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A B S T R A C T   

Pairs trading is a popular classic neutral trading strategy in financial market. Deep reinforcement learning (DRL) 
has been widely used to improve the performance of this strategy. However, most works primarily focused on 
setting trading signals, but ignored selecting appropriate trading pairs. In this paper, a novel two-level rein-
forcement learning framework is proposed, where both pair selection and trading thresholds setting are involved. 
For pair selection, an Extended Option-Critic (EOC) method is utilized, which allows the agent to select trading 
pair on non-fixed length of time intervals. For trading thresholds setting, a three-agent Multi-Agent Deep 
Deterministic Policy Gradient (MADDPG) method is used for setting the opening and stop-loss thresholds as well 
as decide whether to trade. The simulation results in the Chinese futures market demonstrate that our proposed 
method achieves higher returns compared to traditional methods and popular reinforcement learning 
approaches.   

1. Introduction 

Pairs Trading is a common statistical arbitrage strategy that focuses 
on spreads between two price series. This strategy is based on the mean- 
reversion property of the market, which states that if two or more price 
series have similar trends, their spreads will remain within a reasonable 
range of movement (Gatev et al., 2006). When the spread deviates from 
the mean, the market mechanism will eventually reverse the trend and 
bring the spread back to its mean level. By taking advantage of this 
mean-reversion property, pairs trading can be used to open positions 
when the spread is out of balance and close them when the spread 
returns to the mean, allowing for arbitrage opportunities (Gatev et al., 
2006; Vidyamurthy, 2004; Elliott et al., 2005; Leung and Li, 2013). In 
summary, pairs trading involves offsetting risk by taking positions in 
two different futures and is a market-neutral trading strategy with good 
hedging ability. 

Machine learning methods have achieved remarkable results in 
modelling of complex systems (Pozna et al., 2012; Pozna and Precup, 
2012; Hedrea et al., 2021; Precup et al., 2022) and classification (Şeref 
et al., 2017; Panagopoulos et al., 2019). Researchers have proposed 
various methods utilizing machine learning to enhance pairs trading 
strategies, with a particular focus on employing Deep Reinforcement 

Learning (DRL) methods. DRL is a popular branch of deep learning that 
has achieved impressive success in recent years in areas such as gaming, 
robot control, parametric optimization, and machine vision (Mnih et al., 
2013; Lillicrap et al., 2016; Fujimoto et al., 2018). In DRL, an agent 
interacts with the environment to maximize the total reward. Due to the 
complexity of financial markets and the rapid nature of high-frequency 
trading, trading opportunities are often short-lived, making it impos-
sible for human traders to keep pace with market 

movements and make trading decisions quickly. DRL can automate 
trades by capturing potential trading opportunities and performing 
feature extraction instead of relying on human traders, and well- 
designed agents have the potential to outperform experienced human 
traders. In algorithmic trading, DRL combines the perceptual capabil-
ities of deep learning with the decision-making capabilities of rein-
forcement interacts with the market to maximize total returns (Deng 
et al., 2016; Lin et al., 2022; Shavandi and Khedmati, 2022). There are 
currently many studies in this area, such as Kim and Kim (2019), Lu et al. 
(2022) and Kim et al. (2022). 

However, while these studies address the limitations of traditional 
pairs trading strategies in trading signal setting, they typically still rely 
on traditional methods for pair selection. This can lead to unnecessary 
losses, for example, when the cointegration between the pair dissipates, 
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making it difficult to profit from the spread reverting to normal levels. 
Additionally, some studies attempt to use a single agent to simulta-
neously select opening and stop-loss thresholds, which are often sepa-
rated by a fixed interval. Our first goal is to improve pairs trading 
strategies by using DRL methods to improve both pair selection and 
trading threshold setting: dynamic pair selection during pair trading 
allows us to continuously trade highly profitable pairs, and optimizing 
the opening and stop-loss thresholds for each selected pair to maximize 
returns. To build on these studies, we propose a Multi-Agent Deep 
Deterministic Policy Gradient (MADDPG, Lowe et al., 2017) approach 
that set opening and stop-loss thresholds and decides when to trade 
separately. This approach emphasizes communication among agents, 
allowing multiple agents to learn appropriate strategies for their own 
tasks and maximize returns by communicating and cooperating with 
each other. 

In terms of pair selection, apart from using the cointegration method 
(Vidyamurthy, 2004; Elliott et al., 2005; Leung and Li, 2013; Galenko 
et al., 2012; Lin et al., 2006; Bertram, 2010) and distance method (Gatev 
et al., 2006; Pole, 2011; Do and Faff, 2012; Chen et al., 2019), research 
on stock selection (Winkel et al., 2022; Wang et al., 2019; Li et al., 2022; 
Zha et al., 2022) in portfolio management is similar to the problem 
addressed in this paper. These approaches conduct stock selection at 
fixed time intervals, which are usually manually defined, such as one 
calendar month or a specified time window length. There are few dis-
cussions on using DRL methods to address the issue of selecting trading 
pairs at non-fixed time intervals. This may result in additional losses 
since it is difficult to determine an exact time interval length with high 
profitability for assets, and the time interval may not have a fixed length. 
Unlike these works that design network structures to extract features at 
fixed time intervals, our second objective is to design a DRL method for 
the pair selection model in the two-level framework. We proposed 
Extended Option-Critic (EOC) method, which is an extension of the 
Option-Critic (OC) architecture (Bacon et al., 2017). This method can 
automatically determine the appropriate time interval length and select 
profitable trading pairs to maximize returns. 

In this paper, a novel two-level reinforcement learning framework is 
proposed for pairs trading which takes into account both pair selection 
(PS for short) and trade thresholds setting (TS for short). The approach 
utilizes two innovative methods, namely an EOC method for PS (PS- 
EOC) and a MADDPG method for TS (TS-MADDPG). PS-EOC enable pair 
selection with non-fixed length of time intervals by learning policy over 
options and termination functions. TS-MADDPG utilizes three agents to 
set the opening and stop-loss thresholds for trading pairs, as well as 
determining whether to execute trades. Simulations in the Chinese fu-
tures market validate the effectiveness of the proposed framework. The 
contributions of this work can be summarized as follows:  

● A novel two-level reinforcement learning framework is proposed, 
which addresses both pair selection and trading thresholds setting to 
improve the profitability of pairs trading strategy. By comparing 
with other methods in Chinese futures market, the efficiency of the 
two-level framework is demonstrated.  

● Proposed an Extended Option-Critic method, which extends the 
Option-Critic architecture to enable pair selection on non-fixed 
length of time intervals by learning policy over options and termi-
nation function, improved the flexibility of pairs trading strategy.  

● Applying the MADDPG method with three agents to set the opening 
and stop-loss thresholds as well as the decision of whether to trade 
separately through communication and collaboration among multi-
ple agents. 

This paper is organized as follows: section II introduces the related 
works, section III presents our proposed two-level reinforcement 
framework, section IV describes the simulation setup as well as the 
simulation results, and section V gives a summary and outlook. 

2. Related works 

2.1. DRL for pairs trading 

Traditional pairs trading strategies generally involve two steps: pair 
selection and trading signal setting. For the pair selection, common 
methods include the cointegration approach (Vidyamurthy, 2004; 
Elliott et al., 2005; Leung and Li, 2013; Lin et al., 2006; Bertram, 2010; 
Galenko et al., 2012) and the distance-based approach (Gatev et al., 
2006; Pole, 2011; Do and Faff, 2012; Chen et al., 2019). The 
distance-based approach measures the distance between asset price se-
quences, such as using the Euclidean squared distance method, and se-
lects the closest two assets to form a trading pair. The cointegration 
approach, based on the Engle-Granger cointegration test (Elliott et al., 
2005), selects trading pairs consisting of assets with long-term statio-
narity in their spreads. These methods typically involve selecting trading 
pairs based on historical data, with the pairs remaining unchanged 
during the trading process. 

Research on stock selection in portfolio management is similar to the 
problem addressed in this paper (Winkel et al., 2022; Wang et al., 2019; 
Li et al., 2022; Zha et al., 2022). Wang et al. (2019) proposed a DRL 
method based on temporal abstraction for automatic stock selection and 
setting of trading weights in portfolio management. They first extract 
features from the time series of individual assets using Long short-term 
memory (LSTM, Hochreiter and Schmidhuber, 1997) with history state 
attention, and then model the relationships among assets using attention 
mechanisms. Finally, investment proportions for each asset are deter-
mined based on the winner scores outputted by the attention network. 
Zha et al. (2022) proposed a hierarchical reinforcement learning 
framework for stock selection and portfolio management. In this 
framework, the high-level agent is responsible for selecting stocks with a 
high probability of profitability, while the lower-level agent performs 
portfolio optimization for greater profitability. Unlike these works that 
design network structures to extract features at fixed time intervals, our 
proposed EOC method improves returns by selecting trading pairs at 
non-fixed time intervals. 

There are two main approaches for trading signal setting using DRL: 
direct determination of trading behavior by the agent (Brim, 2020; 
Fallahpour et al., 2016; Wang et al., 2021; Sarmento and Horta, 2020) 
and indirect determination of trading behavior through the setting of 
opening and stop loss thresholds (Kim, T., and Kim, H. Y. 2019; Lu et al., 
2022; Kim et al., 2022). Kim and Kim (2019) used Deep Q-Learning 
Network (DQN, Mnih et al., 2013) to set the opening and stop-loss 
thresholds for pairs trading strategies. Lu et al. (2022) built on Kim 
and Kim (2019) by adding a structural break-aware mechanism that 
predicts the probability of future structure breaks, allowing the agent to 
make advance risk control. Kim et al. (2022) proposed a hybrid DRL Fig. 1. MDP, SMDP and options over MDP (Sutton et al., 1999).  
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framework that uses Twin Delayed Deep Deterministic Policy Gradient 
(TD3, Fujimoto et al., 2018) to directly determine trading behavior and 
Double Deep Q-Learning Network (DDQN, Van Hasselt et al., 2016) to 
determine stop-loss thresholds for pairs trading strategies. They also use 
techniques such as gate structure, clustering, and dimensionality 
reduction to adaptively extract features. Building upon these works, we 
apply the MADDPG method for trading thresholds setting. 

2.2. The options framework 

The options framework was firstly proposed in Sutton et al. (1999). 
Bacon et al. (2017) derived the policy gradient theorem for options and 
introduced an OC architecture that can learn the internal policies and 
the termination conditions of options, in tandem with the policy over 
options. Unlike Markov Decision Process (MDP, Puterman, 2014), 
reinforcement learning methods based on options follow the SMDP 
(Sutton et al., 1999; Bacon et al., 2017; Precup, 2000), which describes a 
process where the time intervals between decision points are not 
necessarily the same in continuous and discrete time. The following 
Fig. 1 from Sutton et al. (1999) provides an example of the MDP, SMDP, 
and options over MDP. 

3. Model 

We propose a two-level reinforcement learning framework to 
improve the pairs trading strategy in terms of both Pair Selection and 
Trading Thresholds Setting. The general structure of the model is illus-
trated in Fig. 2. 

3.1. Two-level reinforcement learning framework 

As shown in Fig. 2, the two-level reinforcement learning framework 
consists of two parts. The upper part illustrates the process of using EOC 
for pair selection, while the lower part demonstrates the process of using 
MADDPG for trading threshold setting. For the agents, the reinforcement 
learning environment is the market. Assuming there are Ω candidate 
trading pairs, the close prices of the two contracts forming pair ω are 
denoted as pω

1,t and pω
2,t , the price of the spread is pω

t , pω
t = pω

1,t − pω
2,t. At 

time step t = 0, all trading pairs have a historical data window of length 

W. We calculate the spreadω
t at time step t as follows: 

spreadω
t =

pω
t − mean

(
pω

t− W ,…, pω
t

)

std
(
f
(
pω

t− W ,…, pω
t

)) (1)  

where mean is the function for calculating the mean of the sequence, std 
is the function for calculating the standard deviation of the sequence, 
and f is the function for calculating the decentralized sequence. 

At each time step t, PS-EOC agent receives the current state sPS− EOC
t 

and the termination function βωt− 1 
determines whether the previous 

trading pair ωt− 1 needs to be closed. If βωt− 1
(sPS− EOC

t ) > α, the agent se-
lects a new pair ωt to trade based on the policy over options πEOC

Ω , i.e., 
ωt = πEOC

Ω (sPS− EOC
t ); otherwise, the pair remains unchanged, i.e., ωt =

ωt− 1. α is a hyperparameter which is the confidence threshold for the 
termination probability. 

Next, a three-agent TS-MADDPG method with πωt
1 , πωt

2 , πωt
3 corre-

sponding to pair ωt requires selecting appropriate opening threshold (ol) 
and stop-loss threshold (sl) based on the current state, and deciding 
whether to trade at the current time point, i.e., at = (ol, sl,Trading) =

(πωt
1 (sTS− MADDPG

t ), πωt
2 (sTS− MADDPG

t ), πωt
3 (sTS− MADDPG

t )), when Trading =

True, the pair trading strategy is executed based on the current spread of 
the trading pair spreadω

t : 
Open: If there is no current position and ol < abs(spreadω

t ) < sl, a 
short position is taken when spreadω

t > 0, and a long position is taken 
when spreadω

t < 0. 
Close: If there is a current short position and spreadω

t < 0, a long 
position is taken to close the position. If there is a current long position 
and spreadω

t > 0, a short position is taken to close the position. 
Stop-loss: If there is a current short position and spreadω

t > sl, a long 
position is taken to stop the loss. If there is a current long position and 
spreadω

t < − sl, a short position is taken to stop the loss. 
There are transaction costs c associated with each trade, the calcu-

lation method is provided in Section 4.1. After close or stop-loss, the 
returnt is calculated as follows: 

returnt = pω
tshort − pω

tlong − 2c (2) 

Algorithm 1 outlines the complete process of improving pairs trading 
strategy using the two-level framework. 

Fig. 2. General structure of the two-level reinforcement learning framework.  
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Algorithm 1. Improved Pairs Trading Strategy Using Two-Level 
Framework  

In Algorithm 1, minsteps is a hyperparameter to prevent the pairs 
from switching too often to cause losses. Our goal is to maximize the 
cumulative return over all time points by selecting appropriate trading 
pairs at non-fixed length intervals and setting suitable trading thresholds 
for the trading pairs. 

In the following section, we will provide detailed description of PS- 
EOC and TS-MADDPG, including their environment settings. 

3.2. PS-EOC 

In practical trading scenarios, it may not be possible to determine the 
optimal length of a trading interval for each pair in advance. To address 
this issue, we propose an extension of the OC architecture namely EOC, 
which allow agent selecting trading pairs at non-fixed length intervals. 
We refer to this method as PS-EOC and the framework is illustrated in 
Fig. 3. 

Fig. 3 shows that at each time step t, the agent receives the current 
state and the termination function βωt 

determines whether the previous 
trading pair needs to be closed and a new pair needs to be selected based 
on the policy over options. If the termination condition is met, the agent 
selects a new pair to trade based on the policy over options; otherwise, 
the agent continues trading the current pair. The key challenge here is to 
learn an effective termination function, which we address by extending 
the OC architecture. 

The OC architecture is a framework for learning a set of option 
policies over base actions that enables the agent to solve problems in 

different situations using different options. The OC architecture pro-
duces an option by estimating the value function of the options. Let the 
policy over options be denoted as πω, and its parameters be θ. Then the 
option value function is defined as: 

QΩ(s,ω)=
∑

a
πω,θ(a|s)QU(s,ω, a) (3)  

where QU : S × Ω × A→R is the value of the action performed in the 
context of the state-option pair. It is defined as: 

QU(s,ω, a)= r(s, a) + γ
∑

s′
P(s′|s, a)U(ω, s′) (4) 

In Eq (4), γ is the discount factor, P is the state transfer probability 
function, and the function U : Ω × S→R is called the option-value 
function upon arrival. Note that (s,ω) leads to the expanded state 
space. However, the OC architecture does not use this space explicitly. 
Let the termination function βω be the argument of ϑ, the value of 
execution ω at entry into state s′ is given by the following equation: 

U(ω, s′)=
(
1 − βω,ϑ(s′)

)
QΩ(s′,ω) + βω,ϑ(s′)VΩ(s′) (5) 

If the option ωt has been started or is being executed at the state st, 
the probability of transitioning in one step to (st+1,ωt+1) with the 
probability of: 

Fig. 3. Schematic diagram of PS-EOC.  
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P(st+1,ωt+1|st,ωt)=
∑

a
πωt ,θ(a|s)P(st+1|st, a)

(
1 − βωt ,ϑ(st+1)

)
1ωt=ωt+1

+ βωt ,ϑ(st+1)πΩ(ωt+1|st+1) (6) 

We want to explicitly use the expanded state space (s,ω) to allow 
policy over options can directly interact with the environment. When 
the internal policy is determined, the QΩ is a function that depends 
solely on ϑ. Using Eqs (3) and (4), the option-value function of EOC is: 

QEOC
Ω (s,ω)= r(s,ω) + γ

∑

s′
P(s′|s,ω)U(ω, s′) (7)  

Here, r(s,ω) is the reward obtained for executing the strategy corre-
sponding to ω. U(ω, s′) remains the same: 

U(ω, s′)=
(
1 − βω,ϑ(s′)

)
QΩ(s′,ω) + βω,ϑ(s′)VΩ(s′) (8) 

Assuming πEOC
Ω is a greedy policy for option, the corresponding one- 

step policy update goal from Eq (4) as gt: 

gt = rt+1 + γ
(
(
1 − βωt ,ϑ(st+1)

)
QEOC

Ω (st+1,ω)+ βωt ,ϑ(st+1)max
ω

QEOC
Ω (st+1,ω)

)

(9) 

With this, it is possible to give the loss function of the policy over 
options network πEOC

Ω : 

LossπEOC
Ω

= E
((

QEOC
Ω (st,ωt) − gt

)2
)

(10) 

The loss function of termination function βω,ϑ: 

Lossβω = βω(s)
(

QEOC
Ω (s,ω) − max

ω
QEOC

Ω (s,ω)+ η
)

(11)  

where η is a correction factor to prevent the output from converging to 
the same option or the termination function from failing. Algorithm 2 
outlines the training process of PS-EOC. 

Algorithm 2. Training process of PS-EOC  

In Algorithm 2, sPS− EOC is short as s. We use Bernoulli distribution 
sampling and ϵ-greedy policy to explore the environment at Step 5 and 
Step 6. Step 10 can involve implementing a pairs trading strategy with 
either static trading thresholds or TS methods. For example, to train the 
PS-EOC-TS-MADDPG method, it is necessary to first train the TS- 

MADDPG method for each trading pair. Then, the trained TS- 
MADDPG methods are used to train the PS-EOC method. The detail 
settings of the environment for PS-EOC are given below. 

State: We use the change of spread as state for trading pair, and the 
state for PS-EOC is the historical spread changes of all trading pairs: 

sPS− EOC
t =

[
spread1

t− l+1

spread1
t− l

,…,
spread1

t

spread1
t− 1

,…,
spreadω

t− l+1

spreadω
t− l

,…,
spreadω

t

spreadω
t− 1

, hold

]

where l is the length of historical data for each trading pair, hold = 0 
when not holding a position and hold = 1 when holding a position. 

Action: The agent chooses one of the Ω pairs, and for the conve-
nience of representation, in this paper we label the action of the PS 
method as ω and the action of the TS method is labeled as a. 

ω= [1, 2,…,Ω]

Reward: Based on previous research Kim, T., and Kim, H. Y. 2019, 
Lu et al. (2022); Kim et al. (2022), we set the reward rt is: 

NRω
t =

(
p1,tshort − p1,tlong − c

p1,tlong
+

p2,tshort − p2,tlong − c
p2,tlong

)

(12)  

rt =Rt(st,ωt, st+1)=

{
1000 × NRωt

t , if close or stop − loss
0, otherwise

(13)  

3.3. TS-MADDPG 

For each trading pair, we use the MADDPG method with three agents 
(agent1, agent2, agent3) for trading thresholds setting and call the method 
TS-MADDPG. MADDPG improves upon traditional Actor-Critic method 
by enabling it to solve multi-agent problems in mixed cooperative or 
competitive environment. For an N agent problem, the set of all agent 
policies is represented as π = {π1, ...,πN}, parameterized by θ = {θ1, ...,

θN}. The gradient of the expected reward J(θi) = E[Ri] of agent i is 
written as: 

∇θi J(μi)= Ex,a∼D

[
∇θi μi(ai|oi)∇ai Q

μ
i (x, a1,…, aN)|ai=μi(oi)

]
(14) 

The experience replay buffer D contains the tuple (x,x′,a1,…,aN,r1,…,

rN). oi is the observation of the agent i, and x = [o1,…, on] is the 
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observation vector. Qμ
i (x, a1,…, aN) denotes the centralized state-action 

value function of agent i, i.e., the critic network, and the centralized 
action value function Qμ

i is updated as: 

L (θi)=Ex,a,r,x′

[
(Qμ

i (x, a1,…, aN) − y)2
]
, y= ri + γQμ′

i
(
x′, a′

1,…, a′
N

)
|a′

j=μ′
j(oj)

(15)  

where μ′ = [μ′
1,…, μ′

n] is the parameter for which the target strategy has 
lagged updates θ′

j . It can be seen that the critic network requires global 
information for learning, whereas the actor uses only local observation 
information. The above equation uses the policies of other agents, which 
require constant communication to obtain them, but can also be ach-
ieved by estimating the policies of other agents. Each agent maintains 
n − 1 policy approximation functions μ̂φj

i
, which denote agent i to agent 

j’s policy μj of the function approximation. 

L
(
∅j

i
)
= − Eoj ,aj

[
log μ̂j

i

(
aj
⃒
⃒oj
)
+ λH

(
μ̂j

i

)]
(16)  

where H is the entropy of the strategy. Replace y in the above equation 
with ŷ : 

ŷ = ri + γQμ′
i
(
x′, μ̂′1

1 (o1),…, μ′
i(oi),…, μ̂′N

1 (oN)
)

(17) 

Before Qμ
i update, we fetch each agent j from the buffer to perform a 

single gradient step to update the latest sample of μ̂φj
i
. 

In the TS-MADDPG method, agent1 is responsible for setting the 
opening threshold, while agent2 is in charge of determining the stop-loss 
threshold. agent3 is responsible for evaluating whether the thresholds set 
by agent1 and agent2 are valid at the current time step t. Through 
cooperation, the three agents work together to maximize the total re-
turn. For the TS-MADDPG strategy corresponding to the trading pair ω, 
the environment is configured as follows. 

State: All agents’ observations are the historical price of the trading 
pair: 

sTS− MADDPG
t =

[
spreadω

t− l+1

spreadω
t− l

,…,
spreadω

t

spreadω
t− 1

, hold
]

Action: agent1 and agent2 need to choose one of the given open and 
stop-loss thresholds. agent3 need to decide whether to trade at the cur-
rent time step, when agent3 output 1, the pair trading strategy is 
executed, when agent3 output 0, all trading operations are blocked. 

aagent1 = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0]

aagent2 = [1.5, 2.0, 2.5, 3.0, 3.5, 4.0]

aagent3 = [0, 1]

aωt
t = [aagent1 , aagent2 , aagent3 ]

Reward: the reward functions of all three agents are the same as 
those of the PS-EOC. 

4. Simulations 

4.1. Data 

For the simulation, 5-min level data from the Chinese futures market 
was utilized. Considering the correlation between futures and different 

Fig. 4. Example of data division between training set, validation set and test sets.  

Table 1 
Contracts details.  

Contracts Exchange Fee Profit/Point 

rb SHFE 0.00495% 10 
p DCE 2.75CNY 10 
MA CZCE 1.54CNY 10  

Table 2 
Method name and introduction.  

Method 
type 

Method name Introduction 

Static 
method 

Static Static trading thresholds setting for each pair 
Static-AVG For all trading pairs, each trading pair using static 

trading thresholds, averaged 
TS method 

only 
TS-DQN Using DQN for trading thresholds setting for each 

pair 
TS-DQN-AVG For all trading pairs, each trading pair using DQN 

for trading thresholds setting for each pair, 
averaged 

TS-DDPG Using DDPG for trading thresholds setting for 
each pair 

TS-DDPG-AVG For all trading pairs, each trading pair using 
DDPG for trading thresholds setting for each pair, 
averaged 

TS-MADDPG Using MADDPG for trading thresholds for each 
pair 

TS-MADDPG- 
AVG 

For all trading pairs, each trading pair using 
MADDPG for trading thresholds setting for each 
pair, averaged 

PS method 
only 

PS-Coint Using Cointegration test for pair selection and 
static trading thresholds for each pair 

PS-DQN Using DQN for pair selection and static trading 
thresholds for each pair 

PS-EOC Using EOC for pair selection and static trading 
thresholds for each pair 

PS-TS 
method 

PS-Coint-TS- 
DQN 

Using Cointegration test for pair selection and 
DQN for selecting trading thresholds for each pair 

PS-DQN-TS- 
DQN 

Using DQN for pair selection and DQN for 
selecting trading thresholds for each pair 

PS-EOC-TS- 
DQN 

Using EOC for pair selection and DQN for 
selecting trading thresholds for each pair 

PS-Coint-TS- 
MADDPG 

Using Cointegration test for pair selection and 
MADDPG for selecting trading thresholds for each 
pair 

PS-DQN-TS- 
MADDPG 

Using DQN for pair selection and MADDPG for 
selecting trading thresholds for each pair 

PS-EOC-TS- 
MADDPG 

Using EOC for pair selection and MADDPG for 
selecting trading thresholds for each pair  
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futures exchanges, three commodity futures (rb, p, and MA) were 
selected as the candidate trading pairs. Trading was carried out on a 
monthly basis, and the spread of each pair was comprised of the two 
most active contracts for that commodity in each month. The dataset 
covers a period of 37 months, from January 2020 to January 2023. 

In terms of training, to capture the cyclical behavior exhibited by 
futures commodities, we employed a rolling forward approach. A one- 
month period was used as the test set, with the previous month’s data 
serving as the validation set, and the data from the previous year used as 
the training set. This method ensured that a separate model was trained 
for each month’s data in the test set. Train multiple times on the training 
set and select the best performance on the validation set for testing. 
From February 2021 to January 2023, there are a total of 24 test months 
were used. Fig. 4 provides an example illustrating the division of data 
between the training set, validation set, and test set. 

Details of each contract are given in Table 1. For the commission 
type, a fixed commission is charged when it is of a fixed type. For 
instance, when dealing with p contract, a fee of 2.75CNY is charged, i.e., 
transaction cost c = 2.75. On the other hand, if it is of the proportional 
type, a fixed percentage of the transaction amount is charged as 

commission. For example, when rb contract is opened at 3500, the fee is 
calculated as 3500 multiplied by 10 and then multiplied by 0.00495%, 
and one can obtain transaction cost c = 1.73. To calculate indicators, we 
set the starting capital to 20000 CNY (US $ 2900). 

4.2. Model setting 

PyTorch was used to train and test the models on a server equipped 
with an Intel Xeon Silver 4214R, NVIDIA RTX 3090, and 256 GB of RAM. 
In addition to the previously mentioned PS-EOC and TS-MADDPG 
models, we included PS-DQN, TS-DQN, TS-DDPG, PS-Coint, and Static 
methods for comparison. Table 2 summarizes all methods and their 
introductions. 

In Table 2, TS-DQN is based on Kim, T., and Kim, H. Y. (2019), which 
we modified to facilitate comparison with other models. The AVG 
method was used for comparison with the PS method, and it is important 
to note that the PS method does not allow opening multiple positions 
simultaneously, while the AVG method is equivalent to allowing mul-
tiple positions to be opened simultaneously. The detailed settings for all 
models are listed below. 

Static: The opening and stop-loss thresholds for the static strategy 
are set to 0.5 and 4.0, trading window W set to 100, respectively, which 
we have obtained the highest returns for the three pairs corresponding 
to the static parameter strategies. For the static parameters, smaller 
opening thresholds and larger stop loss thresholds usually lead to higher 
returns, which are brought about by a higher number of trades. 

TS-DQN & TS-MADDPG: The settings for TS-DQN and TS-MADDPG 
were the same, with both the replay buffer size set to 20000, the batch 
size to 256, the GAMMA to 0.995, and the learning rate to 0.0001 (all 
networks of MADDPG had the same learning rate), using the Adam 
optimizer and 50 episodes of training. 

TS-DDPG: Replay buffer size set to 20000, the batch size to 256, the 
GAMMA to 0.995, and the learning rate for the actor network and critic 
network are set to 0.0001. Using the Adam optimizer and 50 episodes of 
training. The output of TS-DDPG are two continuous values between 
0 and 1. We scale it to the following range for comparison with other 
models: 

ol∈ [0.5, 3.0], sl ∈ [1.5, 4.0]

Fig. 5. The network architecture of the EOC using in simulations.  

Fig. 6. CR of main methods.  

Z. Xu and C. Luo                                                                                                                                                                                                                               



Engineering Applications of Artificial Intelligence 126 (2023) 107148

8

PS-Coint: Using cointegration test to select trades, for each month in 
the test set, we perform the cointegration test using data from the pre-
vious month and select the trading pair with the highest confidence 
level. 

PS-DQN: The state of PS-DQN is different from PS-EOC, as PS-DQN 
selects trading pairs every fixed time interval. Below are the settings 
of the PS-DQN environment. 

State:The state of PS-DQN is the change in spread during the trading 
period (t − L, t). 

sPS− DQN
t =

[
spread1

t− L

spread1
t− L− 1

,…,
spread1

t

spread1
t− 1

,…,
spreadω

t− L

spreadω
t− L− 1

,…,
spreadω

t

spreadω
t− 1

, hold

]

Action: Same as PS-EOC. 
Reward: The reward of PS-DQN is the sum of all rewards during the 

trading period (t, t + L). 

rPS− DQN
t =RPS− DQN

t

(
sPS− DQN

t ,ωt, sPS− DQN
t+L

)
=
∑t+L

t
rPS− EOC

t  

In this paper, we set the fixed time interval L to 100. The replay buffer 
size is 6400, the batch size is 64, the GAMMA is 0.995, and using Adam 
optimizer, the learning rate of 0.0001, and 50 episodes of training each 
time. The network architecture of PS-DQN consists of four fully con-
nected layers with output sizes of 512, 256, 128, and Ω, respectively. 

PS-EOC: The replay buffer size is set to 20000, the batch size is 256, 
the GAMMA is 0.995, the learning rate is 0.0001, and the RMSprop 
optimizer is used to train 50 episodes each time. PS-EOC also has three 
special hyperparameters minsteps, η and α, where minsteps is set to 100 to 
facilitate comparison with other models. η and α are set to 0.2 and 0.3, 

respectively. We will discuss the last two parameters in Section 4.5.3. 
Fig. 5 illustrates the network architecture of the EOC model, where 

the output sizes of the fully connected layers are 256, 128, 64, Ω, Ω, 
respectively. 

When both methods are used, each method has the same settings as 
the single method described above. We make the following assumptions 
for our simulation: all trades are executed instantly without any slip-
page, and our trades do not impact the market. 

4.3. Evaluation indicators 

The performance of our proposed approach is evaluated by a set of 
indicators including Number of trades, Number of successes, Win Rate, 
Sharpe ratio, Maximum drawdown, Profit-loss ratio, and Cumulative 
return. 

Number of trades (TN): The number of times a position is opened by 
hitting the opening threshold. 

Number of successes (WN): The number of times the position was 
closed by mean reversion. It should be noted that, when mean reversion 
occurs, there is no guarantee of a positive profit. 

Table 3 
TS method results.  

Pairs Method TN WN WR SR MDD P/L CR 

rb Static 1265 1210 0.957 1.873 ¡0.106 0.750 1.386 
TS-DQN 1021 954 0.934 1.817 − 0.124 0.694 1.047 
TS-DDPG 292 278 0.955 2.441 − 0.125 0.663 0.361 
TS-MADDPG 1161 1128 0.972 1.829 ¡0.106 0.757 1.450 

p Static 1001 938 0.937 1.848 − 0.123 0.671 1.964 
TS-DQN 896 802 0.895 1.820 − 0.117 0.625 1.902 
TS-DDPG 406 383 0.943 2.208 − 0.236 0.606 0.701 
TS-MADDPG 918 887 0.966 1.817 ¡0.112 0.689 2.150 

MA Static 1124 1054 0.938 1.862 − 0.088 0.678 0.562 
TS-DQN 882 808 0.916 1.683 − 0.081 0.639 0.435 
TS-DDPG 357 325 0.908 1.561 − 0.080 0.525 0.156 
TS-MADDPG 967 934 0.965 1.752 ¡0.072 0.685 0.643 

Static-AVG 1130 1067 0.944 1.861 − 0.123 0.700 1.304 
TS-DQN-AVG 933 854 0.915 1.773 − 0.124 0.653 1.128 
TS-DDPG-AVG 352 329 0.935 2.070 − 0.147 0.598 0.406 
TS-MADDPG-AVG 1015 983 0.968 1.799 − 0.112 0.710 1.414  

Table 4 
PS method results.  

Method TN WN WR SR MDD P/L CR 

p-Static 1001 938 0.937 1.848 − 0.123 0.671 1.964 
p-TS-DQN 896 802 0.895 1.82 − 0.117 0.625 1.902 
p-TS- 

MADDPG 
918 887 0.966 1.817 − 0.112 0.689 2.150 

Static-AVG 1130 1067 0.944 1.861 − 0.123 0.700 1.304 
TS-DQN-AVG 933 854 0.915 1.773 − 0.124 0.653 1.128 
TS-MADDPG- 

AVG 
1015 983 0.968 1.799 − 0.112 0.710 1.414 

PS-Coint 1323 1138 0.860 1.649 − 0.112 0.732 1.408 
PS-DQN 1358 1030 0.758 1.814 − 0.107 0.663 1.952 
PS-EOC 1272 1140 0.896 1.683 ¡0.071 0.700 2.400 
PS-EOC (in- 

sample) 
1314 1192 0.907 1.663 − 0.091 0.718 2.776  

Table 5 
PS-TS method results.  

Method TN WN WR SR MDD P/L CR 

p-Static 1001 938 0.937 1.848 − 0.123 0.671 1.964 
p-TS-DQN 896 802 0.895 1.82 − 0.117 0.625 1.902 
p-TS- 

MADDPG 
918 887 0.966 1.817 − 0.112 0.689 2.150 

Static-AVG 1130 1067 0.944 1.861 − 0.123 0.700 1.304 
TS-DQN-AVG 933 854 0.915 1.773 − 0.124 0.653 1.128 
TS-MADDPG- 

AVG 
1015 983 0.968 1.799 − 0.112 0.710 1.414 

PS-Coint-TS- 
DQN 

987 915 0.927 1.628 − 0.115 0.721 1.321 

PS-DQN-TS- 
DQN 

956 796 0.833 1.800 − 0.087 0.674 1.876 

PS-EOC-TS- 
DQN 

873 791 0.906 1.856 − 0.094 0.673 2.288 

PS-Coint-TS- 
MADDPG 

1057 1025 0.970 1.600 − 0.086 0.731 1.434 

PS-DQN-TS- 
MADDPG 

1371 1047 0.764 1.789 ¡0.044 0.669 2.224 

PS-EOC-TS- 
MADDPG 

1051 970 0.920 1.617 − 0.082 0.729 2.650 

PS-EOC-TS- 
MADDPG 
(in-sample) 

1010 924 0.915 1.813 − 0.081 0.714 2.810  
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Win Rate (WR) : WR=
WN
TN 

Sharpe ratio (SR): An indicator that reflects risk-adjusted returns. 

SharpeRation=
E
(
Rp
)
− Rf

σp  

Where E(Rp) is the annualized rate of return, and Rf is the annualized 
risk-free rate, and σp is the standard deviation of the annualized rate of 
return. 

Maximum drawdown (MDD): The maximum loss from a peak to a 
trough before reaching a new peak. 

Profit-loss ratio (P/L): The ratio of the average amount of profit to 
the average amount of loss. 

Cumulative return (CR): The sum of the returns on all test sets. 

4.4. Simulation results 

Fig. 6 presents the CR of the main methods. Our proposed PS-EOC- 
TS-MADDPG method achieves the highest CR. Next, we compare the 
effectiveness of each model from various aspects. 

To begin with, a comparison is made between the results of TS 
methods, where the simulation results of Static, TS-DQN, TS-DDPG and 
TS-MADDPG are presented in Table 3. 

The simulation results in Table 3 indicate that the TS-MADDPG 
method outperforms the Static and TS-DQN methods in terms of WR 
and P/L ratios, and also shows a reduced MDD. On average, the TS- 
MADDPG method achieves a 10% improvement in CR while maintain-
ing a lower number of trades compared to the Static method. In contrast, 
the TS-DQN method generally exhibits a lower number of trades and 
relatively lower returns. For the TS-DDPG method, we observed that the 
agent tends to always choose the maximum opening and stop-loss 
thresholds, resulting in too few trades and making it difficult to gain 
profits. In the subsequent comparisons, we no longer use the TS-DDPG 
method. 

Secondly, the comparison of PS methods is presented in Table 4. 
The simulation results presented in Table 4 demonstrate that the PS- 

EOC method achieved a 19% improvement in returns compared to PS- 
DQN. Compared to the p-Static method with the highest CR in the 
Static methods, it achieves an improvement of 22%. Due to the inability 
to select trading pairs during trading, the PS-Coint method only shows 
an improvement in CR compared to the Static-AVG method. Combining 
the results of the PS-DQN and PS-EOC methods, it can be concluded that 
dynamically selecting trading pairs can improve returns. 

Finally, the results of PS-TS methods are compared in Table 5. 
The results presented in Table 5 demonstrate that the PS-EOC-TS- 

MADDPG method achieves a remarkable performance, yielding 2.03 
times CR than the Static-AVG with a smaller number of trades. When 
compared to the p-Static method with the highest CR in Static methods, 
there is a 29% improvement in CR. Compared to the p-TS-MADDPG 
method with the highest CR in the TS methods, there is a 19% 
improvement in CR. Moreover, when compared to the PS-DQN-TS- 
MADDPG method, the PS-EOC-TS-MADDPG method exhibits a higher 

Table 6 
Monthly trading results for PS-EOC-TS-MADDPG.  

Month TN WN WR SR MDD P/L CR 

Feb-21 35 28 0.800 1.179 − 0.003 0.722 0.044 
Mar-21 53 47 0.887 2.255 − 0.015 0.724 0.071 
Apr-21 45 35 0.778 1.951 − 0.003 0.612 0.132 
May-21 50 49 0.980 1.942 − 0.007 0.849 0.088 
Jun-21 59 58 0.983 2.319 − 0.022 0.758 0.031 
Jul-21 65 63 0.969 1.452 − 0.012 0.814 0.169 
Aug-21 42 36 0.857 2.058 − 0.017 0.674 0.186 
Sep-21 25 25 1.000 1.779 − 0.047 0.815 0.088 
Oct-21 42 41 0.976 1.941 − 0.034 0.783 0.207 
Nov-21 38 37 0.974 2.605 − 0.067 0.609 0.051 
Dec-21 38 36 0.947 − 0.252 − 0.045 0.587 0.006 
Jan-22 39 39 1.000 4.549 − 0.004 0.878 0.076 
Feb-22 29 23 0.793 1.925 − 0.007 0.645 0.058 
Mar-22 75 66 0.880 1.138 − 0.042 0.788 0.414 
Apr-22 32 31 0.969 0.541 − 0.138 0.722 0.195 
May-22 54 53 0.981 − 0.558 − 0.019 0.797 0.022 
Jun-22 29 29 1.000 0.473 − 0.215 0.781 − 0.042 
Jul-22 38 36 0.947 0.967 − 0.070 0.682 0.135 
Aug-22 56 53 0.946 1.399 − 0.048 0.742 0.188 
Sep-22 40 36 0.900 2.457 − 0.017 0.667 0.068 
Oct-22 24 23 0.958 1.088 − 0.011 0.643 0.056 
Nov-22 55 50 0.909 1.682 − 0.012 0.793 0.177 
Dec-22 53 41 0.774 1.553 − 0.001 0.788 0.201 
Jan-23 38 35 0.921 1.747 − 0.005 0.846 0.029  

Fig. 7. rb-Static trading record in December 2022.  

Z. Xu and C. Luo                                                                                                                                                                                                                               



Engineering Applications of Artificial Intelligence 126 (2023) 107148

10

P/L ratio and a 16% improvement in CR. When the TS method is 
changed to TS-DQN, PS-EOC-TS-DQN shows a 20% improvement 
compared to PS-DQN, demonstrating the effectiveness of PS-EOC in 
selecting trading pairs over PS-DQN. And, monthly trading results for 
PS-EOC-TS-MADDPG from Feb-21 to Jan-23 are shown in Table 6. The 
indicators in Table 6 are calculated with a monthly starting capital of 
20000 CNY. 

4.5. Model analyze 

4.5.1. Trading records visualization 
In this section, we present the effectiveness of our model using the 

trading records visualization on the test set of December 2022 as an 
example. 

Fig. 7 illustrates the trading record of trading pair rb using static 
thresholds in December 2022. In Fig. 7 and the following Figs. 8–10, the 
upper part shows the changes in profits during the month’s trading. The 
lower part depicts the green line representing the spread, the blue line 
representing the opening threshold, and the red line representing the 
stop-loss threshold. Blue points represent opening points, green points 
represent closing positions through mean reversion, and red points 
represent stop-loss points by hitting stop-loss thresholds. 

Fig. 8 provides an example of trading thresholds for rb using the TS- 
MADDPG method on the test set in December 2022. Compared with 

Fig. 8. rb-TS-MADDPG trading record in December 2022.  

Fig. 9. PS-EOC trading record in December 2022.  
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Fig. 7, it can be observed that the agent automatically adjusts the 
threshold according to spread fluctuations to improve returns. Notably, 
the stop-loss threshold output by the agent is higher than or equal to the 
opening threshold, which is obtained by the agent through learning, 
even if it is not set on the reward function. 

Fig. 9 presents the trading record of PS-EOC in December 2022. In 
the lower part of Fig. 9, the line above represents which trading pair was 
selected by EOC and the duration of the trade in time steps. This dem-
onstrates that EOC can automatically determine when to terminate the 
current trading pair and select profitable trading pairs. Compared with 
Fig. 7, when rb-Static performs poorly in the middle of the month and 
may not yield favorable results if trading at that time, the PS-EOC agent 
selects to trade MA and p, which effectively improves the returns. 

Fig. 10 presents the trading record of TS-EOC-TS-MADDPG on test set 
in December 2022. By comparing with Fig. 9, it can be observed that the 
PS-EOC-TS-MADDPG method not only enables more flexible pair se-
lection but also enables timely adjustment of trading thresholds. 

4.5.2. Convergence test 
The following Fig. 11 illustrates the changes in total rewards, the loss 

of policy over options, and the loss of termination function during 
continuous training for 100 episodes when the test set is for December 
2022. 

In Fig. 11, we assume that the first point starts from 1. Due to the 
exploration conducted by the agent throughout the entire training 
process using Bernoulli distribution sampling and ϵ-greedy policy, there 

Fig. 10. PS-EOC-TS-MADDPG trading record in December 2022.  

Fig. 11. The changes in total rewards, the loss of policy over options loss, and loss of termination function for 100 episodes.  
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is fluctuation in the rewards on the training set in each episode. How-
ever, after 50 episodes, the loss of policy over options and the loss of 
termination function stabilizes, indicating that the agent’s policy has 
reached a relatively stable state. 

4.5.3. Parameter discussion 
In this subsection, we discuss two hyperparameters of the EOC 

method: η and α, using the test results of the PS-EOC method on 
December 2022. η is the correction term in the loss function of the 
termination function model when training the EOC model. α is the lower 
confidence limit of the termination probability output by the termina-
tion function. 

The following Fig. 12 gives the termination probability of the 
termination function output at each time point when η ∈ [0, 1] with a 
step size of 0.1. 

Fig. 12 evident that the termination probability of the output of the 
termination function gradually approaches 0 as the value of η increases. 
Our simulation shows that setting a small value for η (e.g., η = 0) results 
in the agent terminating the current trading pair at every time point, 
while a larger value for η (e.g., η = 1.0) results in the agent maintaining 
the current trading pair. The choice of η depends on our preference for 
using the model: if we prefer to switch trading pairs frequently, we can 
set η to a smaller value, and a smaller α can be chosen to further increase 
the switching frequency of trading pairs. On the other hand, if we prefer 
to maintain the current trading pair, we can set η to a larger value and a 
larger α can be chosen to reduce the switching frequency further. It is 
advisable to adjust η and α based on the validation set to achieve the 
highest return in actual trading. In this paper, we have chosen η = 0.2 
and α = 0.3 after testing against all validation sets to standardize the 
model effects and enable comparisons. 

5. Conclusions 

This paper presents a two-level framework for improving pair 
trading strategies by utilizing the EOC for pair selection and MADDPG 
method for trade thresholds setting. The effectiveness of our proposed 
approach is demonstrated through multiple simulation in the Chinese 
futures market. 

The issue of varying returns for the same trading pairs at different 
time periods in pairs trading strategies is addressed. Our simulations 
show that using DQN to select pairs at a fixed time interval results in a 
50% improvement in average CR compared to Static-AVG method. 
However, the duration of better performance is not fixed. To overcome 
this limitation, we introduce an EOC approach that allows the agent to 
learn the termination function and determine when to close the current 
pair. This approach leads to a further 23% increase in CR compared to 
the DQN method. 

Additionally, we employ the MADDPG method to select thresholds 
based on previous studies, which takes advantage of communication 
cooperation among multiple agents to enhance gains. This approach 
outperforms the DQN method with a 5%–15% improvement in CR. 

Finally, we combine both methods to improve the pairs trading 
strategy from both sides simultaneously. When compared with the 
highest CR in Static methods, there is a 29% improvement in CR, and a 
16% improvement compared to the DQN method. 

Two areas for future improvement are proposed. First, providing a 
more stable representation of the state by utilizing better feature se-
lection or extraction methods to better understand the complex market 
environment. Second, we suggest that our proposed EOC approach can 
be applied to a wider range of strategy selection problems, although 
further validation simulations are necessary. 

Fig. 12. The effect of the value of η on the termination probability.  
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