
PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

1. INTRODUCTION

Peptoids are artificial proteins synthesised in the chemical labs, first de-
veloped around 20 years ago(ref). To endorse them with important chemical
functions such as binding the ends of side chains with metal ions, their side
chains need to be of certain types to be able to stablize in positions close to
the binding configurations. When the peptoids’ low energy states resemble
these binding configurations, they are more likely to bind with metal ions
since chemical structures tend towards low energy states. Various metal
bindings are observed in natural proteins so we can measure these binding
positions. Then we can synthesize peptoids whose low energy states resem-
ble these observed binding positions in natural proteins that bind. However,
for one peptoid design the choices of side chains on one particular back-
bone are exponential and impossible to be carried out in labs with the brute
force of synthesising and testing them all. Therefore we need an efficient
methodology to predict the low energy states of these peptoids to be synthe-
sised. Predicting the low energy states of proteins is often called the hard
problem of protein folding, which is the problem we are trying to solve in
the case for peptoids.

Our approach in peptoid design is a two step process. In the first step, we
consider the most influential energies in protein folding. Then an efficient
geometric search is conducted to eliminate all the impossible designs. In
the second step, designs that passed the quick initial screening will be fur-
ther examined in the comprehensive protein folding software called Rosetta.
This two step process efficiently saves all the time that the majority impos-
sible designs would take to be evaluated by Rosetta and to be synthesised.

2. ADAPTIVE GEOMETRIC SEARCH

In peptoids, since energies of bond angles and bond lengths are larger
than energies of torsion angles etc. by a magnitude of 100 or more(be more
precise), in the first step we are going to consider just the torsion angles
as variables in the energy function. Furthermore we are going to consider
only the lowest energy bond lengths and bond angles because with all other
minor energies ignored, this condition gives the lowest energy configuration
of the peptoid.

1

2 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

Without loss of generality, consider the binding configuration as a poly-
gon whose vertices are the binding sites of the configuration. For each
binding site or each vertex of the polygon, all the possible positions of the
potential binding node (often the end node) on all possible side chains form
a manifold, or a series of surfaces in 3D space. The task is to find one
potential binding node from each manifold such that the polygon whose
vertices are these potential binding nodes is a “desirable configuration.” Let
P = {P1, P2, . . . , Pn} be the target binding configuration. In this paper all
polygons are denoted by putting curly brackets around their vertices. We
define the error ε of a configuration or polygon S = {S1, S2, . . . , Sn} by its
distance to the target configuration P , that is,

ε = max
1≤i,j≤k

|PiPj − SiSj|.

Following the standard notation, we use capital letters to denote a point
in space and two points written next to each other to denote the length of
the line segment connecting them. Let εT be the maximum error we allow
due to the discretisation of manifolds in computing. If ε < εT , we call
configuration or polygon S a “desirable configuration”.

Given a target polygon P = {P1, P2, . . . , Pn}, a tolerance εT ≥ 0 and
one edge (Pi, Pj). Let Ci, Cj be two cubes with side length l and the distance
between their centers d. Then we have the following results.

Theorem 1. If d < PiPj − εT −
√

3 l or d > PiPj + εT +
√

3 l, then there
are no polygons {P̃1, P̃2, . . . , P̃n} within εT distance from polygon P where
P̃i ∈ Ci, P̃j ∈ Cj .

Proof. If there exists a polygon {P̃1, P̃2, . . . , P̃n} within εT distance from
polygon P where P̃i ∈ Ci, P̃j ∈ Cj , then by the definition of the distance
between polygons, we have P̃iP̃j ∈ [PiPj−εT , PiPj+εT]. Since any points
P ∈ Ci, Q ∈ Cj must satisfy PQ ∈ [d−

√
3 l, d+

√
3 l], we derive that

PiPj + εT ≥ d−
√

3 l,

PiPj − εT ≤ d+
√

3 l.

Written in another form, we have PiPj−εT −
√

3 l ≤ d ≤ PiPj+εT +
√

3 l.
The theorem states the contraposition of this conclusion. �

Theorem 1 suggests a necessary condition to determine whether two cu-
bic regions are plausible to contain any desirable pairs of points. There are
other necessary conditions based on positions of points in the cubes, but in
comparison this condition is tighter and more efficient for computation. On
the other hand, sufficient conditions exist for all pairs of points from a pair

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 3

of cubes being desirable. Again we use the sufficient condition based on
the center positions of cubes.

Theorem 2. If PiPj − εT +
√

3 l ≤ d ≤ PiPj + εT −
√

3 l, then all pairs of
points from Ci, Cj are within εT distance from PiPj .

Proof. The distance l′ between all pairs of points from Ci, Cj satisfies d −√
3 l ≤ l′ ≤ d +

√
3 l. If PiPj − εT +

√
3 l ≤ d ≤ PiPj + εT −

√
3 l, then

substituting the tighter bound of d on each side of the inequality we have
PiPj − εT ≤ l′ ≤ PiPj + εT . �

Notice that the condition of Theorem 2 is only possible when PiPj −
εT +

√
3 l ≤ PiPj + εT −

√
3 l, or l ≤ εT/

√
3. Thus we design an adaptive

search algorithm which searches for plausible cubic regions on each level
according to Theorem 1, and checks for sufficiency when the cube length
l satisfies l ≤ εT/

√
3. Pairs of cubes that satisfy the necessary condition

but not the sufficient condition are refined into sub-cubes, until when they
contain so few points such that a thorough search over every pair of points
is not costly. This suggests limiting the maximum number of points in
all the cubes, which in turn suggests using the data structure of an octree.
However in octrees two nodes in comparison can be of different status, that
is, comparison of an intermediate node with a leaf node on the same level.
To efficiently refine an area in relation to a point, we need the following
theorem.

Theorem 3. Given a point G, a cube C with length l and the target distance
PiPj . Let d be the distance fromG to the center of C. If d > PiPj+εT +

√
3

2
l

or d < PiPj−εT−
√

3
2
l, then there are no polygons {P̃1, P̃2, . . . , P̃n} within

εT distance from polygon P where P̃i ∈ C, P̃j = G. If PiPj − εT +
√

3
2
l ≤

d ≤ PiPj + εT −
√

3
2
l, then GH for all points H ∈ C are within εT distance

from PiPj .

Proof. The proof is similar to the proofs of Theorem 1 and 2, except now
G is a fixed point and thus GH ∈

[
d−

√
3

2
l, d+

√
3

2
l
]

for any point H ∈
C. �

Again we check both the necessary and sufficient conditions when com-
paring a point to sub-cubes of a cubic region. If necessary but not sufficient
conditions are satisfied by some cube, we refine the search there until on
the last level all cubes either violate the necessary condition, or satisfy the
sufficient condition, or are leaf nodes in the octree and all points are exhaus-
tively searched.

Let t1, t2, . . . , tn be the octrees generated by each manifold. Recall that
a manifold is a set of potential binding sites corresponding to a side chain.

4 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

We offer two adaptive search algorithms below, a basic version Algorithm
1 and a full version Algorithm 2 that takes into consideration of sufficient
conditions and point-cube adaptive search. Notice that the algorithm can be
further optimized by checking and deleting cubes on each level over all n
octrees.

Algorithm 1 Adaptive Geometric Search ({A1,A2, . . . ,An},P , εT)
1: trees = [t1, t2, . . . , tn]
2: for i in range(n) do
3: pairs = []
4: l = PiP(i+1)modn

5: t1, t2 = trees[i], trees[(i+1) mod n]
6: depth = min(t1.depth, t2.depth)
7: combos = [[] for x in range(depth+1)]
8: combos[0] = [(t1, t2)]
9: for i in range(depth+ 1) do

10: for (b0, b1) in combos[i] do
11: if b0, b1 are not leaves then
12: combos[i+ 1] += Compare(b0, b1, l, εT)
13: else
14: pairs += SearchE(b0, b1, l, εT)
15: end if
16: end for
17: end for
18: Mi = {Mi,j = 1 for (pi, pj) ∈ pairs;Mi,j = 0 otherwise}n×n
19: end for
20: Trace(

∏n
i=1Mi)

21: function COMPARE(b0, b1, l, εT)
22: return [(ci, cj) for (ci, cj) in b0.children × b1.children if
|(ci.center, cj.center)− l| ≤ εT +

√
3 ci.length]

23: end function

24: function SEARCHE(b0, b1, l, εT)
25: return [(pi, pj) for (pi, pj) in b0.containedPoints ×

b1.containedPoints if |pipj − l| ≤ εT]
26: end function

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 5

Algorithm 2 Adaptive Geometric Search ({A1,A2, . . . ,An},P , εT)
trees = [t1, t2, . . . , tn]

2: for i in range(n) do
pairs = []

4: l = PiP(i+1)modn

t1, t2 = trees[i], trees[(i+1) mod n]
6: depth = min(t1.depth, t2.depth)

combos = [[] for x in range(depth+1)]
8: combos[0] = [(t1, t2)]

for i in range(depth+ 1) do
10: for (b0, b1) in combos[i] do

lb =
√

3 b0.length
12: d = distance between b0, b1

if l − εT + lb ≤ d ≤ l + εT − lb then
14: pairs += [(pi, pj) for (pi, pj) in b0.containedPoints×

b1.containedPoints]
else if neither b0, b1 are leaves then

16: combos[i+ 1] += Compare(b0, b1, l, εT)
else if b0, b1 are both leaves then

18: pairs += SearchE(b0, b1, l, εT)
else

20: for p in leaf bi, i = 0 or 1 do
pairs += AdaptSearch(p, b1−i, l, εT)

22: end for
end if

24: end for
end for

26: Mi = {Mi,j = 1 for (pi, pj) ∈ pairs;Mi,j = 0 otherwise}n×n
end for

28: Trace(
∏n

i=1Mi)

function COMPARE(b0, b1, l, εT)
30: return [(ci, cj) for (ci, cj) in b0.children × b1.children if
|(ci.center, cj.center)− l| ≤ εT +

√
3 ci.length]

end function

32: function SEARCHE(b0, b1, l, εT)
return [(pi, pj) for (pi, pj) in b0.containedPoints ×

b1.containedPoints if |pipj − l| ≤ εT]
34: end function

6 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

function ADAPTSEARCH(p, b, l, εT)
36: pairs = []

combos = [[] for x in range(b.depth+ 1)]
38: combos[0] = [b]

for i in range(b.depth+ 1) do
40: for c in combos[i] do

lc =
√

3/2× c.length
42: d = distance between p and c.center

if l − εT + lc ≤ d ≤ l + εT − lc then
44: pairs += [(p, q) for q ∈ c.containedPoints]

else if c is not a leaf then
46: combos[i+ 1] += CompareP (p, c, l, εT)

else
48: pairs += SearchEP (p, c, l, εT)

end if
50: end for

end for
52: return pairs

end function

54: function COMPAREP(p, c, l, εT)
return [bi for bi in c.children if |(p, bi.center) − l| ≤ εT +√

3/2 bi.length]
56: end function

function SEARCHEP(p, c, l, εT)
58: return [(p, q) for q in c.containedPoints if |pq − l| ≤ εT]

end function

3. ANALYSIS OF ALGORITHM

The algorithm has two parts, the adaptive search on two octrees and the
matrix multiplication (including the computation of the trace) part. Let
S be the upper bound for the number of ones in all matrices Mi for i =
1, 2, . . . , n. Let N be the number of sample points in each manifold. Since
Mi’s are sparse matrices, computing their product has time complexity at
most O(SN). The complexity of computing the trace is also linear in N .
Thus the second part has time complexity O(N).

Now let’s consider the adaptive search part of the algorithm. For sim-
plicity, we assume the sample points are evenly distributed in octrees t1, t2.
Let nT be the stopping threshold for both octrees, i.e. the maximum points
per cube. In the best case scenario, the algorithm finds only one pair of

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 7

cubes plausible on each level of the octrees. In this case the time com-
plexity is O(d) where d is the smaller of the depths of two octrees. In the
worst case scenario, the algorithm would be searching through all pairs of
cubes at each level of the octrees until the last pair of the lowest level cubes
are reached, which are also the leaves of the octrees. The algorithm’s time
complexity would be O(N1N2) where Ni is the number of cubes or nodes
in octree ti for i = 1, 2. If the sample points are evenly distributed, the
number of cubes on each level of the octree is linear in N and thus this time
complexity is equivalent to that of the exhaustive search O(N2). However
the next theorem shows that the worst scenario can be easily avoided. Let
l0 be the length of the initial cubes, or the root of each octree. We call the
root of the octree level zero. Then the eight children of the root are the first
level cubes with length l0/2. And the eight children of the first level cubes
are the second level cubes with length l0/4, etc.

Theorem 4. Given the target polygon edge length l, octrees t1, t2 with root
cubes of length l0 and distance d between the centers of them. If εT <
14−5

√
3

32
l0, then all pairs of cubes on level 3 or below can not be plausible.

Proof. For any two cubes C1 ∈ t1, C2 ∈ t2 from some level k, let c1, c2 be
the centers and lc be the common side length. By Theorem 1, in order for
C1, C2 to be a plausible pair, we have

−
√

3 lc − εT + l ≤ c1c2 ≤
√

3 lc + εT + l.

Let L be the set of distances between all pairs of cubes from level k. De-
pending on the relative configuration of the initial cubes t1, t2, the set L
has different ranges. Notice that c1 and c2 lie at least lc/2 distance away
from all the faces of t1 and t2. Let B1 and B2 be the cubes that are lc
smaller than t1 and t2 on each side length, but centered and positioned
as t1, t2. Thus c1 ∈ B1 and c2 ∈ B2. Consider the sphere S1 inside
B1 where the center of S1 is the center of the cube B1, and S1 is tan-
gent to all six faces of B1. Similarly define S2 by B2. Notice that S1,S2

have radius 1
2
(l0 − lc). Since both S1 and S2 are entirely contained by

B1, B2 and c1 ∈ B1, c2 ∈ B2, if B1,B2 are disjoint, we have the rela-
tionship min(L) ≤ min d(S1,S2) ≤ max d(S1,S2) ≤ max(L). Since
min d(S1,S2) = d − l0 + lc and max d(S1,S2) = d + l0 − lc, in order for
all pairs of cubes on level k to be plausible we have

min d(S1,S2) = d− l0 + lc ≥ l −
√

3 lc − εT
max d(S1,S2) = d+ l0 − lc ≤ l +

√
3 lc + εT .

8 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

Thus,

l−
√

3 lc − εT + l0 − lc ≤ d ≤ l +
√

3 lc + εT − l0 + lc

=⇒ εT ≥ l0 − (1 +
√

3) lc.

On the second level lc = l0/4. Then we can always set εT to be smaller
than 3−

√
3

4
l0 and violate the necessary condition for all pairs of cubes on

this level to be plausible.
If B1,B2 have overlap, we still have max d(S1,S2) ≤ max(L) but 0 ≤

min(L) ≤
√

3
2
lc. The left side equality holds when there are c1, c2’s that

coincide. The right side equality holds when all c2’s lie on the corners of the
cubes centered by c1’s and all c1’s lie on the corners of the cubes centered
by c2’s. Thus in this case,

√
3

2
lc ≥ l −

√
3 lc − εT

d+ l0 − lc ≤ l +
√

3 lc + εT .

Thus,

d+ l0 − lc−
√

3 lc − εT ≤ l ≤ 3
√

3

2
lc + εT

=⇒ εT ≥
1

2

(
d+ l0 − (1 +

5
√

3

2
) lc

)

≥ 1

2

(
l0 − (1 +

5
√

3

2
) lc

)
.

On the third level, lc = l0/8. Then we can set εT to be smaller than 14−5
√

3
32

l0
and violate the necessary condition for all pairs of cubes on this level to be
plausible. �

Since in practice our octrees are always more than three levels deep and
εT is set about 1% of l0, the worst case scenario can never happen. Fur-
thermore, since from the third level we have at least one cube that’s not
plausible for refinement, for ∀k ≥ 3, let α be the maximum portion of the
cubes that’s plausible. Then ∀k,

α =
8k − 8k−3

8k
= 1− 8−3.

PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH 9

Let the depth of the octrees be d. Then N/nT = 8d. Let ηk be the ratio of
plausible cubes on level k and ηk ≤ α. Now the total number of computa-
tions for the adaptive search between t1, t2 is

O(82 + 82η1 · 82 + (82)2η1η2 · 82 + (82)3η1η2η3 · 82+

· · ·+ (82)d−1η1η2 · · · ηd−1 · 82 + (82)dη1η2 · · · ηd · C)

≤ O(82dαd) = O(N2+log8 α) = O(N2−[3−log8(83−1)]).

So far we rigorously proved that the adaptive geometric search algorithm
has time complexity at mostO(N2−[3−log8(83−1)]+SN) where S is the max-
imum number of desirable pairs of points between any two manifolds. Al-
though the theoretical bound for the exponent of N is close to 2, in practice
it can be much lower. Here is the reason. The time complexity of the
adaptive search between two octrees is dominated by the highest order term
which happens at the lowest level, depth d of the octrees. Assume again
that the points are evenly distributed with ε distance apart for both octrees.
Then all cubes on level d are leaf cubes. Let the target polygon side length
be l and let the tolerance be εT . Let the initial cube length be l0 and let
the total number of points inside be N . Note that l0/ε = N1/3. For each
leaf cube of t1 with center c, all the leaf cubes of t2 which lie in the sphere
Bc(l +

√
3 l0

2d + εT) and outside of the sphere Bc(l −
√

3 l0
2d − εT) are plau-

sible. Let ∆B = Bc(l +
√

3 l0
2d + εT) \ Bc(l−

√
3 l0

2d − εT). If there are any
desirable pairs of points from t1, t2, the sphere shell ∆B must cut across the
initial cube of t2, resulting in the following estimation.

‖{c′|c′ ∈ ∆B, c′ is a center of leaf cube in t2}‖ '
2(
√

3 l0
2d + εT)

l0
× 8d.

Therefore the number of total computations heuristically is

O(8d ·
2(
√

3 l0
2d + εT)

l0
· 8d) = O(25d · 2

√
3 + 26dN−1/3 · 2εT/ε) = O(N5/3).

4. EXPERIMENT

5. APPLICATIONS IN COMPUTATIONAL GEOMETRY

We basically solved the following problem. Given n sets Si, i = 1, 2, · · · , n
of points. The problem is to find all n-tuples of points, (p1, p2, . . . , pn), pi ∈
Si for any i, that make a certain polygon shape within an error tolerance.
One distinction from other more efficient algorithms for approximate spher-
ical range search (e.g. Sunil Arya [2000]) is that our algorithm searches out
all and only the n-tuples that are within the error tolerance, whereas most of
the other faster methods produce only some results within the tolerance. So
as a result of using these approximate methods, we can miss some working

10 PEPTOID DESIGN WITH ADAPTIVE GEOMETRIC SEARCH

designs of peptoids. The adaptive geometric search method increased both
the time and space complexity from the exhaustive search.

6. APPLICATIONS IN COMPUTATIONAL ALGEBRA

We can use adaptive geometric search to solve particular kinds of systems
of equations. In many of these cases, computing Groebner bases is too slow
to check if the system is consistent and looking for a solution.

If a system of equations includes at least one equation that can be written
into the following form

k∑
i=1

(fi(x)− gi(y))2 = C,

then it can be viewed as a distance equation between points (f1(x), f2(x), . . . , fk(x))
and (g1(y), g2(y), . . . , gk(y)). Thus we separate the system of equations
into the distance equations and the rest. We can always generate a set of
manifolds based on the rest of the equations and use the adaptive geometric
search algorithm to find all tuples of points, which are the solutions of the
system, that satisfy the distance equations and lie on the manifolds. More
specifically, after possibly needed changes of variables, let S1 be the set of
variables that appear in any of distance equations. Let S2 be the set of vari-
ables that appear in all the other equations in the system. If S2 ⊂ S1, then
we are ready to apply the adaptive geometric search algorithm. If however
S2 6⊂ S1, then all variables in S2 \ S1 need to be scanned in a grid search
before applying the adaptive geometric search algorithm, which may be in-
convenient or not.

To generalize, we can view a system of equations as consisting of two
parts. One part describes the manifolds, and the other part describes the
geometric shape on the manifolds that we search for. If one can formulate a
set of necessary conditions on geometric regions to contain solutions, then
we can devise the adaptive geometric search algorithm according to these
necessary conditions. In this way we can perhaps solve a broader category
of systems of equations using adaptive geometric search algorithm.

REFERENCES

D. M. M. Sunil Arya. Approximate range searching. Computational Ge-
ometry: Theory and Applications, 17:135–163, 2000.

	1. Introduction
	2. Adaptive geometric search
	3. Analysis of Algorithm
	4. Experiment
	5. Applications in Computational Geometry
	6. Applications in Computational Algebra
	References

