance equations. Let S2 be the set of vari-
ables that appear in all the other equations in the system. If S2 ⊂ S1, then
we are ready to apply the adaptive geometric search algorithm. If however
S2 6⊂ S1, then all variables in S2 \ S1 need to be scanned in a grid search
before applying the adaptive geometric search algorithm, which may be in-
convenient or not.

To generalize, we can view a system of equations as consisting of two
parts. One part describes the manifolds, and the other part describes the
geometric shape on the manifolds that we search for. If one can formulate a
set of necessary conditions on geometric regions to contain solutions, then
we can devise the adaptive geometric search algorithm according to these
necessary conditions. In this way we can perhaps solve a broader category
of systems of equations using adaptive geometric search algorithm.

	1. Introduction
	2. Adaptive geometric search
	3. Analysis of Algorithm
	3.1. Any distribution
	3.2. Minimum cube length
	3.3. Rotational invariance

	4. Experiment
	5. Applications in Computational Geometry
	6. Applications in Computational Algebra

