
Aquery to Q Compiler: Optimizations

Jose Cambronero

April 16, 2015

In the following document we describe the main optimizations in the Aquery
to q compiler, along with any algorithms employed.

1 Important semantics

1.1 where-clause

1.1.1 Cross-row dependencies

It is important to note that where clauses in Aquery function differently than
those in traditional SQL. In a traditional SQL query, selections are indepen-
dent across rows, as operations are row-oriented. This means that the order
of selections is irrelevant, and that they can be commuted without any issues.
Indeed, a traditional optimization in a heuristic optimizer might be to take a
conjunction of selections and make it a sequence of selections (reference xxx). add refer-

ence
add refer-
enceMeanwhile, Aquery operations are column-oriented, meaning that the results

of a selection are not necessarily independent across rows. Namely, the use of
an aggregate results in a selection that has cross-row dependencies. Consider:

s e l e c t ∗ from t assuming asc c1 where sums (10)>=10

1.1.2 Selections as sequences

In contrast to SQL, Aquery selections are treated as a sequence of selections to
be applied in a given order. This results in richer expressiveness for selections.
Consider that, if selections are performed as a sequence, then the following 2
queries have quite different meanings:

s e l e c t ∗ from p o r t f o l i o assuming asc data where sums (
volume)>=100 and t i c k e r in (” ibm ” ;” hp”)

s e l e c t ∗ from p o r t f o l i o assuming asc data where t i c k e r in
(” ibm ” ;” hp”) and sums (volume)>=100

The first returns transactions associated with ibm and hp stock after our
portfolio had a cumulative size of 100 or greater. The second returns ibm and
hp transactions after our purchases of ibm and hp stock cumulatively equaled
100 or more.

The only exception to treating selections as a sequence are any equality
selections associated with an implicit join, which are extracted during the opti-
mization process. We define these to be solely of the form

1

Table1.column_nameX = Table2.column_nameY

Given that it is the use of aggregates that results in cross-row dependencies,
selections that take place between the use of aggregates can be safely commuted.
Meaning, if we have si...snA1sj ...sm, where A1 is an aggregate selection, then
we are free to rearrange si through sn, apply those selections, then applying A1,
and then rearranging the remaining selections as we wish and then applying.

2 Main Optimizations

2.1 cross products to equijoins

If the query provided by the user has any cross-products, we scan the selections
in the where clause for any selection that can be used as an implicit join clause.
These are extracted and used to transform the cross-product into an equijoin
on that selection.

2.2 Picking implicit joins

Joins explicitly provided by the user are executed as provided. Meaning, if
the user provides (A inner join B) inner join C we perform the joins as
instructed. However, for implicit joins, we apply a heuristic to attempt to find
the most favorable equijoin. Given that this optimization is done at translation
time, and we don’t have access to table information (as the tables might exists
outside of the Aquery environment), we create a heuristic that chooses crosses
that result in the largest number of equality selections being applied to that
join. The heuristic is based on the strong assumption that a larger number of
equality selections is associated with a larger reduction in cardinality overall.

2.3 selection pushing

If the query’s from clause features joins/cross-products, we automatically push
down any equality selections as far as possible (i.e. the deepest node in the
query plan that has all the tables necessary for the selection). Selections that
are not equality-based, become part of new type of logical query plan node called
poss push filter, short for possible push. These nodes are placed right above
the deepest join involving the necessary tables. During code generation, these
nodes are used to create 2 possible branches. If the tables join clause for the
tables involves columns that have indices that can be taken advantage of, we
join first and then apply the selections stored at the poss push filter node. If
there are no indices involved, we push down those selections to the appropriate
tables prior to joining.

2.4 sorting necessary columns

Rather than sort the entire table, we limit ourselves to sorting only those
columns that require order, given the operations that are performed on them
and any interactions with other columns.

2

3 Implementations

3.1 Sorting columns

Identifying columns that need sorting in an order-dependent Aquery expression
requires a bit of work. The algorithm below addresses one possible way of doing
this.

3.1.1 Example Expression

We take as an example the following expression, which we assume must be
executed as one (i.e. we can not first execute order independent parts).

max(c1,c2), max(c2 + c3) * first(c3)

We assume c1,c2,c3 are all columns. Notice how the only order dependent
operation is first(c3). However, given that we sort c3 for this, we need to
sort c2 due to c2+c3 and for similar reasons we need to sort c1. The algorithm
below finds all such columns.

3.1.2 AST Representation

Below an AST representation of this expression, which informs the algorithm
below.

Bottom up order dependency information is shown in color, green is order-
independent, red order-dependent. Note that this reflects information as we
build the tree up, so e.g first(c1) would display c1 as order independent, but
the node calling first on c1 as order dependent.

E

E

max +

c1 c2

E

*

E

max +

c2 c3

E

first +

c3 c4

3.1.3 Identifying columns to sort

Below our approach to identifying these columns that need to be sorted.

1 − c r e a t e an empty l i s t S and an empty l i s t o f l i s t s P
2 − During DFS t r a v e r s a l , f o r any subt ree annotated as

order−dependent , add any column names encountered
u n t i l we encounter an order−independent operator (e . g .
max/sum)

3 − Any columns encountered in an order−independent
subt ree are c o l l e c t e d bottom−up as a l i s t and added to
P upon encounter ing an order−independent operator

3

4 − Once we are done with our DFS, we perform the
f o l l o w i n g f ixed−po int a lgor i thm :

added = 1
whi le (added) {

f o r (p in P) {
i f (any column in p i s in L)
{

add p to L ;
remove p from P;
added = 1

}
}

}

3.2 Optimizing from clauses

We note that given the semantics of Aquery’s where clauses, optimization of the
from clause requires various careful steps.

Given a from clause , and a where c l a u s e :
1 − s p l i t i n to a l i s t the from c l a u s e at every cros s−

product operator , c a l l i n g t h i s the s p l i t−from− l i s t
2 − Extract any i m p l i c i t j o i n c l a u s e s from the where

c lause , c a l l t h i s j o i n c l a u s e s and remaining
other c lause s

3 − S p l i t o ther c lause s in to 2 based on the index o f the
f i r s t order−dependent s e l e c t i o n , c a l l the se o i c l au s e s
and od clauses

4 − S p l i t o i c l au s e s in to 2 based on the f i r s t use o f an
aggregate , c a l l the se no agg clauses and agg c lauses

5 − Group no agg clauses in to 2 : those i n v o l v i n g columns
with no c l e a r t a b l e r e f e r e n c e (i . e . they are not o f
the form A. x) , c a l l the se known clauses and
unknown clauses

6 − S p l i t the known clauses in to e q u a l i t y s e l e c t i o n s and
not , c a l l the se e q f i l t e r s and non eq f i l t e r s

6 − Given the s p l i t−from−c l a u s e l i s t , the j o i n f i l t e r s ,
and the e q f i l t e r s , s e l e c t the bes t j o i n s g iven the
h e u r i s t i c , push e q f i l t e r s down as appropr ia t e

7 − After a l l j o i n i n g nece s sa ry has been arranged in the
tree , push down non eq f i l t e r s (which get p laced above

j o i n s as p o s s i b l e pushes to perform based on index
presence)

8 − Apply unknown clauses
8 − Apply agg c lauses
9 − Perform s o r t i n g a n a l y s i s and apply od clauses

Below an outline of the join heuristic.

max ct = 0

4

f o r on clause in j o i n f i l t e r s :
f o r l e f t in sp l i t f r om l i s t :

f o r r i g h t in sp l i t f r om l i s t :
i f (l e f t > r i g h t) :
i f (j o i n po s s i b l e (l e f t , r i ght , on clause)) :

c t = c t e q f i l t e r s (l e f t , r i ght , f i l t e r s)
i f (c t > max ct) :

chosen l e f t = l e f t
chosen r ight = r i gh t
max ct = ct

This returns the nodes that we should cross at each step. We remove both left and
right from the list of nodes we have, and we create a new node that joins them based
on the relevant condition and add this node to the list, so that it is available for the
next iteration.

5

	Important semantics
	where-clause
	Cross-row dependencies
	Selections as sequences

	Main Optimizations
	cross products to equijoins
	Picking implicit joins
	selection pushing
	sorting necessary columns

	Implementations
	Sorting columns
	Example Expression
	AST Representation
	Identifying columns to sort

	Optimizing from clauses

