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ABSTRACT
When processing massive data sets, a core task is to construct syn-
opses of the data. To be useful, a synopsis data structure should be
easy to construct while also yielding good approximations of the
relevant properties of the data set. A particularly useful class of
synopses are sketches, i.e., those based on linear projections of the
data. These are applicable in many models including various par-
allel, stream, and compressed sensing settings. A rich body of an-
alytic and empirical work exists for sketching numerical data such
as the frequencies of a set of entities. Our work investigates graph
sketching where the graphs of interest encode the relationships be-
tween these entities. The main challenge is to capture this richer
structure and build the necessary synopses with only linear mea-
surements.

In this paper we consider properties of graphs including the size
of the cuts, the distances between nodes, and the prevalence of
dense sub-graphs. Our main result is a sketch-based sparsifier con-
struction: we show that Õ(nε−2) random linear projections of a
graph on n nodes suffice to (1 + ε) approximate all cut values.
Similarly, we show that O(ε−2) linear projections suffice for (addi-
tively) approximating the fraction of induced sub-graphs that match
a given pattern such as a small clique. Finally, for distance estima-
tion we present sketch-based spanner constructions. In this last
result the sketches are adaptive, i.e., the linear projections are per-
formed in a small number of batches where each projection may
be chosen dependent on the outcome of earlier sketches. All of
the above results immediately give rise to data stream algorithms
that also apply to dynamic graph streams where edges are both in-
serted and deleted. The non-adaptive sketches, such as those for
sparsification and subgraphs, give us single-pass algorithms for dis-
tributed data streams with insertion and deletions. The adaptive
sketches can be used to analyze MapReduce algorithms that use a
small number of rounds.
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1. INTRODUCTION
When processing massive data sets, a core task is to construct

synopses of the data. To be useful, a synopsis data structure should
be easy to construct while also yielding good approximations of
the relevant properties of the data set. A particularly useful class
of synopses are sketches, i.e., those based on linear projections
of the data. These are applicable in many settings including var-
ious parallel, stream, and compressed sensing models. There is
a large body of work on sketching numerical data, e.g., finding
heavy hitters and quantiles [10, 13]; estimating norms and support
sizes [32, 33]; and constructing histograms and low-dimensional
approximations [11, 26]. See Cormode [12] for a survey. In this
paper, we design and analyze sketches for graph data.

Massive graphs arise in any application where there is data about
both basic entities and the relationships between these entities, e.g.,
web-pages and hyperlinks between web-pages, IP addresses and
flows between addresses, people and their friendships. Properties
of interest include the distances between nodes of the graph, nat-
ural partitions and the size of cuts, and the prevalence of dense
sub-graphs. Applicable synopses for these properties include span-
ners and sparsifisers. These are sparse (weighted) subgraphs of
the original graph from which properties of the original graph can
be approximated. Both spanners and sparsifiers have been studied
extensively [8, 22, 34]. Our work addresses the problem of con-
structing these synopses for massive graphs. Specifically, we show
how to construct such synopses given only linear projections of the
input graph.

Sketching is naturally connected to dimensionality reduction. For
example, the classic tug-of-war sketch of Alon, Mattias, and Szegedy
[5] is closely related to the Johnson-Lindenstrauss lemma for �2
metric embedding [29]. Our results can similarly be viewed as a
form of linear dimensionality reduction for graphs. For example,
a graph on n nodes is essentially an O(n2) dimensional object.
However, our sparsification result shows that it is possible to lin-
early project the graph into a O(ε−2 · n · polylog n) dimensional
sketch space such that the size of every cut in the graph can still be
approximated up to a (1 + ε) factor from the sketch of the graph.
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1.1 Applications of Sketches
One of the main motivations for our work was to design algo-

rithms for processing dynamic graph streams. A dynamic graph
stream consists of a sequence of updates to a graph, i.e., edges
are added and removed. The goal is to compute properties of this
evolving graph without storing the entire graph. Sketches are im-
mediately applicable for this task since the linearity of the sketch
ensures that the sketch is updatable with edge deletions canceling
out previously insertions. One proviso is that linear measurements
required in the sketch can themselves be implicitly stored in small
space and constructed when required. The sketches we design have
this property.

Our sketches are also applicable in the distributed stream model
[15] where the stream is partitioned over multiple locations and
communication between the sites should be minimized. Again this
follows because the linearity of the sketches ensures that by adding
together the sketches of the partial streams, we get the sketch of
the entire stream. More generally, sketches can be applied in any
situation where the data is partitioned between different locations,
e.g., data partitioned between reducer nodes in a MapReduce job
or between different data centers.

1.2 Related Work
There exists a growing body on processing graph streams. In this

setting, an algorithm is presented with a stream of m edges on n
nodes and the goal is to compute properties of the resulting graph
given only sequential access to the stream and limited memory. The
majority of work considers the semi-streaming model in which the
algorithm is permitted O(n polylog n) memory [19, 38]. Recent
results include algorithms for constructing graph sparsifiers [1,35],
spanners [16, 20], matchings [2, 3, 18, 36, 41], and counting small
subgraphs such as triangles [6,9,30]. This includes both single-pass
algorithms and algorithms that take multiple pass over the data. See
McGregor [37] for an overview.

This paper builds upon our earlier work [4] in which we estab-
lished the first results for processing dynamic graph in the semi-
streaming model. In the previous paper we presented sketch-based
algorithms for testing if a graph was connected, k-connected, bi-
partite, and for finding minimum spanning trees and sparsifiers.
We also consider sparsifiers in this paper (in addition to estimat-
ing shortest path distances and the frequency of various subgraphs)
however our earlier results required sketches that were adaptive and
the resulting semi-streaming algorithm used multiple passes. In this
paper we present a single-pass sparsification algorithm. No previ-
ous work on distance estimation addresses the case of edges being
both inserted and deleted. The space/accuracy trade-off of our new
algorithm for counting small subgraphs matches that of the state-
of-the-art result for counting triangles in the insert-only case [9].

This paper also uses several techniques which are standard in
streaming such as hierarchical sampling [23, 28], �0 sampling [21,
31] and sparse recovery [24].

1.3 Our Results and Roadmap
We start in Section 2 with some preliminary definitions and lem-

mas. In the following three sections we present our results.

1. Sparsifiers: Our main result is a sketch-based sparsifier con-
struction: we show that O(ε−2n polylog n) random linear
projections of a graph on n nodes suffice to 1 + ε approxi-
mate all cut values including the minimum cut. This leads to
a one-pass semi-streaming algorithm that constructs a graph
sparsifier in the presence of both edge insertions and dele-
tions. This result improves upon the previous algorithm that

required O(log n) passes [4]. These results are presented in
Section 3.

2. Subgraphs: We show that O(ε−2) linear projections suffice
for approximating the fraction of non-empty sub-graphs that
match a given pattern up to an ε additive term. This leads
to a Õ(ε−2)-space, single-pass algorithm for dynamic graph
streams. In the special case of estimating the number of trian-
gles, the space used by our algorithm matches that required
for the state-of-the-art result in the insert-only data stream
model [9]. We present this result in Section 4.

3. Spanners: In our final section, we consider adaptive sketches.
We say that a sketches scheme is r-adaptive if the linear mea-
surements are performed in r batches where measurements
performed in a given batch may depend on the outcome of
measurements performed in previous batches. We first show
that a simple adaptation of an existing non-streaming algo-
rithm gives rise to a k-adaptive sketch that uses Õ(n1+1/k)
linear measurements that can be used to approximate every
graph distance up to a factor of 2k− 1. This naturally yields
a k-pass, Õ(n1+1/k)-space algorithm. The main result of
this section is our second algorithm in which we reduce the
adaptivity/passes to log k at the expense of increasing the ap-
proximation factor to klog2 5− 1. We present these results in
Section 5.

2. PRELIMINARIES

2.1 Model Definitions
We start with the basic model definitions of a dynamic graph

stream, sketches, and linear measurements.

DEFINITION 1 (DYNAMIC GRAPH STREAM). A stream S =
〈a1, . . . , at〉 where ak ∈ [n]× [n]×{−1, 1} defines a multi-graph
graph G = (V, E) where V = [n] and the multiplicity of an edge
(i, j) equals

A(i, j) = |{k : ak = (i, j, +)}| − |{k : ak = (i, j,−)}| .
We assume that the edge multiplicity is non-negative and that the
graph has no self-loops.

DEFINITION 2 (LINEAR MEASUREMENTS AND SKETCHES).
A linear measurement of a graph is defined by a set of coefficients
c(i, j) for 1 ≤ i < j ≤ n. Given a multi-graph G = (V, E) where
edge (i, j) has multiplicity A(i, j), the evaluation of this measure-
ment is

P
1≤i<j≤n c(i, j)A(i, j). A sketch is a collection of linear

measurements. An r-adaptive sketching scheme is a sequences of r
sketches where the linear measurements performed in the rth sketch
may be chosen based on the outcomes of earlier sketches.

2.2 Graph Definitions and Notation
We denote the shortest path distance between two nodes u, v in

graph G = (V, E) by dG(u, v). We denote the minimum cut of G
by λ(G). For u, v ∈ V , let λu,v(G) denote the minimum u-v cut
in G. Finally, let λA(G) denote the capacity of the cut (A, V \A).

DEFINITION 3 (SPANNERS). Given a graph G = (V, E), we
say that a subgraph H = (V, E′) is an α-spanner for G if

∀u, v ∈ V, dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v) .

DEFINITION 4 (SPARSIFICATION). Given a graph G = (V, E),
we say that a weighted subgraph H = (V, E′, w) is an ε-sparsification
for G if

∀A ⊂ V, (1− ε)λA(G) ≤ λA(H) ≤ (1 + ε)λA(G) .
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2.3 Algorithmic Preliminaries
An important technique used throughout this paper is �0-sampling

[14, 21, 31]. Consider a turnstile stream S = 〈s1, . . . , st〉 where
each si ∈ (ui, Δi) ∈ [n]×R and the aggregate vector x ∈ R

n de-
fined by this stream, i.e., xi =

P
j:uj=i Δi. A δ-error �0-sampler

for x �= 0 returns FAIL with probability at most δ and otherwise
returns (i, xi) where i is drawn uniformly at random from

support(x) = {i : xi �= 0} .

The next lemma is due to Jowhari et al. [31].

THEOREM 2.1 (�0-SAMPLING). There exists a sketch-based
algorithm that performs �0 sampling using O(log2 n log δ−1) space
assuming access to a fully independent random hash function.

While our final results will not make any assumptions about fully
independent hash functions, it will be useful to state the previous
results under this assumption and only address the assumption once
the we have constructed the full algorithm. Another useful result
will be that we can efficiently recover x exactly if x is sparse.

THEOREM 2.2 (SPARSE RECOVERY). There exists a sketch-
based algorithm, k-RECOVERY, that recovers x exactly with high
probability if x has at most k non-zero entries and outputs FAIL
otherwise. The algorithm uses O(k log n) space assuming access
to a fully independent random hash function.

In our previous paper [4], we presented an algorithm that tests
k-connectivity of a graph. In addition to testing k-connectivity, the
algorithm returns a “witness” which will be useful in Section 3.

THEOREM 2.3 (EDGE CONNECTIVITY). There exists a sketch-
based algorithm k-EDGECONNECT that returns a subgraph H with
O(kn) edges such that e ∈ H if e belongs to a cut of size k or less
in the input graph. Assuming access to a fully independent random
hash function, the algorithm runs in O(kn log2 n) space.

3. SPARSIFICATION
In this section we design a linear sketch for graph sparsification.

This yields a single-pass, semi-streaming algorithm for processing
dynamic graphs.

Many sparsification algorithms are based on independently sam-
pling edges based on their connectivity properties [8, 22, 34]. In
particular, we will make use of the following recent result.

THEOREM 3.1 (FUNG ET AL. [22]). Given an undirected un-
weighted graph G, let λe be the size of the minimum u-v cut for
each edge e = (u, v). If we sample each edge e with probability

pe ≥ min{253λ−1
e ε−2 log2 n, 1}

and assign weight 1/pe to sampled edges, then the resulting graph
is an ε-sparsification of G with high probability.

The challenges in performing such sampling in a dynamic graph
stream are numerous. Even sampling a random edge is non-trivial
since the selected edge may be subsequently removed from the
graph. We solve this problem using random hash functions to en-
sure a consistent sampling process. However, there are two major
complications that we need to overcome if we want our algorithm
to run in a single pass and use small space.

• First, the sampling probability of an edge can be computed
only after analyzing the entire graph stream. Unfortunately,
at this point it is too late to actually sample the edges. To

overcome this we develop an approach that will allow us to
simultaneously sample edges and estimate sample properties.
We present a basic version of our technique in Section 3.2.
We then bootstrap the process to develop a more efficient
construction in Section 3.3.

• Second, the random hash function being used for the con-
sistent hashing needs to be stored in Õ(n) space. However,
such a random hash function cannot guarantee the full in-
dependence between random variables which is required for
Lemma 3.1 and Theorem 3.1. We will use Nisan’s pseudo-
random generator [39] which produces a random bits that
are indistinguishable to an algorithm that uses a small space,
along the same lines as Indyk [27]. In the next three sections,
we will assume a random oracle that facilitates full indepen-
dence. In Section 3.4, we remove this assumption and detail
the application of Nisan’s pseudorandom generator.

3.1 Warm-up: Minimum Cut
To warm up, we start with a one-pass semi-streaming algorithm,

MINCUT, for the minimum cut problem. This will introduce some
the ideas used in the subsequent sections on sparsification. The
algorithm is based on Karger’s Uniform Sampling Lemma [34].

LEMMA 3.1 (UNIFORM SAMPLING). Given an undirected un-
weighted graph G, let λ be the minimum cut value. If we sample
each edge with probability

p ≥ min{6λ−1ε−2 log n, 1}
and assign weight 1/p to sampled edges, then the resulting graph
is an ε-sparsification of G with high probability.

See Fig. 1 for our Minimum Cut Algorithm. The algorithm gen-
erates a sequence of graphs G = G0 ⊇ G1 ⊇ G2 ⊇ . . . where
Gi is formed by independently removing each edge in Gi−1 with
probability 1/2. Simultaneously we use k-EDGECONNECT to con-
struct a sequence of graphs H0, H1, H2, . . . where Hi contains all
edges in Gi that participate in a cut of size k or less. The idea is
that if i is not too large, λ(G) can be approximated via λ(Gi) and
if λ(Gi) ≤ k then λ(Gi) can be calculated from Hi.

THEOREM 3.2. Assuming access to fully independent random
hash functions, there exists a single-pass, O(ε−2n log4 n)-space
algorithm that (1 + ε)-approximates the minimum cut in the dy-
namic graph stream model.

PROOF. If a cut in Gi has less than k edges that cross the cut, the
witness contains all such edges. On the other hand, if a cut value
is larger than k, the witness contains at least k edges that cross the
cut. Therefore, if Gi is not k-edge-connected, we can correctly find
a minimum cut in Gi using the corresponding witness.

Let λ(G) be the minimum cut size of G and let

i∗ =

—
log max

j
1,

λε2

6 log n

ff�
.

For i ≤ i∗, the edge weights in Gi are all 2i and therefore Gi

approximates all the cut values in G w.h.p. by Lemma 3.1. There-
fore, if MINCUT returns a minimum cut from Gi with i ≤ i∗, the
returned cut is a (1 + ε)-approximation.

By Chernoff bound, the number of edges in Gi∗ that crosses
the minimum cut of G is O(ε−2 log n) ≤ k with high probabil-
ity. Hence, MINCUT terminates at i ≤ i∗ and returns a (1 + ε)-
approximation minimum cut with high probability.
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Algorithm MINCUT

1. For i ∈ {1, . . . , 2 log n}, let hi : E → {0, 1} be a uniform hash function.

2. For i ∈ {0, 1, . . . , 2 log n},
(a) Let Gi be the subgraph of G containing edges e such that

Q
j≤i hj(e) = 1.

(b) Let Hi ← k-EDGECONNECT(Gi) for k = O(ε−2 log n)

3. Return 2jλ(Hj) where j = min{i : λ(Hi) < k}

Figure 1: Minimum Cut Algorithm. Steps 1 and 2 are performed together in a single pass. Step 3 is performed in post-processing.

Algorithm SIMPLE-SPARSIFICATION

1. For i ∈ {1, . . . , 2 log n}, let hi : E → {0, 1} be a uniform hash function.

2. For i ∈ {0, 1, . . . , 2 log n},
(a) Let Gi be the subgraph of G containing edges e such that

Q
j≤i hj(e) = 1.

(b) Let Hi ← k-EDGECONNECT(Gi) for k = O(ε−2 log2 n).

3. For each edge e = (u, v), find j = min{i : λe(Hi) < k}. If e ∈ Hj , add e to the sparsifier with weight 2j .

Figure 2: Simple Sparsification Algorithm. Steps 1 and 2 are performed in a single pass. Step 3 is performed in post-processing.

3.2 A Simple Sparsification
See Fig. 2 for a simple Sparsification Algorithm. The algorithm

extends the Min-Cut Algorithm by taking into account the connec-
tivity of different edges.

LEMMA 3.2. Assuming access to fully independent random hash
functions, SIMPLE-SPARSIFICATION uses O(ε−2n log5 n) space
and the number of edges in the sparsification is O(ε−2n log3 n).

PROOF. Each of the O(log n) instance of k-EDGECONNECT

runs in O(kn log2 n) space. Hence, the total space used by the
algorithm is O(ε−2n log5 n). Since the total number of edges re-
turned is O(kn log n), the number of edges in the sparsification is
also bounded by O(ε−2n log3 n).

As mentioned earlier, the analysis of our sparsification result
uses a modification of Theorem 3.1 that arises from the fact that
we will not be able to independently sample each edge. The proof
of Theorem 3.1 is based on the following version of the Chernoff
bound.

LEMMA 3.3 (FUNG ET AL. [22]). Consider any subset C of
edges of unweighted edges, where each edge e ∈ C is sampled
independently with probability pe for some pe ∈ (0, 1] and given
weight 1/pe if selected in the sample. Let the random variable Xe

denote the weight of edges e in the sample; if e is not selected, then
Xe = 0. Then, for any p ≤ pe for all edges e, any ε ∈ (0, 1], and
any N ≥ |C|, the following bound holds:

P

"˛̨̨
˛̨X
e∈C

Xe − |C|
˛̨̨
˛̨ ≥ εN

#
< 2 exp(−0.38ε2pN) .

We will need to prove an analogous lemma for our sampling
procedure. Consider the SIMPLE-SPARSIFICATION algorithm as
a sampling process that determines the edge weight in the spar-
sification. Initially, the edge weights are all 1. For each round
i = 1, 2, . . . if an edge e is not k-connected in Gi−1, we freeze the

edge weight. For an edges e that is not frozen, we sample the edge
with probability 1/2. If the edge is sampled, we double the edge
weight and otherwise, we assign weight 0 to the edge.

DEFINITION 5. Let Xe,i be random variables that represent
the edge weight of e at round i and let Xe be the final edge weight
of e. Let pe = min

˘
253λ−1

e ε−2 log2 n, 1
¯

where λe is the edge-
connectivity of e and let p′

e = min {4pe, 1}. Let Be be the event
that the edge weight of e is not frozen until round log 1/p′

e� and
let BC = ∪e∈CBe for a set C of edges.

In the above process, freezing an edge weight at round i is equiv-
alent to sampling an edge with probability 1/2i−1. We will use
Azuma’s inequality, which is an exponentially decaying tail in-
equality for dependent random process, instead of Lemma 3.3.

LEMMA 3.4 (AZUMA’S INEQUALITY). A sequence of random
variables X1, X2, X3, . . . is called a martingale if for all i ≥ 1,

E [Xi+1|Xi] = Xi.

If |Xi+1 −Xi| ≤ ci almost surely for all i, then

P [|Xn −X1| ≥ t] < 2 exp(−t2/2
X

i

c2
i ).

We prove the following lemma which is identical to Theorem 3.3
if no bad event Be occurs.

LEMMA 3.5. Let C be a set of edges. For any p ≤ pe for all
e ∈ C and any N ≥ |C|, we have

P

"
¬BC and

˛̨̨
˛̨X
e∈C

Xe − |C|
˛̨̨
˛̨ ≥ εN

#
< 2 exp(−0.38ε2pN) .

PROOF. Suppose that we sample edges one by one and let Yi,j

be the total weight of edges in C after j steps at round i. If Yi,0 ≥
|C|+ εN for any i, we stop the sampling process.
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Algorithm SPARSIFICATION

1. Using SIMPLE-SPARSIFICATION, construct a (1± 1/2)-sparsification H .

2. For i ∈ {1, . . . , 2 log n}, let hi : E → {0, 1} be a uniform hash function.

3. For i ∈ {0, 1, . . . , 2 log n},
(a) Let Gi be the subgraph of G containing edges e such that

Q
j≤i hj(e) = 1.

(b) For each u ∈ V , compute k-RECOVERY (xu,i) for k = O(ε−2 log2 n) where xu,i ∈ {−1, 0, 1}(V
2) with entries

xu,i[v, w] =

8><
>:

1 if u = v and (v, w) ∈ Gi

−1 if u = w and (v, w) ∈ Gi

0 otherwise

. (1)

4. Let T = (V, ET , w) be the Gomory-Hu tree of H and for each edge e ∈ ET ,

(a) Let C be the cut induced by e and let w(e) be the weight of the cut.

(b) Let j =
¨
log(max{w(e)ε2/ log n, 1})˝

.

(c) k-RECOVERY (
P

u∈A xu,j) returns all the edges in Gj that cross C with high probability.

(d) Let e = (u, v) be a returned edge and f be the minimum weight edge in the u-v path in the Gomory-Hu tree. If f
induces C, include e to the graph sparsification with edge weight 2j .

Figure 3: Better Sparsification Algorithm. Steps 1-3 are performed in a single pass. Step 4 is performed in post-processing.

For each step in round i, we change the edge weight from 2i−1

to either 2i or 0 with equal probability. The expectation of the
edge weight is 2i−1 and therefore, E [Yi,j |Yi,j−1] = Yi,j−1. In
addition, there are at most |C|+εN

2i−1 random variables Yi,j at round i
since otherwise, Yi,0 has to be greater than |C|+εN and we would
have stopped the sampling process. So

X
i′<i

X
j

|Yi′,j − Yi′,j−1|2 ≤
X
i′<i

|C|+ εN

2i′−1
22(i′−1)

=
X
i′<i

2i′−1(|C|+ εN) ≤ 2i+1N .

Now the following inequality follows from Azuma’s inequality.

P [|Yi,0 − |C|| ≥ εN ] < 2 exp

„
− ε2N

2i+2

«

Let i = log max{1/(4p), 1}�. If BC does not occur, Yi,0 =P
e∈C Xe. From the definition of i, i = 0 or 2−(i+2) ≥ 0.38p.

If i = 0, obviously Yi,0 = |C|. If 2−(i+2) ≥ 0.38p, we get the
desired result: P [|Yi,0 − |C|| ≥ εN ] < 2 exp(−0.38ε2pN).

THEOREM 3.3. Assuming access to fully independent random
hash functions, there exists a single-pass, O(ε−2n log5 n)-space
(1+ε)-sparsification algorithm in the dynamic graph stream model.

PROOF. By replacing Theorem 3.3 by Lemma 3.5, we can con-
clude that SPARSIFICATION produces a sparse graph that approxi-
mates every cut with high probability or for some edge e, Be oc-
curs. Consider an edge e = (u, v) and some minimum u-v cut of
cut value λe. For i = log 1/p′

e�, the expected number of edges
in this cut is smaller than k/2 (assuming that we use a sufficiently
large constant to decide k). By the Chernoff bound, e is not k-
connected in Gi with high probability. By union bound, Be do
not occur for all e with high probability and we obtain the desired
result.

3.3 A Better Sparsification
In this section we present a more efficient implementation of

SIMPLE-SPARSIFICATION. See Fig. 3. The idea is to first con-
struct a less accurate “rough" sparsifier that we can use to estimate
the connectivity of an edge. Then, rather than constructing all the
Hi graphs via k-EDGECONNECT, we can use the more efficient
sparse-recovery algorithm k-RECOVERY in combination with the
Gomory-Hu data structure.

1. Rough-Sparsification: We construct a (1±1/2)-sparsification
using the algorithm in the previous section. The goal is to
compute the sampling probability of edges upto a constant
factor.

2. Final-Sparsification: For each edge e = (u, v), we find
a O(1)-approximate minimum u-v cut Ce using the rough
sparsification. Based on the cut value of Ce, we compute a
sampling probability pe of e. Let ie = log 1/pe�. We find
all edges in Gie that cross Ce. If e ∈ Gie , assign weight 2ie

to e and otherwise, assign weight 0 to e.

It is important to note that dividing the process into two steps is
conceptual and that both steps are performed in a single pass over
the stream.

We next discuss finding the cut Ce for each e. Note that the col-
lection of Ce has to be efficiently computable and stored in a small
space. Fortunately, Gomory-Hu tree [25] is such a data structure,
and it can be computed efficiently [40].

DEFINITION 6. A tree T is a Gomory-Hu tree of graph G if for
every pair of vertices u and v in G, the minimum edge weight along
the u-v path in T is equal to the cut value of the minimum u-v cut.

Each edge in the Gomory-Hu tree induces a cut. It is a well-
known fact that the cut value of such a cut is equal to the weight of
the corresponding edge.
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The method for finding the edges across a cut (line 4c) is based
an ideas developed in our previous paper [4]. The definition of xu,i

in Eq. 1 ensures that for any cut (A, V \A),

support(
X
u∈A

xu,i) = EGi(A) ,

where EGi(A) is the set of edges in Gi that cross the cut. Because
k-RECOVERY is a linear sketch, to find EGi(A) (on the assump-
tion there are at most k edges crossing the cuts) it suffices to have
computed k-RECOVERY (xu,i) becauseP

u∈A k-RECOVERY (xu,i)= k-RECOVERY (
P

u∈A xu,i) .

THEOREM 3.4. Assuming access to fully independent random
hash functions, there exists a single-pass, O(n(log5 n+ε−2 log4 n))-
space ε-sparsification algorithm in the dynamic graph stream model.

PROOF. The algorithm can be implemented in one pass. The
sparse-recovery sketches do not require any knowledge of the Gomory-
Hu tree and thus can be constructed in parallel with the rough spar-
sification. The rest of the algorithm is performed in post-processing.

The space required to construct a (1 ± 1/2)-sparsification is
O(n log5 n). The space required for each sampler is O(k log n)
which is O(ε−2 log3 n). Since there are n such samplers per Gi,
the total space required for the samplers is O(ε−2n log4 n). We
obtain the desired space bound by summing up both terms.

3.4 Derandomization
In this section, we prove that we can replace the uniform random

hash function with Nisan’s pseudorandom generator [39]. This can
be viewed as a limited independence style analysis, however this
construction yields the basic result cleanly. Nisan’s pseudorandom
generator has the following property.

THEOREM 3.5 (NISAN [39]). Any randomized algorithm that
runs in S space and using one way access to R random bits may be
converted to an algorithm that uses O(S log R) random bits and
runs in O(S log R) space using a pseudorandom generator.

A pseudorandom generator is different from a hash function that
only one-way read is allowed. If a random bit has been read, it
cannot be read again. So Theorem 3.5 does not apply to the graph
sparsification algorithm as it is. Instead, we rearrange the input
data so that the algorithm read each random bit only once. The
argument was used first in Indyk [27].

Assume that the data stream is sorted, i.e., insertion and dele-
tion operations of the same edge appear consecutively. For each
edge, we generate necessary random bits (which are O(polylog n)
in number) and remember them until all the operations on the edge
are read. In this way, we read each random bit only once and the al-
gorithm still runs in S = Õ(n) space and R is at most polynomial
in n. We apply Theorem 3.5 to the algorithm with the sorted input
stream. The graph sparsification algorithm (with the pseudorandom
generator) succeeds with high probability.

Now note that because the algorithm is sketch-based, the algo-
rithm’s behavior does not change even if we change the order of the
data stream. Therefore, the algorithm succeeds with high probabil-
ity. The same argument also applies to the minimum cut algorithm.
We have the following theorems.

THEOREM 3.6 (VARIANT OF THEOREM 3.2). There exists a
single-pass, O(ε−2n log5 n)-space algorithm that (1+ε)-approximates
the minimum cut in the dynamic graph stream model.

THEOREM 3.7 (VARIANT OF THEOREM 3.4). There exists a
single-pass, O(n(log6 n + ε−2 log5 n))-space ε-sparsification al-
gorithm in the dynamic graph stream model.

3.5 Sparsifying a Weighted Graph

LEMMA 3.6. Let C be a set of edges such that edge weights are
in [1, L]. For any p ≤ pe for all e ∈ C and any N ≥ |C|, we have

P

"
¬BC and

˛̨̨
˛̨X
e∈C

Xe −
X
e∈C

we

˛̨̨
˛̨ ≥ εNL

#
< 2 exp(−0.38ε2pN)

Lemma 3.6 is a variant of Lemma 3.5 where we have a weighted
graph with edge weights in [1, L] rather than an unweighted graph.
The proof of Lemma 3.6 is identical to Lemma 3.5. Lemma 3.6
implies that by increasing sampling probability of edges by factor L
(or equivalently, increasing k by factor L), we have a sparsification
algorithm for a weighted graph with edge weights in [1, L]. This
increases the space requirement and the number of edges in the
graph sparsification.

LEMMA 3.7. There is a semi-streaming sparsification algorithm
that runs in a single pass, O(nL(log6 n + ε−2 log5 n)) space, and
polynomial time in the dynamic graph stream model where edge
weights are in [1, L].

For graphs with polynomial edge weights, we will partition the
input graph into O(log n) subgraphs where edge weights are in
range [1, 2), [2, 4), . . .. We construct a graph sparsification for each
subgraph and merge the graph sparsifications. The merged graph is
a graph sparsification for the input graph. Summarizing, we have
the following theorem:

THEOREM 3.8. There is a semi-streaming sparsification algo-
rithm that runs in a single pass, O(n(log7 n + ε−2 log6 n)) space,
and polynomial time in the dynamic graph stream model where
edge weights are O(poly n).

4. SMALL SUBGRAPHS
In this section, we present sketches for estimating the number

of subgraphs of a graph G that are isomorphic to a given pattern
graph H with k nodes. Specifically we are interested in estimating
the fraction of non-empty induced subgraphs that match H . We
denote this quantity by

γH(G) :=
Number of induced subgraphs in G isomorphic to H

Number of non-empty subgraphs in G of order |H | .

Our result is as follows:

THEOREM 4.1. For a given order-k graph H and an order-n
graph G determined by a dynamic graph stream, it is possible to
approximate γH(G) up to an additive ε term with probability 1− δ

using Õ(ε−2 log δ−1) space.

We assume k is a small constant. In the case when H is a trian-
gle, i.e., a size-3 clique, the above result matches the parameters of
the best known1 algorithm for the insert-only case [9].

The algorithm uses a simple extension of �0 sampling. Given a
vector x = (x1, x2, . . . , xn), the goal of �0 sampling is to return
a pair (i, xi) for an i that is chosen uniformly from {i : xi �= 0},
1Note that Buriol et al. [9] state their result in terms of approx-
imating the number of triangles T3 up to a (1 + ε) factor with
Õ(ε−2(T1 + T2 + T3)/T3) space but the result can equivalently
be stated as an additive ε approximation to T3/(nm) using the fact
that T1 + T2 + T3 = Θ(mn). Note that nm is an upper bound on
the number of non-empty induced subgraphs of size 3.
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1

2

3

5 4

X =

⎛
⎝

1 1 1 0 0 1 1 1 1 1
0 1 0 1 0 0 1 0 0 0
1 1 0 1 0 1 1 0 1 1

⎞
⎠ Squash(X) =

(
5 7 1 6 0 5 7 1 5 5

)

Figure 4: Linearly Encoding Small Subgraphs. See text for description.

i.e., the support set of x. For our application we will consider a
a × b binary matrix X with columns x1, . . . , xb and the goal is to
return (i, xi) where i is chosen uniformly from{i : xi �= 0}, i.e.,
we’re picking a column of X uniformly from the set of non-zero
columns.

This can easily be achieved with the machinery of �0 sampling.
To do this, we encode the binary matrix X as a vector

squash(X) ∈ {0, 1, 2, . . . , 2a−1}b .

Specifically, adding 1 to the (i, j)th entry of X corresponds to
adding 2i to the j entry of squash(X). Then performing �0 sam-
pling of squash(X) returns the encoding of a column picked uni-
formly from the set of all non-zero columns.

The application to finding small subgraphs is as follows. For a
graph G, define the matrix XG ∈ {0, 1}a×b where a =

`
k
2

´
and

b =
`

n
k

´
. The columns of XG correspond to size-k subsets of the

nodes of G and the entries in the column encode the set of edges in
the induced subgraph on the size-k subset.

See Fig. 4 for an example where n = 5 and k = 3. The first
column of X corresponds to the subset of nodes {1, 2, 3} and the
top entry is 1 because the graph G has an edge between node 1 and
2. The non-zero entries in squash(XG) correspond to the num-
ber to the number non-empty induced subgraphs of G. In the case
of triangles, the entries equal to 7 correspond to the induced sub-
graphs which are triangles. More generally, the pattern graph H
will correspond to multiple values AH since each we are interested
in induced subgraphs that are isomorphic to H are there may be
multiple isomorphisms. Therefore, estimating γH(G) is equivalent
to estimating the fraction of non-zero entries that are in AH . By an
application of the Chernoff bound, this can be estimated up to an
additive ε using O(ε−2 log δ−1) samples from the non-zero entries,
i.e., �0-samples from squash(XG).

5. SPANNERS
In this section, we consider the problem of approximating graph

distances via the construction of graph spanners. Several papers
have investigated spanner construction in an insertion-only graph
stream [7, 17, 20]. The best result constructs a (2k − 1)-spanner
using O(n1+1/k) space in a single pass and it is known that this
accuracy/space tradeoff is optimal. All these algorithms are based
on growing shallow trees from a set of randomly-selected nodes.
Unfortunately, this emulating this process is hard in the dynamic
graph setting if we only are permitted one pass over the data.

However, if we may take multiple passes over the stream, it is
straight-forward to emulate these algorithms via the �0-sampling
and sparse-recovery primitives from Section 2. For example, the
Baswana-Sen construction [7] leads to an O(k)-pass (2k − 1)-
spanner construction using O(n1+1/k) space in a dynamic graph
streams. Their construction operates as follows:

• Part 1: Growing Trees. This part consists of k − 1 phases

where at the end of phase i we have constructed a set of
rooted vertex-disjoint trees Ti[v] where v is the root of the
tree and the set of roots is going to be denoted by Si. Each
Ti[v] will have the property that the distance between a leaf
and v is at most i. At the end of phase i there may be many
vertices that are not in a tree.

– First phase: Pick each vertex with probability n−1/k .
Call the selected vertices S1. We will start growing
trees around the selected vertices where the selected
vertices will be the roots of their respective trees. Specif-
ically, if vertex u is adjacent to a selected vertex v add
(u, v) to the tree T1[v]. If u is adjacent to multiple se-
lected vertex, add (u, v) to one of the trees arbitrarily.
If a vertex u is not adjacent to any selected vertex, we
remember the set of incident edges L(u).

– i-th phase: Construct Si from Si−1 by sampling each
vertex with probability n−1/k . For each v ∈ Si ini-
tialize Ti[v] = Ti−1[v]. If u is adjacent to a vertex w
in some tree Ti[v] add (u, w) to Ti[v]. If u is adjacent
to multiple trees, just add u to one of the trees (doesn’t
matter which). Again if a vertex is not adjacent to any
selected tree, then remember the set of incident edges
L(u) where you only store one edge to vertices in the
same Ti−1 tree.

• Part 2: Final Clean Up. Once we have defined Tk−1[v] for
v ∈ Sk−1 (and deleted all vertices not in these trees) let V ′

be the set of vertices in the Tk−1 trees. For each u ∈ V ′

add a single edge to a vertex in some Tk−1[v] if such an edge
exists.

See [7] for a proof of correctness. Note that each phase requires
selecting O(n1/k) edges incident on each node and this can be per-
formed via either sparse recovery of �0 sampling.

5.1 Pass-Efficient Recursive Contraction
The above application of the Baswana-Sen construction gave an

optimum trade-off between space Õ(n1+1/k) and approximation
2k − 1, but used O(k) passes which is less desirable. For exam-
ple, to achieve a semi-streaming space bound, the number of passes
will need to be Ω(log n/ log log n). While this is interesting, it is
natural to ask whether we can produce a spanner in fewer passes.
In what follows, we answer the question in the affirmative and pro-
vide an algorithm that uses log k passes at the expense of a worse
approximation factor.

The idea behind the pass reduction is as follows. In the Baswana-
Sen algorithm we were growing regions of small diameter (at var-
ious granularities) and in each pass we are growing the radius at
most one. Thus the growth of the regions is slow. Moreover in
each of these steps we are using O(n) space (if the graph is dense).
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Yet the space allowed for the vertex is Õ(n1/k) and we expect the
extra space to matter precisely when the graphs are dense! But if
we are growing BFS trees, the extra edges are simply not useful.
We will therefore relax the BFS constraint — this will allow us to
grow the regions faster. The algorithm RECURSECONNECT is as
follows.

1. The algorithm proceeds in phases which correspond to passes
over the stream. In pass i, we construct a graph G̃i which
corresponds to a contraction of the graph G = G̃0; that is,
subsets of vertices of the G have been merged into super-
vertices. This process will proceed recursively and we will
maintain the invariant

|G̃i| ≤ n1−(2i−1)/k .

After log k passes we have a graph of size
√

n and we can
remember the connectivity between every pair of vertices in
O(n) space. We next describe how to construct G̃i+1 from
G̃i.

2. For each vertex in G̃i we sample n2i/k distinct neighbors.2

To do this, for each vertex in G̃i, we independently partition
the vertex set of G̃i into Õ(n2i/k) subsets, and use an �0-
sampler for each partition. This can be achieved in Õ(n1/k)

space per vertex and in total Õ(n1+1/k) space, using the hy-

potheses |G̃i| ≤ n1−(2i−1)/k. Using sparse recovery we can

also find all vertices in G̃i whose degree is at most n2i/k.

3. The set of sampled edges in G̃i gives us a graph Hi. We now
choose a clustering of Hi where the centers of the clusters
are denoted by Ci. Consider the subset Si of vertices of Hi

which have degree at least n2i/k. We will ensure that Ci is
a maximal subset of Si which is independent in H2

i . This
is a standard construction used for the approximate k-center
problem: We start from the set C0

i being an arbitrary ver-
tex in Hi. We repeatedly augment Cj

i to Cj+1
i by adding

vertices which are (i) at distance at least 3 (as measured in
number of hops in Hi) from each vertex in Cj

i . and (ii) have

degree at least n2i/k. Denote the final Cj
i , when we cannot

add any more vertices, as Ci. Observe that

|Ci| ≤ |G̃i|/n2i/k ≤ n1−(2(i+1)−1)/k .

4. For each vertex p ∈ Ci all neighbors of p in Hi are assigned

to p. For each vertex q with degree at least n2i/k in G̃i, if it
is not chosen in Ci, we have a center p in Ci within 2 hops
of q in Hi; then q is assigned to p as well.

5. We now collapse all the vertices assigned to p ∈ Ci into a
single vertex and these |Ci| vertices define G̃i+1.

We now analyze the approximation guarantee of the above algo-
rithm.

LEMMA 5.1. The distance between any pair of adjacent nodes
u, v ∈ G is at most klog2 5 − 1.

PROOF. Define the maximum distance between any u, v which
are in the same collapsed set in G̃i as ai. Note that a1 ≤ 4 since
the clustering C1 has radius 2, and therefore any collapsed pair are
at a distance at most 4. For i > 1 observe that ai+1 ≤ 5ai + 4 and
the result follows.
2Note that nodes in G̃i are subsets of the original vertex set.
Vertices p, q in G̃i are neighbors in G̃i if there exists an edge
(u, v) ∈ G such that u ∈ p and v ∈ q .

THEOREM 5.1. RECURSECONNECT constructs a (klog2 5−1)-
spanner in log k passes and Õ(n1+1/k) space.
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