Dennis Shasha

Partitioned Peace
 (figure showing blue and red cartoon towns along a circle, looking like Italian hill cities with parapets etc. The city colors in clockwise order are Red Blue Red Blue Red Red Blue. Number them from left to right so Red_1 Blue_2 Red_3 Blue_4 Red_5 Red_6 Blue_7. Note that Blue_7 is next to Red_1. Each city is connected to its neighboring cities except for Blue_7 and Red_1.) Caption: How few towns can you exchange so that red and blue travellers never need to cross the other color’s cities?
In a mythical land of rhetorically-encouraged antagonism, different factions co-exist poorly. Consider then a set of red and blue hill towns connected by roads. People in the red towns deal well with one another. People in the blue towns deal well with one another. But when a person from a red town travels through a blue town or vice versa, things can get unpleasant. The leaders of the red and blue factions get together and decide that the best way to resolve their differences is to do a series of swaps in which the inhabitants of k red cities swap cities with the inhabitants of k blue cities in such a way that a person from a blue city can visit any other blue city without passing through a red city and similarly for a person from a red city. We call that desireable state partitioned peace. The goal is to make k as small as possible.
Warm-Up 1. Given the configuration of the figure, what is the minimum number of swaps needed to achieve partitioned peace?
Solution to Warm-Up 2. Two swaps are sufficient: Red_1 with Blue_7 and Red_3 with Blue_4.
Because exchanging city populations is very painful, the leaders seek other arrangements. For example, they are willing to build a certain number of roads to reduce exchanges of populations.
Warm-Up 2. Given the configuration of the figure, what is the minimum number of swaps needed to achieve partitioned peace if you are able to build one road?
Solution to Warm-Up 2. Build a road between Blue_7 and Red_1 and then swap Red_1 with Blue_4. The red city-dwellers can travel to other red cities without crossing blue cities. Similarly, the blue city-dwellers can travel to other blue cities without crossing red cities.
Challenge: So far, we’ve considered only a very simple configuration of cities, but consider that the red and blue cities alternate like the squares in a 4 by 4 checkerboard. Roads are currently only vertical and horizontal. You have a budget of 8 roads which must go to neighboring cities, but may use diagonals. Where should those roads go and which cities should swap populations to minimize the number of swaps needed to achieve partitioned peace where the swaps must be with neighboring cities?
[Andy: We need another drawing here showing the towns in a configuration like this with edges running vertically and horizontally:
R B R B

B R B R

R B R B

B R B R]
Solution to Challenge. Numbering the rows from top to bottom and left to right, we can build roads between red cities from (1,1) to (2,2), (2,4) to (3,3), (2,2) to (3,3), (3,1) to (2,2). This leaves the red cities at (1,3), (4,2) and (4,4) surrounded by blue cities. They are bolded below:

R B R B

B R B R

R B R B

B R B R
Next we build roads between the blue cities from (1,2) to (2,1), from (2,1) to (3,2), from (2,3) to (3,2), and from (2,3) to (3,4). This leaves the following blue cities isolated:
R B R B
B R B R

R B R B

B R B R
Then we need just three swaps: the read and blue on top and the pairs on the bottom.
Upstart 1. Suppose you are given an arbitrary planar graph of connections and an arbitrary red/blue coloring of nodes. You are given a budget of r planar edges that you may add. Can you an algorithm (and implementation) that will generate a minimum number of swaps to achieve partitioned peace? If so, please explain your algorithm in pseudo-code and send links to portable software.
Upstart 2. Consider the same question as in upstart 1, but allow non-planar edges.
All are invited to submit their solutions to upstartpuzzles@cacm.acm.org; solutions to upstarts and discussion will be posted at http://cs.nyu.edu/cs/faculty/shasha/papers/cacmpuzzles.html
Dennis Shasha (dennisshasha@yahoo.com) is a professor of computer science in the Computer Science Department of the Courant Institute at New York University, New York, as well as the chronicler of his good friend the omniheurist Dr. Ecco.
