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ABSTRACT
A few years ago, Dinur and Nissim (PODS, 2003) proposed
an algorithm for breaking database privacy when statistical
queries are answered with a perturbation error of magni-
tude o(

√
n) for a database of size n. This negative result

is very strong in the sense that it completely reconstructs
Ω(n) data bits with an algorithm that is simple, uses ran-
dom queries, and does not put any restriction on the per-
turbation other than its magnitude. Their algorithm works
for a model where the database consists of bits, and the sta-
tistical queries asked by the adversary are sum queries for a
subset of locations.

In this paper we extend the attack to work for much more
general settings in terms of the type of statistical query al-
lowed, the database domain, and the general tradeoff be-
tween perturbation and privacy. Specifically, we prove:

• For queries of the type
∑n
i=1 φixi where φi are i.i.d. and

with a finite third moment and positive variance (this
includes as a special case the sum queries of Dinur-
Nissim and several subsequent extensions), we prove
that the quadratic relation between the perturbation
and what the adversary can reconstruct holds even for
smaller perturbations, and even for a larger data do-
main. If φi is Gaussian, Poissonian, or bounded and
of positive variance, this holds for arbitrary data do-
mains and perturbation; for other φi this holds as long
as the domain is not too large and the perturbation is
not too small.

• A positive result showing that for a sum query the
negative result mentioned above is tight. Specifically,
we build a distribution on bit databases and an an-
swering algorithm such that any adversary who wants
to recover a little more than the negative result above
allows, will not succeed except with negligible proba-
bility.

• We consider a richer class of summation queries, fo-
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cusing on databases representing graphs, where each
entry is an edge, and the query is a structural function
of a subgraph. We show an attack that recovers a big
portion of the graph edges, as long as the graph and
the function satisfy certain properties.

The attacking algorithms in both our negative results are
straight-forward extensions of the Dinur-Nissim attack, based
on asking φ-weighted queries or queries choosing a subgraph
uniformly at random. The novelty of our work is in the anal-
ysis, showing that this simple attack is much more powerful
than was previously known, as well as pointing to possi-
ble limits of this approach and putting forth new applica-
tion domains such as graph problems (which may occur in
social networks, Internet graphs, etc). These results may
find applications not only for breaking privacy, but also in
the positive direction, for recovering complicated structure
information using inaccurate estimates about its substruc-
tures.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Error Control
Codes; H.2.8 [Database Applications]: Statistical Databases;
G.3 [Probability and Statistics]: Probabilistic Algorithms

General Terms
Algorithms, Theory

Keywords
Data Privacy, Graph Privacy, Statistical Databases, Statis-
tical Attacks, Blatant non-privacy

1. INTRODUCTION
Private data analysis aims to provide statistical informa-

tion about the database while maintaining privacy of the
records. Motivating applications abound, including settings
where each database record contains medical, financial, or
other private information of an individual. An emerging
application domain that has received far less attention, is
one where the database corresponds to a graph (say a so-
cial, wireless, or wired network graph) that one would like
to compute statistics on, while maintaining some privacy of
the topology. Typical examples of statistical information
that may be provided include approximate sums (e.g., for
counting or averaging), distribution parameters, histograms,
etc.
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A seminal paper by Dinur and Nissim [DN03] initiated
a theoretically sound study of reasonable notions support-
ing both privacy and utility, followed by a large body of
work (cf., [DMNS06, Dwo06, DKM+06a, Dwo07, Dwo09,
Dwo10, DNPR10, Yek10, DNP+10, NST10, BN10, MM10,
GLM+10, GLM+09, MM09, HT10]) addressing definitions,
possibility, and impossibility results in different settings.
The typical model (and the one that we use here), is one
where the database is represented by a string d = d1, . . . , dn
held by a curator, who answers user queries using a mech-
anism A which first computes the correct answer, and then
adds a perturbation according to some distribution (such a
mechanism is indeed often used in practice).

The community has converged on the notion of differen-
tial privacy [DMNS06] as the right privacy notion for de-
signing mechanisms balancing privacy and utility. However,
in this paper we focus on attacks that violate privacy in a
very strong way (beyond just violating differential privacy),
following the approach introduced by [DN03] and described
below. In this model, the attacker uses perturbated answers
to queries on a database d to come up with another database
x, such that with overwhelming probability, x is the same
as the original d for a huge fraction of the entries. This is
clearly not private for any reasonable notion of privacy, and
is commonly referred to as “blatantly non-private”. For the
rest of the paper, this is what we will mean when we refer to
breaking privacy (or “reconstructing all but a small fraction
of entries”).

The Dinur-Nissim Attack.
Dinur and Nissim [DN03] considered a database d ∈ {0, 1}n

consisting of bits, and sum queries, where the query is given
in the form of a subset of indices, and the answer is the
(perturbed) sum of data bits in those locations. They proved
that if a mechanism A uses a perturbation whose magnitude
is bounded by o(

√
n)), then there is an efficient adversary

that for every given σ > 0 can ask a polynomial number of
queries and then reconstruct all but σn bits of the database
with overwhelming probability. Specifically, the adversary’s
queries are simply uniformly chosen random subsets, which
we will denote

∑n
i=1 φidi (“φ-weighted sums”), where each

φi is chosen independently and uniformly from {0, 1}. The
output x is computed by solving the resulting linear pro-
gram, and rounding each entry to {0, 1}. We will refer to
this as the DN attack. The proof relies on a “disqualifying
lemma” that shows that this solution, with overwhelming
probability, must agree with the original data d on all but
an arbitrarily small linear fraction of entries. We discuss
various extensions of the DN attack and other related work
in Section 1.3.

1.1 Motivation and Goals
The main goal of our paper is to extend the DN attack to

work for a wider variety of settings, focusing on the following
aspects.

Queries: We want to extend the attack to other queries
beyond the ones considered before, since in different appli-
cation domains different statistical information about the
data may be obtainable. It is arguably not reasonable to as-
sume that the adversary has complete control over exactly
which queries he may obtain answers to; in fact, in some
cases the adversary may have no control whatsoever, and
the information is just published by the curator using some

distribution. The more flexibility there is regarding what
type and distribution of queries are needed in order for the
attack to succeed, the stronger the attack is.

Data domain: The DN attack and its extensions were
analyzed for binary databases, where each entry is a bit.
It is not hard to extend the attack to work for databases
where each entry is taken from some constant size domain.
We want to support larger domains (ideally, exponential size
domains such as arbitrary polynomial-size strings, but it is
not even clear how to extend the analysis of previous work
for a polynomial size domain).

Tradeoff between perturbation and privacy compro-
mise: The quadratic relation between the magnitude of
the perturbation ε(n) = o(h(n)) and what the attack can
reconstruct (all but O(h2(n)) entries) was proven in [DN03]
for h(n) = o(

√
n). For a larger perturbation Ω(

√
n) this re-

lation is vacuously true, and in fact [DN03] show that in this
case a reasonable notion of privacy can be achieved (as fur-
ther developed in subsequent work to differential privacy).
However, it is interesting to consider what happens if we
allow smaller perturbations – can the attack be extended to
reveal even more than a linear fraction of elements in the
database? This question is especially relevant if one views
this not as an attack, but as a way to recover data from
noisy information, where a very small perturbation may be
likely. This quadratic relation is indeed proved to hold for a
specific type of queries in [DMT07] (see Section 1.3), but it
is not clear how to extend their analysis (or the analysis of
[DN03]) to handle random sum queries or other φ-weighted
sum queries for smaller perturbations.

1.2 Our Results
We significantly extend the applicability of the DN at-

tack along the fronts discussed above, in two settings. First,
we consider more general φ-weighted sum queries, with a
wider range of possible domains and perturbations. Second,
we consider more complex summation queries, motivated by
graph privacy applications. We prove both our attacks, as
well as proving a positive result indicating the tightness of
our first result. We provide more detail on each of these
results below. The attacking algorithms in both our nega-
tive results are straight-forward extensions of the DN attack,
asking simple randomized queries; we view this as a virtue of
the attacks. The technical novelty of our work is in the anal-
ysis, showing that this simple attack is much more powerful
than was previously known.

Our proof follows the same structure as [DN03], relying on
a “disqualifying lemma” to prove that the rounded solution
to the linear program agrees with the original database in
many entries. However, [DN03] uses the Azuma inequal-
ity to prove their disqualifying lemma for random sums,
while we have more general queries (including unbounded
and non-i.i.d. summations), for which their techniques do
not go through. Thus, we use (for different results) the Cen-
tral Limit Theorem, utilizing a non-uniform version of the
Berry-Esseen inequality [NT07] and a martingale version of
Azuma’s inequality.

We note that, although we present our results from the
perspective of a privacy-breaking attack, they may also find
applications in the positive direction, for recovering data
from noisy information. This direction seems particularly
promising in the context of structural databases such as
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graphs, where inaccurate information about substructures
may be locally obtained, and used to deduce global infor-
mation.

1.2.1 φ-weighted Sum Queries for Statistical
Databases

A Negative Result. Consider the setting where each
data element is taken from the domain {0, 1, . . . , g(n)} and
queries are of the form

∑n
i=1 φidi. Further consider any

mechanism that adds a perturbation bounded by some ε(n) =
o(h(n)) for some h(n). We prove that in this setting there
is an efficient algorithm that can recover all but O(h2(n))
entries, as long as either:

• φi are i.i.d. with a positive variance and a finite third

moment, and g(n) = o(n−
1
3 h(n)); or

• φi are i.i.d. random variables that are Gaussian, Pois-
sonian, or bounded and with a positive variance.

Note that the second result holds for arbitrary size domains
(even exponential) and a more limited class of φ, while the
first result has more general φ, but holds only as long as
the domain is not too large and the perturbation is not too
small.1

We can use the first result to obtain separate generaliza-
tions of the DN attack to a larger domain or a smaller pertur-
bation: Taking a binary {0, 1} database gives the quadratic

tradeoff as long as the perturbation satisfies h(n) = ω(n
1
3 ).

Taking h(n) =
√
n gives the quadratic tradeoff as long as

the domain satisfies g(n) = o(n
1
6 ). We can also use the first

result to simultaneously improve both, recovering all but a
sublinear number of entries, each taken from a sublinear size
domain.

A Positive Result for Sums. We provide a positive re-
sult for sum queries showing that, roughly, for any given per-

turbation o(h(n)), the attacker cannot recover n− o(h
2(n)

logn
)

bits, except with negligible probability. This matches the
negative result above (recovering n − O(h2(n)) bits) up to
a logarithmic factor. Specifically, we build a distribution
on bit databases and an answering mechanism for which we
prove that no non-adaptive adversary can break the bound
except with negligible probability. This holds for any non-
adaptive adversary (even a computationally unbounded one)
who asks polynomially many queries.

We emphasize that this positive result serves to show our
negative result is tight, and not as a claim of privacy. In-
deed, showing that blatant-non-privacy doesn’t hold does
not preclude other (possibly weaker) types of privacy viola-
tions.

Note that this result is in a different direction from the
tightness result shown in [DN03]. They show that increas-
ing the perturbation to Ω(

√
n) will no longer let the attacker

recover information as in their original attack. We show that
for any perturbation in our range (o(

√
n) or lower) the adver-

sary cannot recover any more than what our attack recovers.

1.2.2 Graph Databases

1We do not know whether this lower bound on the size of
the perturbation is inherent, or just a technical obstacle that
can be overcome with a better analysis.

For the φ-weighted query setting considered so far, each
element was selected according to some distribution φi in-
dependently of other elements. We now turn our attention
to more complex queries, that may depend on structural
properties and connections among the data elements. A
particular motivation for us are graph databases, where the
detailed topology of the graph should remain private, but
some information about the graph may be released

We consider a setting where the query is a subset of in-
dices, and the answer is (a perturbation of) some function
h on the collection of all these entries together. In the most
general form, our results can be presented as some condi-
tions on this answer function h and the underlying data,
such that an adaptation of the DN attack recovers most of
the original data. However, we will present our results in a
more narrow form, for reasons of readability and motivation
(we mention several generalizations later in the paper). In
particular, we will focus on databases representing graphs,
and consider summation queries, where the entries included
in the sum depend on the global structure of the graph. It
is interesting to explore additional instantiations (for graphs
and maybe also for other types of databases) where privacy
is important and our conditions hold.

Let Gb (the “base graph”) be an undirected public graph
with m edges. We will consider a database of size m, where
each entry is a (secret) weight of the corresponding edge. We
will discuss only binary databases (weights of 0 or 1), but
all our results can be readily extended for constant weights.
We will denote by Ga the subgraph2 of Gb obtained by con-
sidering only edges of weight 1. The graph Ga is the private
information the adversary is trying to reconstruct. Intu-
itively, Gb represents what the adversary knows about the
underlying graph (if he knows nothing, we can take Gb to be
the complete graph), while which edge weights are non-zero
(Ga) is what he is trying to find out.

The answer to a query consisting of a subset S is com-
puted as follows. First, take the corresponding subgraph
GS and apply to it some (public) selection function Λ which
selects which edges from GS will participate in the sum. Im-
portantly, Λ may select edges based on the structural prop-
erties of the graph (e.g., select only edges that are part of
a 4-clique in the subgraph). Now, the (exact) answer is a
function h which sums up, for all edges selected by Λ, some
function f of their weights. That is, h(GS) =

∑
f(w(ei))

where ei are the edges selected by Λ and w(ei) are their
weights. The mechanism then adds a perturbation bounded
by o(

√
m) and outputs.

For this setting we prove that there is an efficient attack
that asks uniformly random subgraph queries, and recon-
struct a big portion of the data (weights), if the following
conditions on h and the graph hold. (See later in the paper
for more accurate statements).

• h is “not too sensitive”: for any two data vectors v1, v2

that are close, |h(v1)− h(v2)| is not too big. We have
two such requirements for different notions of close-
ness, and an h that satisfies both of them is called
gradual.

• h is “sensitive enough”: recall that h is defined as the
sum of a function f applied to the weight of each in-

2All subgraphs in this paper are weak-subgraphs generated
by the given edges, as opposed to (node-) induced subgraphs.
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cluded edge. We require f to be sensitive, defined as
having a slope that is bounded away from zero.

• Most edges in the graph are “not too sensitive” with
respect to G, Λ, and h. This is a technical condition
which very roughly says that, for most edges e, we
want there to be a positive probability η that for a
random subgraph GS containing e, e is what we call
(GS ,Λ)-active, which means: (1) Λ selects e to count
towards the sum in h; and (2) removing e from GS will
not change which of the remaining edges are selected
by Λ. Finally, this positive probability η should satisfy
some equation in relation to sensitivity parameters of
h.

Depending on the underlying structure of Gb and the func-
tions h we are interested in, these conditions may or may not
be satisfied, and may or may not be easy to check. We note
that even when the conditions are hard to check, the at-
tack can be applied, and the resulting reconstructed data
has the guarantee that if the conditions happen to hold,
then it agrees with the original graph database for a linear
fraction of the entries. Our work is just a first step in this
domain, and gives rise to several interesting open problems;
in particular, identifying graph related problems where our
conditions can be satisfied and that arise naturally (either in
privacy-related settings, or in settings where we try to learn
information about a graph).

To give a flavor of the scenarios where our attack can be
mounted, consider the following example. Recall that an
edge e in a graph is called a bridge if its removal increases
the number of connected components in the graph. Con-
sider a model where the answer to a query (subgraph) is
the (perturbed) sum of weights for all the bridges in that
subgraph. Let m be the length of the shortest cycle of the
database graph G, let M be the length of the longest cycle
in this graph, and assume that m ≥ 3. Then as long as

each edge in the graph is in no more than 2
m
2

−2
√
M

cycles, all

our conditions hold, and the adversary can reveal almost all
weights of the edges in G. (See Section 3 for further details
and other examples).

1.3 Related Work
The problem of releasing database statistics while pre-

serving privacy has received much attention due to its fast-
growing applicability and importance. Work on this topic
dates back at least to the 80’s (e.g., [DD82]), as well as more
recent work such as [AS00, KMN05, NMK+06, DKM+06b,
AFK+10] and many others.

Not many models where graph queries are considered were
analyzed so far, and to our knowledge, our paper is the first
one providing an attack (blatant non-privacy) in this set-
ting. Among privacy papers with ”graph-database” model
we should mention the very recent work of Gupta, Roth,
and Ullman [GRU11], which addresses differential privacy
of graph cuts. Roughly, each query can be identified with
some subset of the vertices of the graph and an exact answer
to that query is the cut induced by this subset; [GRU11] pro-
vide new algorithms solving the problem of approximately
releasing the cut function of a graph while preserving dif-
ferential privacy. It would be interesting to investigate how
(and weather) our techniques can be applied to show a match-

ing lower bound in the form of blatant non-privacy for this
cut problem.3

There were several works extending the DN attack
[DMNS06, DMT07, DY08, HT10, KRSU10], showing lower
bounds on the perturbation necessary for certain databases,
query functions and certain notions of privacy. Of most rel-
evance for us is the attack of Dwork, McSherry and Tal-
war [DMT07], who show (among other things) that the
quadratic relation between the perturbation and the number
of entries that can be reconstructed holds in general for three
types of attack queries of the form

∑n
i=1 φidi where φi are

i.i.d.: either chosen uniformly at random from {−1, 0, 1},
from {−1, 1}, or chosen according to a Gaussian distribu-
tion with mean 0. (Recall that the DN attack can also be
cast using these “φ-weighted sum” queries, where each φi is
chosen uniformly at random from {0, 1}, corresponding to
sums over random subsets). It is not clear how to extend
the analysis of [DMT07] to apply to the setting of [DN03]
or more general φ-hiding queries for smaller perturbations
or polynomial size domains (which is one of our results).

Dwork and Yekhanin [DY08] use Fourier analysis to ex-
tend the DN attack to use fewer sum queries (O(n) instead
of O(n log2(n))) which are deterministic. Kasiviswanathan,
Rudelson, Smith and Ullman [KRSU10] consider a database
where each entry consists of several attributes (rather than a
bit), and where each query is related to the so-called contin-
gency table for a subset of attributes. They provide several
types of lower bounds for this setting. The model in which
a perturbated contingency table is released is very natural
and has lots of applications. However, trying to compare
to our results, it is not clear whether this model can be pa-
rameterized by some function φ fitting our conditions (i.e.,
finite third moment and positive variance) to obtain sim-
ilar results for smaller perturbation error regimes.We also
note that our approach uses much less advanced mathemat-
ical machinery than [KRSU10]. While [KRSU10] motivates
models with queries of non-independent coefficients, they do
not consider a graph database model and graph queries.

We note that while the original [DN03] attack is strictly a
special case of ours, this is not so for follow up works such as
[DMT07, DY08], who extend the DN attack on other fronts
(e.g., allowing a small fraction of answers with unbounded
perturbation, or optimizing the number of queries needed for
the attack). On the other hand, our proofs do not require the
heavy mathematical machinery utilized by [DMT07, DY08].

Finally, in a recent work (and independent of our own),
Merener [Mer10] used similar mathematical tools (Berry-
Esseen inequalities) to extend the DN attack. However, he
focused on the analysis of the relation between the pertur-
bation error added and the complexity of the adversary. He
gave a formula for the number of queries used by the adver-
sary as a function of the perturbation error. He considered
databases with binary and real values from some bounded
set. The database-access scheme he considered is similar to
the one described in Dinur-Nissim paper. In contrast, we
do not focus much on the complexity of the adversary. Our
main goal is to prove that if the perturbation error is small
enough the adversary can reveal much more than a linear

3We have not considered this yet, as we just found out about
this work very recently. However, it seems that our theorems
will not apply as-is, but that our techniques can potentially
be used to directly attack this setting.
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number of entries. Moreover, we consider database-access
schemes using more complex functions defined on graphs.

2. RESULTS FOR φ-WEIGHTED QUERIES
In this section we describe our results for general φ-weighted

sum queries, extended data domains and perturbations.

2.1 A Negative Result for Larger Domains and
Smaller Perturbation Errors

Consider database vector d of length n, having entries
from the set {0, 1, 2, ..., g(n)}. The database mechanism,
given any query of the form q = {φ1, φ2, ..., φn}, calculates∑n
i=1 φidi and adds some perturbation error of magnitude

o(h(n)) for some h(n) (we often require h(n) to be bounded
from above by O(

√
n), because for a larger h(n) the attack

holds vacuously in a meaningless way, recovering all but n of
the bits). Here φi’s are independent copies of some random
variable φ of positive variance and finite third moment. We
give an efficient attack algorithm that allows to reveal all but
h2(n) entries of a database with overwhelming probability
(1− neg(n)).

Definition 1. We say that a random variable φ is pri-
mal if it is Gaussian, Poissonian or bounded and of positive
variance.

Theorem 1. Let φ be a random variable of positive vari-
ance and finite third moment. If the database domain is of
the form {0, 1, 2, ..., g(n)}, perturbation error ε = o(h(n))

for some h(n) = O(
√
n) and g(n) = o(n−

1
3 h(n)), then there

is an efficient algorithm using O(n log2(n)) φ-weighted sum
queries and revealing all but h2(n) entries of a database with
probability (1-neg(n)). Moreover, if φ is primal the above
holds for arbitrary g(n).

Plugging in g(n) = 1 for the first, and h(n) =
√
n for the

second, we obtain the following corollaries.

Corollary 1. For a random variable φ of positive vari-
ance and finite third moment and a perturbation error ε =

o(h(n)) for h(n) = O(
√
n) such that: h(n) = ω(n

1
3 ) there

exists an efficient algorithm using φ-weighted sum queries
and revealing all but h2(n) bits with probability (1-neg(n)),
where neg(n) is some negligible function of n. Moreover, if
φ is primal this holds for arbitrary h(n).

Corollary 2. For a random variable φ of positive vari-
ance and finite third moment, any fixed σ > 0, perturbation

error ε = o(
√
n) and g(n) = o(n

1
6 ) there exists an efficient

algorithm using φ-weighted sum queries and revealing all but
σn entries with probability (1-neg(n)), where neg(n) is some
negligible function of n. Moreover, if φ is primal this holds
for arbitrary g(n).

Note that the original DN attack is a special case of both
these corollaries.

The proof of Theorem 1 rests on the following “disqual-
ifying lemma”, which generalizes the [DN03] disqualifying
lemma for sum functions.

Lemma 1 (Disqualifying Lemma). Let φ be a random
variable of finite third moment and positive variance. Let

x, d ∈ [0, 1]n and ε = o(h(n)
g(n)

), where g(n) = o(n−
1
3 h(n)). If

|{i : |xi − di| ≥ 1
3g(n)

}| > h2(n)
n

, then ∃δ > 0 such that for

sufficiently large n we have:

Prq={φ1,φ2,...φn}[|
n∑
i=1

φi(xi − di)| > 2ε+ 1] > δ

Moreover, if φ is primal the inequality above holds for arbi-

trary g(n) (without assuming g(n) = o(n−
1
3 h(n))).

The proof appears in Appendix A.2. The high level idea
is to prove that any vector x with many entries that are
far from the corresponding entries in the database vector
d, will with high probability be “disqualified” by one of the
randomly chosen queries (namely, the answers on d and on
x will be farther than the perturbation bound). Thus, any
solution that “survives” all the queries and answers is with
overwhelming probability very close to d on a large fraction
of entries, and thus will be equal to d on those entries when
rounded.

[DN03] proved their sum-function disqualifying lemma by
using Azuma’s inequality. For our φ-weighted queries where
φ is bounded and of positive variance, we need to use a
stronger version of Azuma’s inequality to prove the lemma.
However, for unbounded variables φ it is not clear how to use
Azuma’s inequality. In our proof we show that as long as we
can prove that some sequence of random variables we define
is uniformly-integrable then our proof goes through. The
sequence is easily uniformly-integrable when φ is Gaussian
or Poissonian, which completes the proof of those special
cases. In the general case, we replace the use of Azuma’s
inequality with the use of the Central Limit Theorem, where
the idea is to approximate the sum of random variables by a
Gaussian. However, we need a good approximation, which
we achieve by using a non-uniform version of the Berry-
Esseen inequality [NT07] instead of the uniform one.

2.2 Positive results
Here we consider only bit databases and sum queries.

From the last section we know that it is possible to ex-
tend the DN attack to smaller perturbation errors. A nat-
ural question is whether the parameters achieved can be
improved, and in particular, whether for any fixed pertur-
bation magnitude we may recover more bits than guaranteed
by our proof. Dinur and Nissim [DN03] obtained some tight-
ness result in their work, from a somewhat different direc-
tion. They considered perturbation error of order o(

√
n) (for

which they reconstruct an arbitrarily large linear fraction of
the database). They then show that if the perturbation or-
der increases a little, it is no longer possible to reveal those
data bits. On the other hand, we do not change the mag-
nitude of the perturbation error. We consider perturbation
error of magnitude E = o(h(n)) for some h(n). If h(n) is
not too small then from Theorem 1 we know that there is an
efficient adversary that reveals all but O(h2(n)) bits. This
adversary is non-adaptive, namely chooses the queries inde-
pendently from the answers he already received. (In fact, the
queries are simply random subsets of {1, 2, 3, ..., n}.) We ask
whether, for the same perturbation magnitude, there is an
attack algorithm that can reconstruct even more bits. Our
next result shows that if the adversary is non-adaptive, he

cannot reconstruct all but o( h
2(n)

log(n)
) bits (namely, our nega-

tive result was tight up to a logarithmic factor).
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Theorem 2. Assume that perturbation error ε of a
database algorithm is of the order o(h(n)), where h(n) =
O(
√
n). Assume that the non-adaptive adversary chose poly-

nomially many sum queries to ask. Then there is a probabil-
ity distribution and an efficient database algorithm A such
that the following holds: if database d was chosen from this

distribution, f(n) = o( h
2(n)

log(n)
), algorithm A was used to add

the perturbation error and f(n) = ω(1) then the adversary
cannot guess all but f(n) bits with probability greater than
negligible.

This result is especially interesting because it does not
bound the adversary to run in a polynomial time. The
only bound put on him is that he can ask only polynomially
many queries. The proof uses some tricky distribution over
databases. We prove that if we choose database using such
a distribution then with probability almost 1 the adversary
won’t be able to reveal sufficiently many bits. To construct
such a distribution we create a special combinatorial pattern
– a family of subsets satisfying some conditions on their
intersections. To prove that such a pattern exists we use
the probabilistic method, namely randomly construct such
a family and prove that with non-zero probability it satisfies
all necessary conditions. The details of the construction can
be found in the full version of the paper.

3. RESULTS FOR GRAPH FUNCTIONS
We now turn to consider more complex query functions.

Although our results can also apply to other functions, we
focus on databases representing graphs, as explained in Sec-
tion 1.2.2.

3.1 Graph model and basic definitions
We consider here an undirected weighted graph G. The

adversary works with a graph with edge weights from the
discrete set {0, 1} (this can be generalized to constant size
domains). The query-function is defined for every weighted
graph G with weights from the interval [0, 1]. We emphasize
here that nonedges are not equivalent to edges with weight 0.
We associate with a weighted graph G the “base graph”Gb
which is the underlying unweighted graph, and the “active
graph” Ga, which is the graph formed by edges of positive
weight. Gb is public, while Ga is not (and this is what
the adversary is trying to recover). We will think of the
database as consisting of m entries, where m is the number
of edges in Gb. Each entry will contain the 0/1 weight of
the corresponding edge. A query is a subset of edges of Gb,
and the exact answer is the value of some function h on the
weighted graph created by this subset of edges. As usual,
a perturbation is added to the output before it is released
(here we will use a perturbation of magnitude o(

√
m))

We consider an output function h that is defined by sum-
ming up

∑
f(we) for some of the edges in the query sub-

set, where we is the weight of the edge e (the value in the
database), and f is some function (e.g., the identity, in which
case we are just summing weights). To determine which
edges e will participate in the sum, we use some selection
function Λ that may depend on the structure of the graph.
Our rigorous results and proof that our attack works effi-
ciently, apply to what we call the basic setting, where Λ
is only allowed to rely on the structure of query subgraph
(which is public, as it is a subgraph of Gb), but is not al-
lowed to depend on the weights. For example, Λ may be

select edges that are bridges in the subgraph (namely edges
whose removal will disconnect the subgraph). The complex
setting is one where Λ is also allowed to depend on the struc-
ture of the hidden Ga. We discuss this setting later.

Notations. The set of all edges of a weighted graph G will
be denoted by E. For a weighted graph G and an edge e we
will denote by G−e the graph obtained by deleting e from G.
For a weighted edge e and a graph G we will denote by G+e
the graph obtained by adding edge e to G. In the analogous
way we define operations: G + E and G − E, where G is a
graph and E is a set of edges. While deleting or adding an
edge we always delete/add weight associated with this edge.
The weight of an edge e will be denoted as we. For the set of
edges q ⊆ E we denote by G|q the subgraph of G obtained by
considering only edges from q. The output of the function
h on a graph G will be denoted as h(G). For Es ⊆ E we
denote by h(Es) the output of h on a graph determined
by the set Es. Let S be a subset of indices of a vector d
representing some graph G. We denote by hd(S) the value
of the function h on the subgraph of a graph represented
by vector d, obtained by choosing edges of G related to the
indices from S. Sometimes we will get rid of d and use shorter
denotation: h(S). Having some fixed graph G for which we
enumerated all m edges we consider values of the function h
on subgraphs of G. Every such subgraph will be denoted by
a vector of length m where we put special symbol · for every
index related to the edge that wasn’t chosen to the subgraph.
We need to extend arithmetical operations on real numbers
to take into account also this new symbol. We assume that
subtracting · from · gives 0. We extend linear order on real
numbers such that · is less than every real number. Denote
Re = R

⋃
{· }.

Definition 2. We say that 2 vectors v1 and v2 of length
m are similar if they have special symbol · on the same en-
tries. Intuitively, they represent subgraphs of the same struc-
ture but possibly different weights on edges.

Definition 3. Function h : Rme → R is called gradual if
it satisfies the following conditions:

• ∃w>0|h(v1) − h(v2)| ≤ w for every two vectors v1, v2

that differ on at most one coordinate

• for every pair of two similar vectors: a = (a1, a2, ..., am),
b = (b1, b2, ..., bm) such that
∀i∈{1,2,...,m}|ai − bi| ≤ 1

m
we have |h(a) − h(b)| =

o(
√
m)

Definition 4. A function f : R → R+ ⋃
{0} is sensitive

if inf∆>0,x
f(x+∆)−f(x)

∆
≥ cf for some cf > 0.

Definition 5. An edge e of a graph G is (G,h,A,B)-
gradual for A,B > 0 if for any subgraph H of the graph
G-e we have:

• h(H + e)− h(H) ≤ B

• h(H + e)− h(H) ≥ −A

Intuitively this definition says that function h is not too
sensitive on the edge e. So the absence of an edge e does not
change much the value of function h.
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Definition 6. We say that a graph is labelled if its ver-
tices have labels (say, 1, . . . , n for an n-vertex graph). We
say two labelled graphs g1, g2 are isomorphic if they are iso-
morphic as unlabeled graphs, and there is an isomorphic em-
bedding that maps vertices of g1 to vertices of g2 with the
same labels (that is, if the isomorphic mapping maintains
both node labels and edge structure).

We say that a labelled graph g is isomorphic to some sub-
graph of labelled graph G if there is a (labelled) subgraph GS
of G such that g and GS are isomorphic (as labelled graphs).

We now define when an edge e is (GS ,Λ)-active for a (pub-
lic) selection function Λ in the general setting of labelled
graphs (we may view unlabeled graphs as a special case).

Definition 7. Take a labelled weighted graph G. Con-
sider unweighted labelled graph Gb. Denote by GSb the set of
all subgraphs of Gb. Consider the function Λ : GSb → ES →
{0, 1} that for every subgraph GS of Gb outputs a function
that maps the set of edges of GS into the binary set {0, 1}.
We call Λ the selecting function because for every edge e
of the subgraph GS it determines whether e is selected (i.e
Λ(GS)(e) = 1) or not.

Whenever Λ(GS)(e) = 1 we say that e is (GS ,Λ)-acceptable.
Denote by A(GS ,Λ) the set of all (GS ,Λ)-acceptable edges.
Whenever we have: A(GS ,Λ) = A(GS − {e},Λ) + {e} for
e ∈ GS we say that an edge e is (GS ,Λ)-active.

In other words, an edge e is (GS ,Λ)-active if it is selected
by Λ (i.e., it is (GS ,Λ)-acceptable), and removing it from
GS will not change which other edges in GS are selected by
Λ.

3.2 Negative Results for Graph Models
We are ready to state our main result of this section (de-

fined for the basic setting which we already explained infor-
mally above). The intuitive meaning of this theorem was
given in the Introduction (Section 1.2.2).

Theorem 3. Let G be some weighted undirected database
graph of m edges with weights taken from the discrete set
{0, 1}. Fix some public sensitive function f and selecting
function Λ. Let h be a gradual function defined such that
the output of h on a subgraph GS is the sum of outputs of
f on the weights of (GS ,Λ)-acceptable edges. Assume each
edge of G is (G, h,A,B)-gradual for some positive constants
A,B. Denote by Pe the conditional probability that e is not
(GS ,Λ)-active in a random subgraph GS of G given that e is
in GS. If for every edge e of a graph G we have: Pe ≤ 1− η
for some η > 0 such that η

1−η > 2(A+B)
cf

then for every

fixed σ > 0 there exists a linear program of polynomial size
that when solved enables the adversary to reveal all but σm
weights of edges of a graph G with probability 1-neg(m) as
long as the perturbation error added by database algorithm
is of the order o(

√
m). Furthermore, this program can be

constructed by the adversary by asking queries choosing uni-
formly at random subgraphs of a given graph.

We discuss applications of the theorem below. We note
that the theorem can be generalized, e.g., by relaxing the
condition that all edges e have a positive probability to be
active, to require this for almost all edges (the price is the
quality of the attack – a slightly smaller, though still linear,
fraction of the entries is revealed). This follows from the

proof of Theorem 3, which is given in the full version of the
paper.

The proof uses an attack similar to the DN attack in that
it consists of polynomially many random subset queries,
and then the resulting program is solved, and the solu-
tion rounded. We prove this by establishing a disqualifying
lemma for a graph model, using a Martingale based version
of Azuma’s inequality. While that proof pertains to the
basic setting, the mathematical machinery that we develop
may be useful for the complex setting as well.

The challenges when moving to the complex setting are
the following. First, once we ask random queries and ob-
tain perturbated answers, the resulting program may not
be solvable in polynomial time. Next, even if we manage
to find a solution (or assume we have access to a solution
oracle), it may be that the solution will in fact not let us
reconstruct the original data. However, if a solution (in the
complex setting) is found, and if it satisfies certain condi-
tions, then it can be rounded and outputted; if it doesn’t
satisfy the conditions, we can iterate again, asking another
set of random queries. If at any point we have a solution
to the program, and the solution satisfies some conditions,
then we can reconstruct most of the original database. This
may be useful for applications where we can prove that a
solution can be found, the condition can be checked, and a
good solution will be arrived after a reasonable number of
iterations. We leave it as an open problem to provide prov-
able solutions for problems in the complex setting (general
classes of such problems, or specific useful instantiations).
For example, it would be interesting to find useful appli-
cations in the complex scenario where the program can be
efficiently solved.

Applications.
Clearly, the sum function (as in the DN attack) is a special

case where Λ always selects every edge (in particular, the
edge selection does not rely on any structural properties).
Of course, the power of this theorem is in allowing structure
dependent queries.

Examples include scenarios in which an entry can con-
tribute to the query result only when it is selected with edges
creating a special configuration. Maybe it is the case that
the publisher of database statistics does not want to give in
the same time information of some special subset of entries
that are crucial from his point of view so he creates for such
a subset a forbidden pattern. It seems that it makes the
goal of the adversary much more difficult. Our result gives
sufficient conditions for a structure of the database graph
that allows to completely break privacy. Moreover, under
those conditions privacy is broken by solving a simple linear
program that is completely analogous to the one used in the
DN attack. Below we give two example application domains
of our result.

Labelled-Graph model.
Consider a setting where the database answering mecha-

nism stores a public finite set of labelled forbidden graphs F ,
each of at least one edge. For each forbidden graph f ∈ F
one of the edges of f is fixed, denote it by e(f). The infor-
mation which edge is fixed is also public. The function h on
input GS outputs the sum of weights of edges that satisfy
the following property:
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There is no isomorphic embedding that maps a
forbidden graph f from F into some subgraph of
GS and e(f) into this edge.

A perturbation error of order o(
√
m) is added (where m is

the number of edges of G, namely the size of the database).
Assume furthermore that each edge of the database graph is
contained in at most A subgraphs of G that are isomorphic
to some graph from F. We need one more condition for each
edge e, namely:

∑
g∈Fe

1

2eg−1
≤ 1− η, (1)

where F e is the set of all subgraphs of G, isomorphic to
some graph from F and containing e, eg is the number of
edges of g and η is chosen such that η

1−η > 2(A+ 1).
In such a scenario for every given σ > 0 there exists effi-

cient algorithm that reveals all but σm edges (weights) of G
with probability 1− neg(m).

Bridge-counter model.
We define h as a function that for a subgraph GS outputs

the sum of weights of all its bridges. We may think about h
as a sum function that takes into consideration only ’impor-
tant edges’ where important are edges that are bridges. As
in the previous case, in order to break the privacy we need
to assume few more things. For each edge e define by Le
the set of all edges e1 such that e and e1 are both edges of
some cycle. We assume that: ∀e|Le| ≤ A for some fixed A.

The last condition that each edge of the graph should
satisfy, analogous to the one from the previous example, is
now of the form: ∑

c∈Ce

1

2|c|−1
≤ 1− η, (2)

where Ce is the set of all cycles of G containing e and once
more η is satisfying: η

1−η > 2(A+ 1).
For such a model, as before, for every given σ > 0 there

exists efficient algorithm that reveals all but σm edges of G
with probability 1-neg(m).

Remark 1. If we denote a girth of a hidden graph by
g then the inequality 2 may be replaced by a stronger one,
namely:

∑
c∈Ce

1
2g−1 ≤ 1− η. So we require each edge e to

be in no more than 2g−1(1− η) cycles of G.

Remark 2. Denote by g the girth of a hidden database
graph and by M the length of the longest cycle. Assume that
g ≥ 3. Then the conditions above may be easily replaced
by a stronger one, namely: each edge of G is in no more

than 2
g
2
−2
√
M

cycles of G. If this condition is satisfied, then the

privacy of a database can be broken.
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APPENDIX
A. RESULTS FOR φ-WEIGHTED QUERIES:

RIGOROUS EXPOSITION AND PROOFS
In this section we consider φ-weighted sum queries, where

the query is defined by a random string {φ1, ..., φn}, where
φi’s are independent copies of some random variable φ. The
exact answer to the query is of the form:

∑n
i=1 φidi (which

as usual will be perturbed by the mechanism). When φ takes
values from the discrete set {v1, ..., vk}, each with the same
probability 1

k
, we call the corresponding query a {v1, ..., vk}-

query. The {0, 1}-query is a sum query. The Gaussian query
is a φ-weighted sum query with φ being a Gaussian random
variable. We assume that φ has finite third moment and
positive variance.

For these queries, we will consider an extension on the DN
attack, showing the quadratic relation holds even for small
perturbations and all but sublinear entries revealed, as well
as for larger domains, where each database entry is taken
from the set {0, 1, 2, ..., g(n)}, where g(n) is some function
of n. The key part of the proof is a modified version of the
so-called disqualifying lemma proposed by Dinur and Nissim
in [DN03]. Before stating it we will describe the algorithm
proposed by Dinur and Nissim and introduce some useful
notation.

A.1 Database model and algorithms breaking
privacy

Definition 8. Let φ be a random variable of finite third
moment and positive variance. Each query is of the form
{φ1, ..., φn}, where φi’s are independent copies of φ and n
is the size of a database. By a database D(d,A, ε, g(n)) we
mean vector d of n entries from a discrete set {0, 1, 2, ...g(n)}
together with the algorithm A, possibly randomized, that given
any query q = {φ1, ..., φn} returns number âq such that:

|âq −
n∑
i=1

φidi| ≤ ε
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Fix some σ > 0. The aim of the adversary is to reveal
all but σn entries of a database. In the following algorithm
we assume that each entry of a database is either 0 or 1 so
this is a special case of our model for g(n)=1. The following
algorithm was proposed by Dinur and Nissim to achieve this
goal for sum queries:

• Let t = cn log2 n for some constant c that depends on
chosen σ. For 1 ≤ j ≤ t choose uniformly at random
qj ⊆ {1, 2, ...n} and get answer âqj from the database
algorithm.

• Solve the following linear program with unknown
c1, ..., cn :

âqj − ε ≤
∑
i∈qj

ci ≤ âqj + ε

0 ≤ ci ≤ 1

for 1 ≤ j ≤ t and 1 ≤ i ≤ n
• Let xi = 1 if ci >

1
2

and xi = 0 otherwise. Output
vector x.

It turns out that as long as ε = o(
√
n) the output vector x

is exactly the same as d on all but σn bits with probability
(1-neg(n)), where neg(n) is some negligible function of n.

Below we give a version of the algorithm for general φ-
weighted sum queries (where φ satisfies the above condi-
tions), a database with domain {0, 1, 2, ...g(n)}, where g(n)
is not necessarily 1, and perturbation error of the magnitude
o(h(n)) for some h(n) = O(

√
n). We call this algorithm -

the extended Dinur-Nissim algorithm:

• Let t = cn log2 n for some big enough constant c ap-
propriately chosen. For 1 ≤ j ≤ t take a query qj =
{φj1, φ

j
2, ...φ

j
n} and get answer âqj from the database

algorithm.

• Solve the following linear program with unknown
c1, ..., cn :

âqj − ε ≤
n∑
i=1

φji ci ≤ âqj + ε

0 ≤ ci ≤ g(n)

for 1 ≤ j ≤ t and 1 ≤ i ≤ n
• ∀i let xi be obtained by rounding ci to the nearest

integer from {0, 1, 2, ...g(n)}. Output vector x.

The proof of the correctness of the first algorithm is based
on the fact that for every vector that differs too much from d
with some probability bounded from below by some constant
greater than 0 the randomly chosen query will disqualify it.
The precise analysis is contained in the so-called disqualify-
ing lemma proposed and proved by Dinur and Nissim in the
same paper. Later we will give our version of the disqualify-
ing lemma that suites the situation when we want to reveal
all but sublinear number of bits, we have larger domains for
database entries and more general queries. As an immediate
corollary we get:

Theorem 1. Let φ be a random variable of positive vari-
ance and finite third moment. If the database domain is of
the form {0, 1, 2, ..., g(n)}, perturbation error ε = o(h(n))

for some h(n) = O(
√
n) and g(n) = o(n−

1
3 h(n)), then there

is an efficient algorithm using φ-weighted sum queries and
revealing all but h2(n) entries of a database with probabil-
ity (1-neg(n)). Moreover, if φ is primal the above holds for
arbitrary g(n).

Plugging in g(n) = 1 gives Corollary 1, generalizing the
DN attack on binary databases to work also for a smaller

perturbation, as long as h(n) = ω(n
1
3 ). Plugging in h(n) =√

n gives Corollary 2, generalizing the DN attack with o(
√
n)

perturbation to work also for a larger domain, as long as

g(n) = o(n
1
6 ).

The reason why Theorem 1 follows from our version of
Disqualifying Lemma lies in the same analysis that was done
by Dinur and Nissim in [DN03] so we skip it.

A.2 Disqualifying lemma for small perturba-
tion errors

In this section we prove the so-called disqualifying lemma
for the case when perturbation error for unscaled vectors is
of the order o(h(n)) for some h(n). We do not assume that
h(n) =

√
n as Dinur and Nissim did. Our result can be

applied for h(n) of order o(
√
n) as long as h(n) is not of ’too

small’ order. In this case the lemma enables us to reveal
much more than all but θn entries for some fixed small θ.
We will use the notation introduced before. Especially, by
ε we denote the perturbation error. By g(n) we denote the
maximal value that database entry can take.

Lemma 1 (Disqualifying Lemma). Let φ be a random
variable of finite third moment and positive variance. Let

x, d ∈ [0, 1]n and ε = o(h(n)
g(n)

), where g(n) = o(n−
1
3 h(n)). If

|{i : |xi − di| ≥ 1
3g(n)

}| > h2(n)
n

, then ∃δ > 0 such that for

sufficiently large n we have:

Prq={φ1,φ2,...φn}[|
n∑
i=1

φi(xi − di)| > 2ε+ 1] > δ

Moreover, if φ is primal the inequality above holds even if

we do not assume that g(n) = o(n−
1
3 h(n)).

Proof. We use the following denotation:

• Let Xi = φi(xi − di). Random variables Xi for i =
1, 2, ...n are independent because φi’s are independent.

• Let Zi = Xi−E(Xi) for i=1,2,...n. So we have: E(Zi) =
0 and V ar(Zi) = V ar(Xi)

• Let X =
∑n
i=1 Xi

• Let Y = (X − EX)2. In particular: EY = V ar(X) =∑n
i=1 V ar(Xi), because Xi are independent r.v

So to prove lemma we only need to prove that: Pr[|X| >
2ε + 1] > c for some positive constant c. We introduce
constant T. Its exact numerical value will be determined
later. Having it, we will consider two cases.

A.2.1 Case 1: |E(X)| ≤ T
√∑n

i=1 V ar(Zi)

In this case we prove that:

Pr[|X − EX| > 2T

√√√√ n∑
i=1

V ar(Zi)] > C

for some positive constant C. This proves lemma because:∑n
i=1 V ar(Zi) ≥ σ h

2(n)

g2(n)
for some σ > 0 and ε = o(h(n)

g(n)
).
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The lower bound on
∑n
i=1 V ar(Zi) is a direct implication of

the fact that V ar(φ) > 0.

We partition the probability space into three regions:

• A = {Y < α
∑n
i=1 V ar(Zi)}

• B = {α
∑n
i=1 V ar(Zi) ≤ Y ≤ β

∑n
i=1 V ar(Zi)}

• C = {Y > β
∑n
i=1 V ar(Zi)},

where constants 0 < α < β will be determined later. Note
that E(Y ) =

∑n
i=1 V ar(Zi).

We have:

E(Y ) = Pr[A]E(Y |A)+Pr[B]E(Y |B)+Pr[C]E(Y |C) (3)

So we obtain:

E(Y ) ≤ α
n∑
i=1

V ar(Zi)+Pr[B]β

n∑
i=1

V ar(Zi)+Pr[C]E(Y |C)

(4)
Later we will prove that for fixed α and β sufficiently large

we have:

Pr[C]E(Y |C) < α

n∑
i=1

V ar(Zi) (5)

Knowing that, we can obtain: Pr[B] ≥ 1−2α
β

> 0 for

α < 1
2

Now, taking: T =
√

α
4

we have:

Pr[|X−EX| > 2T

√√√√ n∑
i=1

V ar(Zi)] = Pr[Y > 4T 2
n∑
i=1

V ar(Zi)]

(6)
Therefore

Pr[|X − EX| > 2T

√√√√ n∑
i=1

V ar(Zi)] ≥ Pr[B] ≥ 1− 2α

β
(7)

So we obtain the inequality we were looking for to com-
plete the proof in this case. The crucial thing now is to ap-
propriately bound expression: Pr[C]E(Y |C) for sufficiently
large β. We need to show that for β large enough we have:

E(Y I{Y > β

n∑
i=1

V ar(Zi)}) < α

n∑
i=1

V ar(Zi) (8)

which is equivalent to:

E(
Y∑n

i=1 V ar(Zi)
I{ Y∑n

i=1 V ar(Zi)
> β}) < α (9)

We introduce the following denotation:

Dn =

∑n
i=1 Zi√∑n

i=1 V ar(Zi)

We would like to prove that: E(D2
nI{D2

n > β}) < α for β
large enough.

Remark 3. For φ being Gaussian or Poissonian each Dn
is also Gaussian or Poissonian. Besides, each has variance
equal to 1 and mean 0. So trivially, for φ being Gaussian
or Poissonian the inequality above is satisfied for β large
enough and we are done.

Assume now that φ is bounded. We will bound the prob-
ability: Pr(|Dn| > c) for some fixed c > 0. We will use the
following version of Azuma’s inequality (see: [She96]):

Lemma 2. Let Mi, i ≥ 1 be a martingale with mean
µ = E[Mi]. Let M0 = µ and suppose that for nonnegative
constants αi, βi, i ≥ 1,

−αi ≤Mi −Mi−1 ≤ βi
. Then for any n ≥ 0, a ≥ 0:

Pr(Mn − µ ≥ a) ≤ exp(− 2a2∑n
i=1(αi + βi)2

)

and

Pr(Mn − µ ≤ −a) ≤ exp(− 2a2∑n
i=1(αi + βi)2

)

We apply lemma 2 to the sequence defined as follows:

• M0 = 0

• Mi =
∑n
i=1 Zi, i = 1, 2, ..., n

It is easy to check that {Mi} is a martingale of mean 0.
We have:

Pr(|Dn| > c) = Pr(|Mn| > c

√√√√ n∑
i=1

V ar(Zi)) (10)

Therefore from the definition of Zi:

Pr(|Dn| > c) = Pr(|Mn| > c
√
V ar(φ)

√√√√ n∑
i=1

(xi − di)2)

(11)
So we can apply lemma 2 to obtain:

Pr(|Dn| > c) ≤ 2exp(−
2c2V ar(φ)

∑n
i=1(xi − di)2∑n

i=1(αi + βi)2
), (12)

where αi = βi = mφ|xi − di| and mφ is an upper bound
on |φ|.

So we have:

Pr(|Dn| > c) ≤ 2exp(−c
2V ar(φ)

2m2
φ

) (13)

We have:

E(D2
nI{D2

n > β}) = βPr[D2
n > β] +

∫ ∞
β

Pr[D2
n > y] dy.

(14)
So using 13, we obtain:

E(D2
nI{D2

n > β}) ≤ 2βe
− βV ar(φ)

2m2
φ +2

∫ ∞
β

e
−V ar(φ)

2m2
φ

y

dy (15)

And this last upper bound on E(D2
nI{D2

n > β}) that
we obtained obviously converges to 0 when β → ∞. So we
proved that for a bounded φ we have: E(D2

nI{D2
n > β}) < α

for β large enough.
From what we said so far we know that if φ is primal then

indeed: E(D2
nI{D2

n > β}) < α for β large enough. However
for a general setting we need a little bit different approach.
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From the equation 14 we see that it suffices to prove that:
βPr[Dn >

√
β],βPr[Dn < −

√
β],

∫∞
β
Pr[Dn >

√
y] dy,∫∞

β
Pr[Dn < −

√
y] dy are all arbitrarily close to 0 when β is

large enough.
To do that, we use Central Limit Theorem, and more pre-

cisely: some version of Berry-Esseen inequality, that will
enable us to make some approximations using Gaussian dis-
tribution.

We use the following lemma (see: [NT07]):

Lemma 3. Let {S1, S2, ...Sn} be a sequence of indepen-
dent random variables with 0 mean, not necessarily iden-
tically distributed, with finite third moment. Assume that∑n
i=1 E(S2

i ) = 1. Define: Wn =
∑n
i=1 Si. Then:

|Pr[Wn ≤ x]− φ(x)| ≤ C1

1 + |x|3
n∑
i=1

E(|Si|3),

for some constant C1 (we can take C1 = 30.84), where
φ(x) = Pr(g ≤ x) and g is a normal distribution with vari-
ance 1 and mean 0.

We can use this lemma taking: Si = Zi√∑n
i=1 V ar(Zi)

. Then

we have: Wn = Dn. It is easy to check that all the conditions
that are required to use lemma 3 are satisfied under such a
choice. In particular, Si chosen in such a way has finite third
moment because φ has finite third moment.

Denote: φ̄(x) = 1− φ(x). From lemma 3 we know that:

|Pr[Dn > x]− φ̄(x)| ≤ C1

1 + |x|3
n∑
i=1

E(
|Zi|3√∑n

i=1 V ar(Zi)
3 )

(16)
We also know that:

E(
|Zi|3√∑n

i=1 V ar(Zi)
3 ) ≤ ρ√

h6(n)

g6(n)

(17)

for some constant ρ.
That is true because supi∈{1,2,...n}E(|Zi|3) is finite and

n∑
i=1

V ar(Zi) ≥ σ
h2(n)

g2(n)

for some constant σ.
As an immediate corollary we have:

n∑
i=1

E|S3
i | = O(

n√
h6(n)

g6(n)

) = o(1) (18)

because of the assumption that we put on g in the state-
ment of the disqualifying lemma. So we have:

βPr[Dn >
√
β] ≤ β(φ̄(

√
β) +

C

1 + β
3
2

) (19)

for some positive constant C.
But it is easy to check that expression on the right, bound-

ing βPr[Dn >
√
β], tends to 0 as β →∞.

So we have:

lim
β→∞

sup
n
βPr[Dn >

√
β] = 0 (20)

Similarly:

lim
β→∞

sup
n
βPr[Dn < −

√
β] = 0 (21)

This inequality can be obtained by taking
Si = − Zi√∑n

i=1 V ar(Zi)
in Berry-Esseen inequality and using

the same trick as before.
We also have:∫ ∞

β

Pr[Dn >
√
y] dy ≤

∫ ∞
β

(φ̄(
√
y) +

C

1 + y
3
2

) dy (22)

And again it is easy to check that expression on the right
above converges to 0 as β →∞.

So we also have:

lim
β→∞

sup
n

∫ ∞
β

Pr[Dn >
√
y] dy = 0 (23)

And by the same analysis we also get:

lim
β→∞

sup
n

∫ ∞
β

Pr[Dn < −
√
y] dy = 0 (24)

Therefore we showed that:

lim
β→∞

sup
n
E(D2

nI{D2
n > β}) = 0 (25)

This is all that we need to prove disqualifying lemma for
the first case. Remember that we haven’t chosen parameter
α yet. So far we only needed: 0 < α < 1

2
. When α is

fixed, parameter T is determined and we have in fact: T =√
α
4

. We will now consider second case when |E(X)| >
T
√∑n

i=1 V ar(Zi). We will finally determine α and, as a
consequence, T.

A.2.2 Case 2: |E(X)| > T
√∑n

i=1 V ar(Zi)

We assume that E(X) > 0. For E(X) < 0 the proof is
analogous. Observe that it is enough to prove that: Pr[(X−
EX) < −γ

√∑n
i=1 V ar(Zi)] < δ for some δ < 1 and 0 < γ <

T . This follows from the fact that ε = o(
√∑n

i=1 V ar(Zi)).
So in fact we’d like to bound: Pr[Dn < −γ]. For φ being
Gaussian or Poissonian, from what we have said so far, each
Dn is also Gaussian or Poissonian with mean 0 and variance
equal to 1. So we are done in this case. For φ being bounded,
using the same analysis as in Case 1, we can easily obtain

for any γ > 0: Pr[Dn < −γ] ≤ exp(− γ
2V ar(φ)

2m2
φ

) < 1. So

we are also done in this case. For the general setting, with
our additional condition on g(n), finding an upper bound for
Pr[Dn < −γ] is easy too. The latter probability is equal to
Pr[−Dn > γ] so we can use Berry-Esseen inequality, taking:
Si = − Zi∑n

i=1 V ar(Zi)
. Thus we obtain:

Pr[Dn < −γ] ≤ φ̄(γ) +
C2

1 + γ3

n∑
i=1

E(|Si|3) (26)

for some constant C2. For g(n) = o(n−
1
3 h(n)) and n suffi-

ciently large, the expression C2
1+γ3

∑n
i=1 E(|Si|3) is arbitrar-

ily small. So taking for example α = 1
3

and γ =
√

1
13

we

can find n0 such that

∀n>n0

C2

1 + γ3

n∑
i=1

E(|Si|3) < φ(γ)
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