
On the Complexity of Protein FoldingPierluigi Crescenzi, Deborah Goldman, Christos PapadimitriouAntonio Piccolboni, Mihalis YannakakisAbstractWe show that the protein folding problem in the two-dimensional H-P model is NP-complete.1 IntroductionProteins are polymer chains consisting of monomers of twenty di�erent kinds. Much of the geneticinformation in the DNA contains the sequence information of proteins, with three nucleotidesencoding one monomer. In turn, proteins in an organism fold to form a very speci�c geometricpattern, known as the protein's native state. It is this geometric pattern that determines themacroscopic properties, behavior, and function of a protein. It is in general reasonably stable andunique.The mapping from DNA sequences to monomer sequences is simple and very well-understood. Incontrast, the mapping from the sequence of a protein to the geometric con�guration of its nativestate |the \second half of the genetic code" [8]| is much more intricate and complex, and lessunderstood; it has been the subject of intense investigation for decades. It seems clear that theforces underlying protein folding are the interactions between their monomers; recently, the viewthat non-local interactions dominate this process has been gaining ground [4]. To test this andother hypotheses concerning protein folding, researchers resorted to simpli�ed models of proteins,mathematical abstractions of proteins that hide many aspects and exaggerate the e�ect of others;analysis and computer simulation of such models can then be compared to experimental resultswith actual proteins, to determine whether the emphasized aspects are indeed the dominant ones.Perhaps the most successful and best-studied such model, and the one with apparently the bestmatch with experiments1, is the two-dimensional hydrophilic-hydrophobic model, or H-P model,proposed by Dill [3]. In this model it is assumed that the protein is a sequence of 0s and 1s,and folding entails embedding the sequence in the two-dimensional lattice (see Figure 1). Eachsuch folding is evaluated with a score, equal to the number of pairs of 1s that are adjacent inthe lattice without being adjacent in the sequence; for example, in Figure 1 the score is �ve,corresponding to the �ve pairs of 1s connected by dotted lines. The score captures a simple modelof energy minimization, in which the \hydrophobic" 1s tend to be close to each other and thusavoid exposure, while 0s are neutral. It is assumed in this model that the native folded state is theone that maximizes score. It is therefore an interesting problem, given a sequence of 0s and 1s, to1Chan and Dill [2] state that \for chain lengths for which exhaustive enumeration is possible (up to about 30monomers), two-dimensional models more accurately represent the physically important surface-interior ratios ofproteins than do three-dimensional models." 1
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0 1Figure 1: Embedding in the two-dimensional lattice.�nd the embedding on the lattice that maximizes score. In this paper we prove that this problemis NP-complete (Theorem 3).That proteins fold so as to minimize energy has been accepted for decades. This view quickly leadsto a puzzling aspect of the problem, known as Levinthal's paradox, which can be paraphrased asfollows \How can a folding protein choose so quickly among so many possible foldings the one withminimum energy?" [4]. Our result can thus be seen as a more compelling restatement of thatparadox, since it implies that �nding the optimum folding in the two-dimensional HP-model |thesimplest abstraction of the protein folding problem one �nds in the literature, and presumably a vastsimpli�cation of the true detailed 3-dimensional energy minimization problem in actual proteins|is NP-complete, that is to say, among the provably hardest problems of the sort alluded to by theparadox, in which we must optimize among an astronomical population of states.There have been several NP-completeness results related to protein folding in the literature. A fewyears ago, several authors pointed out that certain general restatements of the problem, in whichmonomers attract or repel each other in ways that are general and can be used in encoding, are NP-complete [5, 10, 13]. More interestingly, it was proved in [11] that a combinatorial generalization ofthe H-P model to an in�nite alphabet, of which one symbol is neutral like H-P's 0 symbol, and thescore counts the number of adjacencies of elements with the same symbol, is NP-complete. Morerecently, [9] improved this to a �nite, albeit very large alphabet. The present result is the �rst tosettle the complexity of the simple two-dimensional H-P model actually proposed in the literatureas the ultimate simpli�cation of the protein folding problem. The H-P problem has been attackedfrom the point of view of approximation algorithms [6]; the present result sheds little light on thisaspect of the problem, as our reduction is not in any interesting way approximation-preserving.Our reduction is from the Hamilton cycle problem. As is common in previous proofs of weakerresults, we start by showing that the folding problem for sets of sequences (that is, when manysequences are to be optimally folded) is NP-complete (Theorem 1 in Section 2). We then proceedto establish the result for a single sequence, by resorting to certain interesting variants of the planarHamilton cycle problem (Theorem 3 in Section 3). In our proof we utilize an idea of Trevisan [12],whereby graphs can be embedded in the hypercube so that adjacency is captured by Hammingdistance.Our proof captures one of the basic intuitions of the H-P model, namely that hydrophobic monomers2



will tend to form a large \sphere" (in the two-dimensional lattice, a large hydrophobic square).Impurities in this sphere then must be aligned optimally to maximize score, and it is the complexityof this alignment that our proof captures. Finally, in Section 4 we briey discuss a version ofour proof (in fact, without the planarity complication) which settles the NP-completeness of thethree-dimensional version of the the protein folding problem in the H-P model |and in fact, theMAXSNP-completeness of the problem of minimizing losses in three dimensions. We were recentlyinformed that, independently, Berger and Leighton [1] proved that the three-dimensional proteinfolding problem in the H-P model is NP-complete; in fact, the approximability implications of theirresult are stronger than ours.2 The multistring folding problemThe two-dimensional lattice is the graph, (Z2; L), with node set Z2 (all points in the Euclideanplane with integer coordinates), and edges all pairs in L = f((x; y); (x0; y0)) : jx�x0j+ jy� y0j = 1g.Consider a set of strings S = fs1; : : : ; smg from the alphabet f0; 1g. A folding of these strings is anembedding of S into the lattice, that is to say, a one-to-one mapping f from the set f(i; j) : 1 � i �m; 1 � j � jsijg to Z2 such that for all 1 � i � m; 1 � j � jsij � 1 we have (f(i; j); f(i; j+ 1)) 2 L.Fix a folding f ; the points f(i; j) and f(i; j + 1) are called f -neighbors. An edge of the latticef(x; y); (x0; y0)g 2 L is said to be a loss if (a) these points are not f -neighbors, and (b) exactly oneof these two points is the image under f of a pair (i; j) such that the jth symbol of si is a 1. Eachposition in a string containing a one, and which is not the �rst or the last, can participate in zero,one, or two losses.The multistring folding problem is the following: given a set of strings s1; : : : ; sm 2 f0; 1g�and an integer E, is there a folding with E or fewer losses? If, as is the case in the strings weconstruct, no string starts or ends in a 1, then it is easy to see that the total score of a folding isequal to twice the number of 1's, minus the losses, divided by two; hence, minimizing losses is thesame as maximizing score, the traditional way of stating the protein folding problem.In this section we prove the following theorem:Theorem 1 The multistring folding problem is NP-complete.In the next section we shall show that the problem remains NP-complete even if there is only onestring.2.1 Description of the reductionWe start from the following NP-complete problem: Given a graph G = (V;E) with nodes of degreefour or less, and two nodes v1; vn 2 V , is there a Hamilton path from v1 to vn?As a preliminary step in our reduction, we �rst map the nodes in G to the hypercube according toa map used by Trevisan in [12]. Using Hadamard codes, he showed that there exists a function,which we call T , mapping the n nodes of the graph to codewords in f0; 1g8n such that the images3



of two unconnected nodes have Hamming distance strictly greater than two nodes connected by anedge; in particular, applying T to the nodes of G we �nd, for i 6= j in f1; 2; : : : ; ng:1. If fvi; vjg is an edge in G, then dH(T (vi); T (vj)) = 72n.2. If fvi; vjg is not an edge, then dH(T (vi); T (vj)) = 4n.(Here we assume that n is even.) Notice that if there is a Hamilton path from v1 to vn in G, thenthere is a Hamilton path from T (v1) to T (vn) in the Hamming space of length 72(n�1)n; otherwise,if there is no Hamilton path from v1 to vn in G, then any Hamilton path from T (v1) to T (vn) musthave length strictly greater than 72(n � 1)n. We note, �nally, that the function T may be chosenso that T (v1) and T (vn) contain at most as many zeros as T (vi), for any i 2 f1; : : : ; ng.We now construct a set of strings S and an integer E, such that there is a Hamilton path from v1to vn in G if and only if there is a folding of the strings in S with at most E losses. The allowednumber of losses is E = 7(n� 1)n:As for the set of strings S, let L = 180n14. S will contain L strings, s1; : : : ; sL, such that the�rst L=n strings correspond to node v1, the second L=n to node v2, and so on. All strings, withthe exception of s1 and sL, will be constructed similarly and so that strings corresponding to thesame city are identical. De�ne q = dpLEe and let c be an even positive integer to be speci�edlater. Let d (suggesting dense) denote the string d = QL=90i=1 180, let m (suggesting middle) denotethe string m = Q2E�16ni=1 1cq0, and, for i 2 [n], let t(i) (suggesting the Trevisan code) denotethe string t(i) = Q8nl=1 (1cqT (vi)l)2. The description of the strings s2 through sL�1 follows: fork 2 f2; : : : ; L� 1g and i = dnkL e,sk = 0L4d1L=10d1L=5�2E(cq+1)mt(i)12L=5d0L4 :Notice that each string contains a pre�x and su�x of L4 zeros. There are three dense substrings ofones and zeros in each string. Finally, toward the middle of the string, there is the substring mt(i)of length 2E(cdpLEe+1), which we call the sparse substring, which consists of the sparse string mand the sparse string t(i) containing two copies of the Trevisan code (interspersed between stringsof ones). The substring lying between the pre�x and su�x, called the internal substring, has totallength L.The strings s1 and sL, called the anks, are identical, respectively, to strings s2 and sL�1 exceptfor the fact that 4 zeros are inserted between every other pair of two adjacent ones in s2 and sL�1,beginning with the �rst pair of ones in each maximal substring of adjacent ones. Notice that, byplacing two copies of each bit of the Trevisan code next to each other (separated by ones), wehave arranged for all maximal substrings of adjacent ones to have even length. Formally, settingd0 = QL=90i=1 (1041)40, m0 = Q2E�16ni=1 (1041)cq=20, and, for i 2 [n];t(i)0 = 8nYl=1( ((1041)cq=2T (vi)l)2 if T (vi)l = 0(1041)cq=2T (vi)l041(1041)cq=2�1104T (vi)l if T (vi)l = 1 ;4



for each k 2 f1; Lg and i = dnkL e,sk = 0L4d0(1041)L=20d0(1041)L=10�E(cq+1)m0t(i)0(1041)L=5d00L4 :This completes the description of the reduction.2.2 The intended foldingIn this subsection we show that if there is a Hamilton path from v1 to vn in G, then there is afolding with at most E losses. This is rather easy; the hard direction is the opposite, sketched inthe next subsection (and proved in the appendix).Let (vi1 ; vi2; : : : ; vin) be the order of the nodes contained in a Hamilton path, where vi1 = v1 andvin = vn. We construct a folding, called the intended folding, by arranging the non-ank strings,s2; : : : ; sL�1; vertically to form a (2L4+L)�(L�2) rectangle as follows: all the strings correspondingto node vi1 are placed adjacent with their �rst bits in the same horizontal line at the left side of therectangle, then the strings corresponding to node vi2 are placed next, and so on until the stringscorresponding to node vin complete the rectangle. The ank strings s1 and sL, which di�er onlyfrom s2 and sL�1 through the addition of groups of 4 zeros, also have vertical orientation exceptfor the fact that the 4-zero groups are bent to the left and right, respectively. In this way, theanks s1 and sL can be placed, respectively, adjacent to the left and right sides of the rectangle sothat their �rst bits are in line with the �rst bits of the other strings and so that, since the 4-zerogroups have been excluded, the resulting patterns of bits adjacent to the rectangle are exactly thestrings corresponding to nodes v1 and vn. A schematic drawing of the intended folding appears inFigure 2.Note that in the intended folding the central L�L square is composed primarily of ones with somehorizontal lines of zeros and horizontal lines containing code bits running through it. It should beclear that the only place where a loss may occur is where two code bits T (vij)l and T (vij+1)l fromthe Trevisan code corresponding to two di�erent nodes vij and vij+1 are adjacent. However, by theproperties of the Trevisan code and because we have arranged the order of the identical groups ofstrings to be the same as the order (vi1 ; vi2 ; : : : ; vin) of the Hamilton path, we are guaranteed thatthe two copies of the Trevisan code result in at most 272(n� 1)n = E adjacent but not neighboringzero-one pairs. Therefore, the folding has at most E losses, and one direction has been proved.2.3 The converseIn this section we summarize the (quite long and involved) proof of the converse; the full proof canbe found in the appendix. We consider a folding of the strings with at most E losses; we have toshow that it is the intended folding corresponding to a Hamilton path of G.We de�ne the region R to consist of all points within the L�L square of the intended folding, as wellas all points surrounded by such points. We �rst prove that the largest component of this region hasarea at least L2�O(E) and perimeter at most 4L+O(E) (Lemmas 4 through 8 in the appendix),and therefore the smallest surrounding rectangle has sides of length L � O(pLE), and there is a5
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Figure 3: A special planar graph.square of sides L�O(pLE) contained in R (Lemmas 9 and 10). We then consider a string passingthrough the center of this rectangle, and prove that it is \relatively straight," proceeding withouttoo many bendings, from one end of the square to the opposite (Lemma 11 and Corollary 12). Wethen prove that any string that passes through a narrow horizontal strip traverses the square fromits top to the bottom side, and that in fact that almost all strings so traverse the square (Lemmas13 and 14 and Corollary 15). It follows that the folding is the intended one, and corresponds to aHamilton path in G.3 The string folding problemIn this section we show that the string folding problem (the special case of the multistringproblem with jSj = 1, which captures the protein folding problem in the 2-dimensional H-P model)is also NP-complete.Let us call a planar graph special if it consists of disjoint faces with nodes of degree three, connectedtogether by paths of length two, and becomes triply connected if all nodes of degree two arecollapsed. See Figure 3 for an example.Theorem 2 The Hamilton cycle problem remains NP-complete even if restricted to special planargraphs.Proof: The reduction from exact cover to planar Hamilton cycle in [7] produces a special planargraph, if the 2-input and 3-input \or" gadgets are replaced by the ones shown in Figure 4.Fix a planar graph G. Two Hamilton cycles are called orthogonal if they have the following property:7
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������������������������Figure 4: New 2-input and 3-input gadgets.
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Figure 5: The diamond graph.Their disjoint union (where we duplicate edges in their intersection) is a degree-4 planar graph withmultiple edges which can be embedded in the plane in such a way that the edges around each nodealternate between the two cycles. Figure 5 depicts the two Hamilton cycles of the diamond graph(plus another node G); they are orthogonal because, by duplicating the three paths of lengthtwo, one obtains a degree-four graph around each node of which edges of the two Hamilton cyclesalternate.Suppose that a graph contains the diamond graph depicted in Figure 5 (ignore the node G standingfor the rest of the graph). The diamond graph has four endpoints, denoted N, S, E, W, wherebyit is connected to the rest of the graph. Any Hamilton cycle of the overall graph must traverse thediamond either from N to S, or from E to W (but not, e.g., from E to N).Theorem 3 The string folding problem is NP-complete.Proof: We start from the Hamilton cycle problem for special planar graphs. Given any specialplanar graph G, we shall modify the graph so that it contains a \standard" Hamilton cycle H0,such that any Hamilton cycle of the original graph corresponds to a cycle of the modi�ed graphthat is orthogonal to H0. Starting from G and its embedding, take only the degree-2 nodes of G,8
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Figure 6: Replacing a degree-2 node by diamonds.and consider two such nodes adjacent if they are on the same face of the embedding. Since theoriginal graph is special, the resulting graph G0 is connected.Consider thus a cycle C of G0 (allowing repeated nodes but no self-loops) that visits all nodes ofG0 at least once. If the two nodes adjacent to an occurrence of v are on the same face, repeatthat occurrence twice. Now for each node v, count the occurrences of v on C and let a(v) be theresulting number.Replace now each degree-2 node v of G, and its adjacent edges, by a(v) copies of the diamond;the copies are disjoint, and the N and S nodes of the two outermost ones (or the unique one, ifa(v) = 1) coincide with the nodes of G adjacent to v, see Figure 6. Let C = (v0; v1; : : : ; vk = v0).For i = 0; : : : ; k � 1, suppose the ith element of C is the bith occurrence of node vi (let bk = 1);for each i = 1; : : : ; k, join the E or W node of the bi�1th copy of the diamond replacing node vi�1,whichever has not been considered up to now, with the E or W node of the bith copy of the diamondreplacing node vi, whichever is in the same face with the previous node (for v0, if v1 6= v0, we startwith the endpoint, E or W, that is on the same face as v1, and if v1 = v0, we start with the endpointwhich is not on the same face as v2). Notice that these new edges do not harm the planarity of thegraph, and they, together with the E{W traversal of the diamonds, form the standard Hamiltoncycle, H0, of the resulting graph G00.H0 is the only Hamilton cycle of G utilizing a E{W traversal of the diamonds. Any Hamilton cycleutilizing a N{S traversal must correspond to a Hamilton cycle of the original graph G. It is easyto see that any such cycle will be orthogonal to H0 |because the E{W and the N{S traversals ofthe diamond are orthogonal.We shall now construct the instance of the string folding problem. We take any degree-2 nodeand replace it with two degree-1 nodes, and make these nodes the endpoints of the Hamilton pathsought. H0 becomes a Hamilton path as well. We now perform Trevisan's transformation havingdeleted the E{W edges of the graph (that is, the endpoints of these edges have large Hammingdistance in the Trevisan code). We then perform the multistring reduction, with the following9



modi�cations:� The number of strings corresponding to each city, L=n, is odd. This is trivial to accomplishby adding one string to each set.� All strings corresponding to the same city are connected together in one string, by orderingthem arbitrarily, and connecting the end of the su�x of string 2i� 1 to the end of the su�xof the string 2i, and the beginning of the pre�x of string 2i to the beginning of the pre�x ofstring 2i+ 1, i = 1; : : : ; Ln�12 .� Finally, all of these n long strings are connected together in the order suggested by theHamilton path H0 by long (of length 2L4 + 2L2) strings of zeros.We claim that there is a folding with E losses if and only if the original special graph had a Hamiltoncycle. Suppose that indeed there is a folding with E or fewer losses. By the precise same argumentas in the proof of Theorem 1, there is a Hamilton path in the graph G00 that does not utilize theE{W edges, and hence there is a Hamilton cycle in the original graph.Conversely, suppose that G did have a Hamilton cycle. Then G00 has a Hamilton cycle H otherthan H0, and in fact one that is orthogonal to H0. But this means that we can arrange the n stringscorresponding to the cities as in the intended folding in the proof of Theorem 1, joined together asthey are via their pre�xes and su�xes in the order suggested by H0, because H0 is orthogonal toH .4 Conclusion and further workOur NP-completeness result settles in the a�rmative the widespread conjecture that the proteinfolding problem, even in its most simple yet realistic two-dimensional H-P simpli�cation, is NP-complete. By a simple modi�cation of our techniques (and, in fact, one that is free of the planaritycomplications of the present proof) we can show that the three-dimensional version of the protein-folding problem in the H-P model is NP-complete. The appropriate modi�cation of our proof isthis: The string consists of roughly L � L � L ones, which form a cube protected from all sides(except for the eight corners, where 8 losses must occur) by zeros. The Hamilton cycle problemis encoded in the part of the cube that lies just below one particular face of the cube. This partis traversed in one direction by \tubes" whose cross-section is a square of four zeros. Mismatchesin the alignment of these tubes correspond to mismatches in the Trevisan code of the underlyinggraph, and contribute the only extra losses, beyond the eight mandatory ones. Thus the intendedfolding has a total of 4E + 8 losses, and the steps in establishing the converse are analogous to theones in the present proof. The same result was proven independently, and a few months earlier, byBerger and Leighton [1].References[1] B. Berger, F. T. Leighton, manuscript submitted to J. Mol. Biol., July 1997.10
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A The converseIn this section we prove that if there is a folding of the strings in S with at most E losses, thenthere is a Hamilton path from v1 to vn in G. Let f be a folding of the strings in Z2 such thatthe resulting number of losses is less than or equal to E. Since the embedding is injective, we willidentify bits in the strings with their images in Z2, and call a point in Z2 a zero or a one if it hasa preimage which is, respectively, a zero or a one; otherwise, the point will be called empty.Consider the region R in Z2 which consists of all internal points (points in the L � L square inthe intended folding) as well as all points surrounded by a discrete closed curve of internal points,where, for the purposes of a discrete curve, two points (x1; y1) and (x2; y2) in Z2 may be joined ifthey are adjacent (joined by a vertical or horizontal edge in the lattice Z2), or if jx1 � x2j = 1 andjy1 � y2j = 1 |that is, we allow diagonal edges. We include points surrounded by a discrete curveof internal points in R so that R will not contain any \holes." Let RC be the largest connectedsubset of R, where for connectivity we allow only vertical or horizontal edges. We will prove thatRC looks very much like an L� L square and that, for the most part, strings passing through RCare approximately straight and parallel.It will be helpful to visualize R not only as a collection of points but also as a collection of continuousregions. By visualizing each point contained in R as a unit square centered at the point and parallelto the axes, then subsets of R may be said to have perimeter and area, denoted by the functionsPerim() and Area(). Our immediate goal will be to prove lemmas bounding the perimeter andarea of RC .We begin by bounding the perimeter. De�ne the boundary of a region A, denoted Bdary(A), toconsist of all points in A adjacent to at least one point not in A. Then the perimeter of any subsetof R consisting of connected components of R is equal to the number of boundary points it containsplus the number of convex corners formed by points on the boundary of the region. We make afew further de�nitions before we state our �rst lemma. We call an internal point straight if its twoneighbors lie in the same vertical or horizontal line; otherwise, the point is bent. A point q 2 Z2is said to be within distance d (vertical distance d) of a point p 2 Z2 if q is reachable from p usinga path of at most d vertical and horizontal edges (at most d vertical edges and any number ofhorizontal edges). A point p 2 Z2 is said to have a loss within distance d (vertical distance d) ifthere exists a loss involving two points within distance d (vertical distance d) of p. Finally, a set ofpoints is said to have a loss within distance d (vertical distance d) if it contains a point which hasa loss within distance d (vertical distance d). The �rst lemma follows:Lemma 4 There exists a positive constant c1 such thatjBdary(RC)j � jBdary(R)j � 4L+ c1E � 4:Proof: Since any boundary point of RC is also a boundary point of R, the �rst inequality isclear. To prove the second inequality, we �rst note that all points on the boundary of R must beinternal points; for a point of R which is not internal must be surrounded by a curve of internalpoints and hence cannot be on the boundary. Suppose, then, that there is an internal point, p, onthe boundary of R which is not one of the 4L� 4 intended boundary points. We prove that therei



must either be a loss within distance 6 of p or an intended corner within distance 2 of p. There arethree cases to consider:Case 1: p is a one.Point p must be adjacent to a point, q, which is not an internal point. If q is empty, then there is aloss within distance one. If q is a zero, then there must also be a loss within distance one becauseno one which is not on the intended boundary has a non-internal zero as a neighbor in any of thestrings.Case 2: p is a straight internal zero.Since p is a non-ank zero and there is no loss within distance 6, the picture of the neighborhoodaround p (up to rotation) must be as follows:1 11�p�1;where the isolated pipe represents the region boundary. However, the two possibilities for the pointbetween the two uppermost ones, empty or a non-internal zero, both lead to losses within distancetwo of p.Case 3: p is a bent internal zero.Since p is on the boundary and, thus, cannot be adjacent to two other internal zeros, it follows fromLemma 5, stated below, that p must have a loss within distance 6 or an intended corner withindistance 2.We have completed showing that there must either be a loss within distance 6 of p or an intendedcorner within distance 2. Since there are at most a constant number of points within distance 6 ofthe two points involved in a loss and there are at most E points (for n � 3) within distance 2 ofan intended corner, we can set c1 equal to the constant plus four and the lemma follows.We next state a lemma involving non-ank internal zeros referred to above.Lemma 5 If z is a bent non-ank internal zero which is not adjacent to two other non-ankinternal zeros nor within distance 2 of an intended corner, then there must be a loss within distance6 of z.Proof: Suppose that there is a bent non-ank internal zero, z, which is not adjacent to two othernon-ank internal zeros nor within distance 2 of an intended corner. The assumption of no intendedcorners close to z implies that if there is a one within distance 2 of z which is contained in thesubstring 010, then it must either be contained in the larger substring 1010 or 0101. Suppose, inaddition, that there is no loss within distance 6 of z. We show that in every potential con�gurationinvolving z these assumptions lead to a contradiction, for there must, in fact, be a loss withindistance 6 of z.Assuming there is no loss within distance 6 of z, the picture of its neighborhood under folding f(up to rotation) must be as follows: ii



0 �10 z �1 1j j1 1:The reason for the appearance of the ones other than the two neighbors of z is that there arealways at least eight ones which lie between internal zeros on any string, ank or non-ank (thoughon anks they may be separated by some groups of 4 zeros). The same separation is true forinternal zeros and pre�x or su�x zeros. This fact will play a role in almost all of the pictures ofcon�gurations which follow in the proof of this lemma and in the proof of Lemma 6.Next, we consider the classi�cations of the zeros lying adjacent to z. Note that the two zeros cannotboth be straight.Case 1: One of the adjacent zeros is a bent ank internal zero:Assume without loss of generality that it is the upper adjacent zero. Since there are no losseswithin distance 6, the picture must be as follows:1 Xj0 �1� X0 z �1 1j j1 1:No matter where the zero following the starred one is placed, there will be a loss (located at oneof the two X 's), a contradiction.Case 2: One of the adjacent zeros is a bent non-ank internal zero and the other adjacent zero isnot a bent non-internal zero.Assume without loss of generality the bent non-ank internal zero is the upper adjacent zero. Thenecessary picture follows: 1 1j j0 0 �10 z �1 1j j1 1:It should be clear that the adjacent zero to the left of z cannot be straight (there are no maximalsubstrings of zeros of length two). Since we assumed it was not a bent non-internal zero and it isnot a bent internal zero, this case is impossible. iii



Only one case remains:Case 3: One of the adjacent zeros is a bent non-internal zero.Assume it is the upper zero. The picture must be the following:01 0j j0 �10 z �1 1j j1 1:>From the picture it should be clear that the upper zero adjacent to z cannot be a pre�x or su�xzero due to our assumption about intended corners. It must be contained in one of the groups of4 zeros on a ank. As well, the zero which is a neighbor to the 1-neighbor of the upper zero mayalso not be a pre�x or su�x zero.We next examine the potential locations for the zero following the zero marked with the superscriptone (zero 1).Case 3A: The zero following zero 1 goes up, as appears below.02j01 0�1j j0 �10 z �1 1j j1 1We examine the potential locations for the zero following the zero marked with the superscript two(zero 2).Case 3Ai: The zero following zero 2 goes left:1 �0�02j1 �0 01 0�1X j j j0 �0 0 �10 z �1 1j j1 1:There must be a loss at the X . iv



Case 3Aii: The zero following zero 2 goes up: 1 1j j0 0j02j01 0�13j j0 �10 z �1 1j j1 1:Case 3Aiia: The zero following one 3 goes up:1 1j j0 0�j02 0� 0j j j01 0 �13 1j j0 �10 z �1 1j j1 1:This con�guration is impossible because no matter how the picture is completed, the two starredzeros must belong to the same string, but no string contains either a maximal substring of zeros oflength three or the substring 10101.Case 3Aiib: The zero following one 3 goes right:v



1 1j j0 0�j02 0��1j01 0 �13�0j j0 �10 z �1 1j j1 1:Similarly to the previous subcase, this con�guration is impossible because the two starred zerosmust be in the same string, but no string contains a maximal substring of zeros of length two.Case 3B: The zero following zero 1 goes left:04�01 0j j0 �10 z �1 1j j1 1:Case 3Bi: The zero following zero 4 goes down:1X04�01 0j j j1� 0 0 �10 z �1 1j j1 1:There must be a loss at the X .Case 3Bii: The zero following zero 4 goes left:1�0 �04�01 0j j1�0� 0 �10� z �1 1j j1 1:vi



Here, again, the con�guration is impossible because the two starred zeros must be contained in thesame string in a maximal substring of zeros of length three.Case 3Biii: The zero following zero 4 goes up:1 1j j0 0 �0 �0j X04�01 0 �1j j0 �10 z �1 1j j1 1:There must be a loss at the X , contradiction.We have completed our case analysis. In all cases, we showed that under our assumptions thepotential con�gurations must, in fact, either be impossible or contain a loss within distance 6 of z(all points shown in the �gures were within distance 6 of z). Thus, a bent non-ank internal zerowhich is not adjacent to two other non-ank internal zeros nor within distance 2 of an intendedcorner must have a loss within distance 6.The following lemma, which is the �nal step toward limiting Perim(RC), bounds the number ofconcave corners on the boundary of any subset of R.Lemma 6 If there is a concave corner on the boundary of R, then there must either be a losswithin distance 7 of the point of R at the corner or an intended corner within distance 4 of thecorner point. Consequently, there exists a positive constant, c2, such that there are at most c2Econcave corners on the boundary of any subset consisting of connected components of R.Proof: Suppose there is a concave corner on the boundary of R such that no intended corner iswithin distance 4 of the corner point and there are no losses within distance 7 of the corner point.As in the proof of Lemma 5, the assumption of no nearby intended corner implies any one withindistance 4 of the corner point which is contained in the substring 010 must be contained in thelarger substring 1010 or 0101. Also similarly to the proof of Lemma 5, we show these assumptionsmust lead to a contradiction.We perform a case analysis based on the classi�cation (zero or one) of the sides of the the concavecorner. Note that no bent non-ank internal zero may be a side of the concave corner, for sincethere can be no intended corner in distance 2 of the zero (and it is not adjacent to two non-ankinternal zeros), there must be a loss within distance 6 of the zero. However, this implies the loss iswithin distance 7 of the corner point.Case 1: Suppose two ones form the sides of the concave corner. We represent this con�gurationusing the following diagram: vii



j11:The two pipes represent where the ones meet the perimeter of R. The two possibilities for theclassi�cation of the point not in R which is adjacent to the two ones, either empty or a non-internalzero, both lead to a loss within distance 2 of the corner point, contradiction.Case 2: Two zeros form the sides of the concave corner. Since there is no loss within distance 7 ofthe corner point, the necessary picture is the following:1jj0�111�0j1:Case 2A: The zero following one 1 goes right:1jj0 �11�01�0 0 �1 �0 �0j j1 1 1 �0�j j j0 0 0�j0:One of the starred zeros must be followed by a one, so there must be a loss within distance 4 ofthe corner point, contradiction.Case 2B: The zero following one 1 goes down: 1jj 0 �11 1j j1�0 0� 0j1�0�1�0viii



Note the starred zero not adjacent to one 1 must go to the right as shown, for otherwise therewould be a loss as in Case 2A. One of the starred zeros must be bent, but then there would be amaximal substring of zeros of length two. Thus the con�guration is impossible.Case 3: A zero and a one form the sides of the concave corner.Case 3A: Suppose the zero is straight. The necessary picture follows:1 1j0 �1 �1 1�0j0 �1 1�0j j0�0 j 0 0�0�02+ j0�1 1 �0�01 1:The plus sign denotes the perimeter as well as the link that crosses it.Case 3Ai: The zero following zero 2 is up: 1 1j0 �1 �1 1�0 X1j0 �1 1�0 0 �1j j j0�0 j 0 0�0�02+ j0�1 1 �0�01 1:There must be a loss at the X .Case 3Aii: The zero following zero 2 is right: ix



1 1 1X0j j0 �1 �1 1�0 0j j0 �1 1�0 0�1j j0�0 j 0 0�0�02�0�1+ j0�1 1 �0�01 1:Again, there must be a loss at the X .Case 3Aiii: The zero following zero 2 is down:1 1j0 �1�1 1 �0j0 �1 1�0j j0�0 j 0 0�0 �02X1+ j j0�1 1�0�0 0 �1j1 1 0:Again, there must be a loss.Case 3B: Suppose the side zero is bent so that its neighbors go up and to the right. The necessarypicture follows: 0 �1j0 �0 j 0 �1X +1 1 �0:There must be a loss at the X .Case 3C: Suppose, �nally, the side zero is bent so that its neighbors go right and down:x



0 j0 �13+ j1 1 1j j j0 0 0j0:Case 3Ci: The zero following one 3 goes right: 1 �00 j0 �13�0 �0+ j1 1 1 �0�j j j0 0 0�j0:There must be a loss within distance 4 of the corner point due to the one which must follow one ofthe starred zeros.Case 3Cii: The zero following one 3 goes up:0 0 0j j j0 0 j0 �13 1j + j1 1 1 14j j j0 0 0j0:Case 3Ciia: The bit following one 4 is a zero: xi



0j0 0 0 0 0j j j j j0 0 j0�13 1 1 1j + j j j j1 1 1 14�0 0 0j j j j0 0 0 0�1j j0 0X1:There must be a loss at the X .Case 3Ciib: The bit following one 4 is a one: 0�10 05 0�1j j j0 0 j0 �13 1�1j + j1 1 1 14�1�1j j j0 0 0 �1j0:Case 3Ciib1: The zero following zero 5 is up: 06 0�1 1j0 05 0�1 �1j j j0 0 j0�13 1�1j + j1 1 1 14�1�1:Case 3Ciib1A: The zero following zero 6 is left: xii



07�06 0�1 1j0 05 0�1 �1j j j0 0 j0 �13 1�1j + j1 1 1 14�1�1:Case 3Ciib1Ai: The zero following zero 7 is left:1 1j X0 �07�06 0�1 1j0�0 05 0�1 �1j j j0 0 j 0 �13 1�1j + j1 1 1 14�1�1:There must be a loss at the X .Case 3Ciib1Aii: The zero following zero 7 is up:1 1j j0 0�j07�06 0��1 1j0 05 0 �1 �1j j j0 0 j0 �13 1 �1j + j1 1 1 14�1 �1:The two starred zeros must lie in the same string, but no string contains either a maximal substringof zeros of length three or the substring 10101. Thus, the con�guration is impossible.Case 3Ciib1B: The zero following zero 6 is up: xiii



0j08 0 0j j j06 0�1 1j0 05 0�1 �1j j j0 0 j0�13 1�1j + j1 1 1 14�1�1:Case 3Ciib1Bi: The zero following zero 8 is left: 0j1 �0�08 0 0j j j1 06 0�1 1X j0 05 0�1 �1j j j0 0 j 0�13 1�1j + j1 1 1 14�1�1:There must be a loss at the X .Case 3Ciib1Bii: The zero following zero 8 is up:1 1j X0 0j j08 0 0j j j06 0 �1 1j0 05 0 �1 �1j j j0 0 j0�13 1 �1j + j1 1 1 14�1 �1:There must be a loss at the X . xiv



Case 3Ciib2: The zero following zero 5 is left:09 0�1j0 0 �05 0�1j j j0 0 j0 �13 1�1j + j1 1 1 14�1�1:Case 3Ciib2A: The zero following zero 9 is right:1 1X j09�0 0�1j0 0 �05 0�1j j j0 0 j0 �13 1�1j + j1 1 1 14�1�1:There must be a loss at the X .Case 3Ciib2B: The zero following zero 9 is up:1 1 1j j j0 0 0�j09 0��1j0 0 �05 0 �1j j j0 0 j0 �13 1 �1j + j1 1 1 14�1 �1:This con�guration is impossible because the two starred zeros must belong to the same string, butno string contains a maximal substring of zeros of length three (or the substring 10101).Case 3Ciib2C: The zero following zero 9 is left: xv



1 1j X0 �09 0�1j0�0 0 �05 0�1j j j0 0 j 0 �13 1�1j + j1 1 1 14�1�1:Again, we �nd a loss, a contradiction.This completes our case analysis. In all cases, we showed that under our assumptions the potentialcon�gurations must either be impossible or contain a loss within distance 7 of the corner point (allpoints shown in the �gures were within distance 7 of the corner point). Consequently, a concavecorner on the boundary without an intended corner within distance 4 of the corner point must havea loss within distance 7 of the corner point. Since there are at most E points within distance 4 ofan intended corner (for n � 4) and there are at most a constant number of points within distance7 of the two points involved in a loss, setting c2 equal to the constant plus four, we conclude thatthere are at most c2E concave corners on the boundary of R. Finally, any subset consisting ofconnected components of R has at most as many concave corners as R. This completes the proofof the lemma.Corollary 7 There exists a positive constant, c3, such thatPerim(RC) � 4L+ c3E:Proof: Note that the number of convex corners contained in RC is four plus the number of concavecorners. The corollary, then, follows from the observation that the perimeter of RC is equal to thenumber of boundary points plus the number of convex corners it contains. Using Lemmas 4 and 6,we may take c3 = c1 + c2.We now prove a lower bound on Area(RC) and, in particular, we prove that, by limiting ourselvesto the connected region RC , we do not lose many internal points.Lemma 8 There exists a positive constant, c4, such thatArea(RC) � L2 � c4E:More speci�cally, RC contains all the internal substrings of the non-ank strings and all but atmost c4E internal points contained in the anks.Proof: Let RN consist of the connected components of R which contain the internal pointsof the L � 2 non-ank strings. Since all the internal points from a non-ank string must lie inthe same connected component, each component of RN must contain at least L points, and therexvi



are at most L � 2 such components. We show RN � RC by proving that, in fact, RN containsonly one connected component. Suppose RN consists of x � L � 2 connected components, for apositive integer x. First, we �nd a lower bound on Perim(RN) by making use of the fact that anycomponent of area A must have perimeter greater than or equal to 4pA. Using this inequalityto �nd a lower bound on the perimeter, the limiting situation is when x � 1 components are assmall as possible and the remaining points are contained in the last component. A lower bound onPerim(RN) is, thus, given by 4(x� 1)pL+ 4pL2 � (x+ 1)L. On the other hand, we can �nd anupper bound on Perim(RN) by �nding upper bounds on jBdary(RN)j and the number of convexcorners contained in RN . Clearly jBdary(RN)j � jBdary(R)j, since any boundary point of RN isalso a boundary point of R, and the number of convex corners contained in RN is at most 4x plusthe number of concave corners contained in RN . Therefore, using Lemmas 4 and 6, we see that4L+ c1E � 4 + 4x+ c2E is an upper bound on Perim(RN). Comparing upper and lower bounds,it must be true that4x+ 4L+ (c1 + c2)E � 4 � 4(x� 1)pL+ 4qL2 � (x+ 1)L� 4(x� 1)pL+ 4(L� (x+ 1))= (4pL� 4)x+ 4L� 4pL� 4:Consequently, (4pL � 8)x � 4pL + (c1 + c2)E. Since 4pL � 16 > (c1 + c2)E for n � 10, wemust have x = 1. Therefore, since RC is the largest connected component of R, we must haveRN � RC , meaning the internal substrings of the non-ank strings are contained in RC , and thusArea(RC) � L2 � 2L.Suppose more than (c3 + 1)E internal ank points are not contained in RC . Then perim(RC) <4L+c3E�(c3+1)E = 4L�E since we have lost the use of more than (c3+1)E intended boundarypoints. However, we still must havePerim(RC) � 4pL2 � 2L� 4L� 8;which leads to a contradiction since E � 8 for n � 2. The lemma follows by taking c4 = c3 + 1.We next show that RC is, in fact, very similar to an L�L square by bounding the dimensions andarea of the smallest rectangle containing RC and the dimensions of a square strictly contained inRC .Lemma 9 The smallest rectangle containingRC has sides of length L+a and L+b, where c4pLE �a; b � �c4pLE. Further, its area is at most L2 + c5LE, where c5 is a positive constant.Proof: Let a = maxfjx1 � x2j + 1 : (x1; y1); (x2; y2) 2 RCg � L and let b = maxfjy1 � y2j+ 1 :(x1; y1); (x2; y2) 2 RCg � L. From the de�nitions it should be clear that the smallest rectanglecontaining RC has sides of length exactly L + a and L + b. Comparing the area and perimeterof the bounding rectangle to those of (the continuous version of) RC , we derive the followinginequalities:1. (L+ a)(L+ b) � L2 � c4E ) (a+ b)L+ ab � �c4E:xvii



2. 2(L+ a+ L+ b) � 4L+ c3E ) a+ b � c32 E:If a and b are both positive or both negative, and since c4 > c3; it is certainly true that c4E �a; b � �c4E. We note for later use that ab � c24E2, regardless of the signs of a and b. Now let usassume without loss of generality that a is positive and b negative. Substituting bounds for a+ band b in inequality 1 using inequality 2, we derive:c32 EL+ a(c32 E � a) � �c4E ) a(a� c32 E) � c32 LE + c4E:Since ( c32 pLE + c32 E)( c32 pLE) = c234 LE + c234 EpLE � c32 LE + c4E, we must have a � c32 pLE +c32 E � c4pLE, which implies b � �c4pLE using inequality 1.To verify the bound on the area of the rectangle, we note that (L+a)(L+b) = L2+(a+b)L+ab �L2 + c32 LE + c24E2 using inequality 2 and the bound on ab given above. Taking c5 = c32 + c24, thebound stated in the lemma follows.We may now state a lemma which �nds a large square strictly contained in RC .Lemma 10 For a positive constant c6, there exists a square with sides of length L� c6pLE con-tained in RC.Proof: We proved in the previous lemma that the smallest rectangle containing RC has area lessthan or equal to L2+ c5LE, for a constant c5. Since RC contains at least L2� c4E internal pointsby Lemma 8, clearly any region contained in the bounding rectangle of area 2c5LE must containan internal point contained in RC .At this point, it will help to have the bounding rectangle and RC oriented in the coordinate plane.Let us assume without loss of generality that one of the up to 4 potential central points of thebounding rectangle is (0,0). (This is just a translation of the the embedding f .) Now consider thesquare, SQ1, with sides of length L � c4pLE which is centered at (0,0). Since SQ1 is containedin the bounding rectangle we know that if we consider the 4 squares with sides of length p2c5LE(and area 2c5LE) which share a corner with SQ1, then there must be a point of RC contained ineach of those 4 squares. That is, there exist 4 points, (x1; y1); (x2; y2); (x3; y3), and (x4; y4), in RCsuch that, for each i 2 [4], (xi; yi) is in quadrant i and jxij; jyij � 12(L� c4pLE)�p2c5LE. SQ1and the 4 points are pictured in Figure 7.Consider the square, SQ2 (also pictured in Figure 7), which has sides of length L�(c4+2p2c5)pLEand is centered at the origin. Since RC is connected and we have found the points (xi; yi) 2 RC ,i 2 [4], we must have that Perim(RC) � Perim(SQ2) = 4L � 4(c4 + 2p2c5)pLE. Moreover,if there exists a point in the interior of SQ2 but not in RC which is at a distance of more than4(c4+2p2c5)pLE+c3E from all the sides of SQ2, then, since there are no holes in RC , we must havePerim(RC) > 4L+c3E. This is clearly impossible due to Corollary 7. Thus, any square with sides oflength less than L�(c4+2p2c5)pLE�2(4(c4+2p2c5)pLE+c3E) = L�(9c4+18p2c5)pLE�2c3Ecentered at the origin must be contained in RC . In particular, the square, SQ, centered at (0,0)with sides of length L� c6pLE, where c6 = 29c5, is contained in RC .xviii
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We now move closer to our goal of showing that many strings pass through RC in an approximatelystraight and parallel fashion by �rst showing that there exists a non-ank string passing near theorigin which is approximately straight. Note that it is impossible for any pre�x or su�x zero tobe in RC since that would imply the whole pre�x or su�x is in RC , forcing its perimeter to be toohigh. Thus the string must exit RC and, in particular, SQ, at two points. We show the two pointsat which the string near (0; 0) exits SQ (not to return) are near the centers of two opposite sidesof SQ. As a corollary to the placement of this string, we derive that the anks must lie at oppositesides of RC .Lemma 11 There exists a non-ank string passing within an O(pLE) distance of (0; 0) whichexits SQ within O(pLE) distance of the centers of two opposite sides. Since a side of SQ haslength L� c6pLE, the string must then be relatively straight, containing O(pLE) bent points.Proof: It should be clear that the second sentence follows from the �rst since the internal substringof a non-ank string has length L. Of the L bits, L� c6pLE must be used to get from one side ofthe square to the other, leaving a slack of size only c6pLE.Consider the square with side length p2c5LE which is centered at the origin. This square mustcontain an internal point, p, of RC . The string, s, containing p cannot be a ank because we wouldlose the use of too many intended boundary points inside SQ, so we have found a non-ank stringpassing near (0,0). Point p is at a distance of at least 12(L� c6pLE)�p2c5LE from each side ofSQ. Thus s cannot exit SQ at any point farther than (c6 + 3p2c5)pLE from the centers of thesides of SQ.There are then 3 possibilities for the way in which string s exits SQ: it either exits at a singleside (forms a U-shape), exits at adjacent sides (forms an L-shape), or exits at opposite sides asdesired. We prove the �rst two cases are impossible. Suppose, �rst, that s forms a U-shape. Forpurposes of illustration we'll assume s exits through the top side of SQ. Recall the structure of thenon-ank strings: there are 3 dense substrings of length L10 , the middle of which begins with bitnumber 3L10 + 1 of the internal substring. We claim that no matter how s is folded into a U-shape,the bits on the opposite side of the U, for illustration, the right side, facing bits 3L10 +1 through 2L5on the left must be ones. The string must have at least L� (c6 + 2p2c5)pLE bits inside SQ, andby evaluating the two limiting con�gurations of the U (where the at most (c6 + 2p2c5)pLE bitsare outside SQ), we see that bits 3L10 + 1 through 2L5 may only be opposite bits in the range[7L10 + 1� (c6 + 2p2c5)pLE; 4L5 + (c6 + 2p2c5)pLE]:We may assume (c6 + 2p2c5)pLE � L180 � E � 1, which is true for n � 10. Clearly, then,(c6+2p2c5)pLE � L=10 and the bits in the above range are ones. Next, again because the stringhas slack only at most (c6+2p2c5)pLE, at most that many zeros out of the L90 in the middle densesubstring may be horizontal or bent. Thus we may assume there are at least E + 1 vertical zeros.Now, if there is no loss in the window containing a vertical zero and its neighbors and the threepoints adjacent to them on the right, then the point adjacent to the vertical zero on the right mustalso be a vertical zero. Assuming the adjacent vertical zero is also a non-ank zero without a lossxx



in a similar window, then the pattern will continue and there will be a horizontal line of verticalzeros: 1 1 1j j j0 0 0 � � �j j j1 1 1:Thus, there are E + 1 lines of vertical zeros extending from the left side of the U toward theright which may not be terminated unless they reach a ank, impossible due to the resulting lossof intended boundary points, or unless one of the zeros in the line has a loss within its windowcontaining six points. Since a loss terminating a line may be uniquely associated with that line,one of the E + 1 lines of zeros must have no associated losses. However, this line of zeros mustrun into a one on the right side of the U, resulting in a loss and a contradiction. We conclude thestring cannot form a U-shape.Let us, next, suppose string s forms an L-shape. We prove this is impossible by using a similarargument involving lines of zeros. One half of the L (for illustration we assume it exits throughthe top side of SQ) contains the middle, dense substring and, as above, we are guaranteed there isat least one horizontal line of vertical zeros without an associated loss in distance two. Considerthe horizontal second half of the L, say exiting through the right side of SQ, which contains therightmost dense substring. This second half contains a portion of at least L10�(c6+2p2c5)pLE � 3L40of the rightmost dense substring, and since at most (c6 + 2p2c5)pLE of the �rst L180 zeros in thedense substring are vertical or bent, at least E + 1 zeros are horizontal (and at a distance atleast L40 from the right side of SQ). These zeros must form vertical lines of horizontal zeros, and,using a symmetrical argument, we are guaranteed that at least one of the lines will be without anassociated loss in distance two. However, this line must encounter the horizontal line of verticalzeros originating from the �rst half of the L, and no ank may terminate either of these linesbetween the sides of the L and the point where they meet. Since the straight zeros in the lines aresurrounded by ones, one of the two lines must su�er a loss, a contradiction. Therefore, the stringcannot form an L.We may assume without loss of generality that string s exits at the top and bottom of SQ and thusits orientation is vertical. (This is just a rotation of the folding f .) We may now place the anks:Corollary 12 The anks both intersect the lines y = �(12(L � c6pLE)� c7pLE), where c7 is apositive constant. Further, in the vertical interval stretching between the two lines, one ank liesto the left of and one ank lies to right of the lines x = �(12(L� c6pLE)� 32c4E).Proof: We use horizontal lines of vertical zeros to place the anks. In fact, the only way for ahorizontal line of vertical zeros to end without a loss in vertical distance one is for it to end in avertical ank zero: xxi



1 1 1� 0j j j0 0 0j j j1 1 1� 0:Using the �rst and last dense substrings contained in the vertical string, we can �nd horizontal linesof vertical zeros with no associated losses at distances of no more than 8c6pLE+9(E+1) � c7pLE,where c7 = 17c6, from the top and bottom of SQ. The central string s prohibits the anks fromstretching across the top or bottom of RC to complete these lines; the pre�x and/or su�x of s wouldcause the loss of too many intended boundary points. Consequently, one ank must complete bothof the lines on the left and the other ank must complete both of the lines on the right. Thus, bothanks intersect the lines y = �(12(L� c6pLE)� c7pLE).Suppose that in the vertical interval [�12(L� c6pLE) + c7pLE); 12(L� c6pLE)� c7pLE] a ankis further than 32c4E from the closest side of SQ inside the interior of SQ. Then 3c4E points of theank must be inside SQ, but this implies that at least c4E intended boundary points have beenlost, which is impossible. Therefore, the ank completing the lines of zeros on the left must lie tothe left of the line x = �12(L � c6pLE) + 32c4E in the vertical interval and the ank completingthe lines of zeros on the right must lie to the right of the line x = 12(L � c6pLE) � 32c4E in thevertical interval.Let RT be the region bounded by the two anks and the lines y = �(12(L � c6pLE) � c7pLE).We now show that greater than L � Ln non-ank strings pass through (RC and) RT and exitthrough its top and bottom sides. (We will show that no pre�x or su�x bit may be containedin RT .) In addition, we show we may assume all zeros contained in the sparse substrings of thenon-ank strings are straight. This is the large collection of approximately straight and parallelstrings we have been searching for. An important fact to note is that the y-coordinate (verticalcoordinate) of any point contained in the sparse substring of these strings is con�ned to lie in aninterval of length (c6 + 2c7)pLE + 1; that is, bit number l of the internal substring must lie inthe vertical interval of length (c6 + 2c7)pLE + 1 centered at L2 � l. Setting c = 4(c6 + 2c7), sothat the shortest number of ones between two zeros in the sparse substring is 4(c6 + 2c7)dpLEe,it is clearly impossible for a zero in the sparse substring to be adjacent to a zero from the samestring. Further, and very importantly, if the zero is bit number l of the internal substring of oneof our collection of strings, then it may not be adjacent to any other zero in another string in thecollection other than the zero (if it is a zero) in bit number l of the other string. These facts willallow us to �nd a Hamilton path using the collection of strings. They will also be important inthe two lemmas and two corollary below where we �nd the collection of strings. Note, �nally, thatthe zeros and all the code bits in the sparse substrings of the strings in the collection must lie inthe vertical interval, [�2E(cdpLEe + 1) � (c6 + 2c7)pLE; 2E(cdpLEe + 1) + (c6 + 2c7)pLE] �[�(2cE + c6 + 2c7))dpLEe � 2E; (2cE+ c6 + 2c7))dpLEe+ 2E].Lemma 13 Any non-ank string which passes through the region, RT 0, which is bounded by thetwo anks and the lines y = �((2cE + c6 + 2c7))dpLEe + 2E) must exit RT through its top andxxii



bottom sides.Proof: We �rst show that no pre�x or su�x bit may be contained in RT . Recall that lines ofvertical zeros without associated losses and completed by anks are guaranteed to lie on the topand bottom sides of RT or just above and below these sides. No pre�x or su�x bit may lie onthese lines. Further, since no pre�x or su�x bit may lie in SQ, the whole pre�x or su�x must becontained in the region bounded by the closest ank and side of SQ, and the two lines. However,this would cause the loss of too many intended boundary points contained in the closest ank.Thus, no pre�x or su�x bit may be contained in RT (and we also note for future reference thatthere can be no intended corners inside RT ).Let s0 be a non-ank string passing through RT 0. String s0 must exit RT through two pointscontained in its top and/or bottom sides. We, next, eliminate the possibility of s0 forming a U-shape with respect to either the top or bottom side using the same argument as used in Lemma 11.We need only the assumption that (c6+ 2c7)pLE + (4cE + 2c6 + 4c7)dpLEe+ 4E � L10 , which istrue for n � 10. Thus s0 exits RT through its top and bottom sides as desired.Lemma 14 There are at least L� c6dpLEe� 6c4E strings which pass through (RC and) RT andexit through its top and bottom sides.Proof: We prove that L � c6pLE � 6c4E strings pass through the region RT 0 \ SQ containedin RT by again making use of horizontal lines of vertical zeros. It su�ces to show that s has asparse vertical zero without a loss in vertical distance one. For then, a horizontal line of verticalzeros must be formed and we are guaranteed by the previous lemma that all strings containing thezeros which pass through RT 0 \ SQ must exit RT through its top and bottom sides. Further, bythe observations made before the previous lemma, the strings in RT 0 \ SQ containing the zerosare distinct. Finally, since no ank string may pass through SQ further than 32c4E from thecorresponding side of SQ (as noted in Corollary 12) to end the line, there are certainly at leastL� c6dpLEe � 6c4E strings passing through RT . (We removed an extra factor of 3c4E-2 becauselater it will be useful to assume these strings are far from the anks.)We verify that there is always at least one vertical zero without a loss in vertical distance onecontained in the sparse substring of s. Any horizontal zero in the sparse substring must have aloss within vertical distance (c6 + 2c7)dpLEe+ 1 since, if there is no loss within vertical distance(c6+2c7)dpLEe, then a vertical line of zeros extending upward of length (c6+2c7)dpLEe+1 mustbe formed. However, because of the large distance between zeros noted in the paragraph beforethe previous lemma, the next bit in the line must be a one or empty, resulting in a loss. Next, theonly way for a sparse bent zero in s not to have a loss within vertical distance two (or distance 2),is if it is adjacent to two other zeros: 1 1j j0 0� 10� 1:However, the two zeros which are adjacent to the bent zero, neither of which may be ank zeros,must be contained in the same string since non-ank strings (contained in RT 0) exit RT throughxxiii



its top and bottom sides. Yet this is impossible due to the limitations on the proximity of zeros.Therefore, all sparse bent zeros must have a loss within vertical distance two (and distance two).Since losses within vertical distance (c6 + 2c7)dpLEe + 1 are uniquely attributable to the sparsezeros in a string and there are at least E + 1 sparse zeros, there must be a vertical sparse zerowithout a loss in vertical distance one.Corollary 15 There exist greater than L � Ln non-ank strings which pass vertically through RTsuch that all their sparse zeros are vertical or horizontal.Proof: There are at most 8 points within distance 2 of a loss, so there are at most 8E bent zeros.Thus at least L�c6dpLEe�6c4E�8E strings pass vertically through RT such that all their zerosare straight. Assuming c6dpLEe + 6c4E + 8E < Ln , true for n � 10, we are done.Therefore, there is at least one representative of every node passing vertically through RT . Let(sk1 ; sk2 ; : : : ; skm) be the left-to-right order of the collection of strings in Corollary 15. We claimthat for l 2 [m � 1], the number of losses involving strings skl and skl+1 and points in betweenmust be at least the Hamming distance of the two strings. Recall the Hamming distance of thetwo strings is equal to the number of points where a zero bit from the Trevisan code of one nodecorresponds a one bit from the Trevisan code of the other node (the bits are at the same position inthe Trevisan code). Suppose there is a code vertical zero in skl which corresponds to a code one inskl+1 , and let us say skl is to the left of skl+1 . Then there must be a line of vertical zeros extendingfrom the code zero to the right, and this line must end before or at the time it reaches skl+1 . Noneof the zeros in the line can be in string skl+1 and the loss ending the line must be contained in thewindow consisting of the last zero in the line and its neighbors and the three adjacent points tothe right. Therefore, since the loss must involve points in the strings skl and skl+1 and/or pointsin between the strings and the loss is within vertical distance one of the code zero, the loss maybe uniquely attributed to the pair of di�ering code bits in the two strings. Similarly, if the codezero is horizontal, using similar windows, there must be a loss involving points between the stringswithin vertical distance at most (c6 + 2c7)dpLEe + 1. The loss may also be uniquely attributedto the pair of di�ering code bits. Thus, if skl and skl+1 correspond to di�erent nodes, there are areat least 7n losses which can be attributed to the two strings due to the Trevisan code. However,since all n nodes are represented in the collection of strings, the total number of losses contained inRT is at least 7(n� 1)n = E. Consequently, there may only be n� 1 transitions between di�erentnodes, and the order, (vj1 ; vj2 ; : : : ; vjn), of the nodes corresponding to the strings above, deletingadjacent occurences of the same node, must correspond to a Hamilton path in G.In fact, we have found our desired Hamilton path from v1 to vn. Assume without loss of generalitythat the ank on the left side of RC corresponds to v1, that is, the ank is s1. (This is just areection of the folding f .) We prove:Lemma 16 It must be true that vj1 = v1 and vjn = vn.Proof: We show that vj1 = v1; it follows by symmetry that vjn = vn. First, we note that allthe sparse zeros contained in sk1 must be vertical. The reason is that there are always two lossesattributable to sparse horizontal zeros (one above the zero and one below), and only one loss mayxxiv



be lie between the strings sk1 and sk2 . Since we are already guaranteed E losses which lie betweenthe strings sk1 and skm , there can be no other losses outside this region.Next, we show that all the strings passing through RT 0 between s1 and sk1 also represent vj1 . Itsu�ces to verify that there are no sparse bent zeros in any of these strings. For all the stringsexcept for the string closest to s1 this is easy. We simply use the same argument as was used inLemma 14 to show that there must be a loss within distance one of a string containing a sparsebent zero. Regarding the string next to s1, call it s00, we may rule out any sparse bent zeros facingtoward the right using the same argument. In terms of any sparse bent zero which faces towardthe left, there can be no intended corner within distance one of the bent zero's neighbors (this wasnoted in Lemma 13), and the zero may not be adjacent to two other non-ank internal zeros. Thus,using the proof of Lemma 5, there must be a loss within distance 6 of the zero; however, this isimpossible since s00 is far from sk1 .Finally, we show that a sparse zero contained in s1 which is (horizontally) adjacent to a point ofs00 must lie in a vertical interval of length (c6 + 2c7)dpLEe centered at L2 � l, if the zero is thelth internal bit contained in s1. This fact will complete the proof, for then s1 must have zeros inexactly the same Trevisan code positions as s00. Since the Trevisan code contained in s1 has atmost as many zeros as the code in s00, the codes must then be identical. Therefore, vj1 = v1.To show that a sparse zero of s1 which is (horizontally) adjacent to s00 must lie in the desiredinterval, it su�ces to show that at least L � (c6 + 2c7)bpLEc internal points of s1 with distincty-coordinates are horizontally adjacent to points of s00 and are contained in a vertical interval oflength L � (c6 + 2c7)bpLEc. Inside RT , L � (c6 + 2c7)bpLEc internal points of s00 with distincty-coordinates face s1 horizontally (in a vertical interval of length L � (c6 + 2c7)bpLEc). Againmaking use of Lemma 5, none of these points may be a bent zero. Since all the points must thenbe ones or vertical zeros and no losses within distance two of s00 are allowable, the points must allbe adjacent horizontally to distinct internal points of s1. This completes the proof.
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