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Abstract. We describe a model of computation similar to Probabilistic Finite

Automata in which computation is carried out solely using toehold-mediated
strand displacement kinetics in DNA complexes. The model’s computation

proceeds autonomously by repetitively pouring in just one mixture of ”clock”

strands, and exhibits both synchronized and asynchronous (parallel) compu-
tation. We show that this model is capable of accurately solving problems like

deciding if an input DNA contains certain sequences, the choice of sequences

determined by a boolean logic formulae, or adding two binary-encoded num-
bers. Furthermore, we have developed code to ”compile” an abstract descrip-

tion of the constituent DNA domains in a mixture to the exact sequences and
complexes required to carry out the computation, as well as simulate the pro-

gression of the experiment, so verification is possible prior to executing the

actual computation in a test tube.
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Preface

The interest in chemical computation stems from its intellectual appeal and
practical potential. As a conceptual framework, many models of computation, no-
tions of computability and languages for expressing algorithms ranging from the
well-known such as Automata and Turing Machines to the less familiar Petri Nets,
Vector Addition Systems, General Recursive Functions and so on have been ex-
plored. As is common in algebraic research, it is the equivalence between them
that often highlights properties of both that are less obvious when inspecting just
one or the other. As the inspiration for each model is often rooted in different phys-
ical underpinnings, intuition from one implementation may enlighten us about the
other. DNA is the quintessential information-carrying molecule, and as such it is
very interesting to try to find a model of computation that uses nucleic acids as sub-
strates. Attempts at basing computation on DNA as a substrate naturally borrow
much from accomplished implementations of electronic computation devices such
as logical gates or analog circuits, and in our work we borrow from the concepts
of a procedural programming language and a clocked computer, but the beauty of
the stochastic and parallel nature of millions of chemical reactions taking place in
a tube enriches the model.

As a pragmatic research interest, DNA computation has the potential to be-
come a key component of site-specific therapy, with drugs that can be administered
systematically but act only in the correct circumstances in vivo [10], or detect
one of several causes of a symptom and address the specific problem in each case.
While we do not yet have a complete implementation ready for human consumption
right now, the recent advances in molecular computing, and specifically the ones
involving DNA are highly likely to be the bases of such future remedies.

Nimrod Priell
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CHAPTER 1

Introduction

1.1. Clocked DNA Computing

We summarize the results of the work by Chang and Shasha on a clocked model
of DNA computation [3]. They suggest a model of a stored program, based on
several ”stacks” (complexes of DNA strands) containing sequences of ”instructions”
(DNA strands with a specified sequence). These instructions detach from the stack
sequentially, thereby freeing them to interact with other constituents of the solution
they’re immersed in, as a result of a reaction with two unique ”clock” strands
- which act as a fuel driving the computation. The evidence of the advantage
of clocked computation and procedural programming surrounds us, as it had a
marked effect on the advance of computing from its early, mechanical calculator
days. In the context of chemical computation, a stored, clocked program has two
major advantages. First, it significantly simplifies the experimental procedure by
requiring only the pouring of two clock strands to drive computation, rather than
many different kinds of inputs corresponding to the transitions necessary at every
step of the computation. Second, it enables the sort of advantages that procedural
programming offers in branch predication, iterative structures and function calls,
for which synchronous operations are essential.

1.1.1. The DNA. A DNA strand is a linear polymer composed of 4 different
types of bases, Adenine, Cytosine, Guanine or Thymine, denoted by the first letter
of their name. The strand is directional, with one end called the 5′ end and the
other the 3′ end, so when we write down a sequence, such as ATTCGG we mean
the molecule has Adenine at its 5′ end and Guanine at its 3′ end. This description
of a DNA strand as a sequence of bases is its primary structure. DNA strands can
combine by anti-parallel complementation where consecutive bases in one strand
pair up with consecutive bases in another strand that is oriented with reverse direc-
tionality, according to Watson-Crick pairing (A with T, C with G). This is referred
to as hybridization, and gives DNA molecules their secondary structure as they
can bend around and pair up with other sections of their own sequence (forming
loops of various kinds), or they can pair with another, separate strand and form
DNA complexes. The clocked DNA stored program model extensively uses these
complexes, but does not use loops at any point. A specific sequence appearing in
a strand is called a domain. We can then abstract away from the specific sequence
and simply say a certain strand includes the domains a followed by b, whatever the
sequences a and b stand for.

DNA is ideally suited for chemical computations for many reasons: It is very
stable under a wide range of conditions (in terms of temperature and pressure)
with which running experiments is comfortable and easy, it is relatively cheap to
obtain in any form, sequence or quantity, its kinetics and thermodynamics have been

1



2 1. INTRODUCTION

researched and modeled accurately for well over 20 years, and most importantly, its
sequence-based nature allows us to achieve a wide range of kinetics and specified
interactions that are required to ensure the computation progresses as intended
with very high probability.

Figure 1.1. A two-instruction stack, containing instructions a fol-
lowed by b, in an unpseudoknotted polymer graph notation[6]. α and
β constitute the ”glue” strand that binds instructions together, and a
star denotes complementation. In solution, the complex is linear, and
has a protruding α region (”sticky end”) to which a ‘tick’ instruction
can bind.

In our model, an instruction, which we can represent by a label (e.g out of
a, b, c, . . .), is a single-stranded DNA composed of a sequence of nucleotides followed
by a shorter sequence (at the 3’ end of the strand), shared by all instructions, which
is responsible for binding the instruction as part of an instruction stack. A stack
is a DNA complex, consisting of several instructions, bound together using short
strands which bind to the sequences at the end of instructions, as in Figure 1.1.

A procedure for creating these stacks efficiently has been developed and de-
scribed by Aidan Daly in [3]. Once made, a stack can be “executed”, or unwound,
by pouring in ‘tick’ and ‘tock’ strands, which complement the stack binding strands
described above. The sequences for ‘tick’ and ‘tock’ are generated in a way that
ensures they will not bind to any other instruction, and provide the desired kinetics.
This is done automatically in the compiler we describe in the following chapters,
using NUPACK software [26].
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Figure 1.2a. The stack complex as in Figure 1.1, and the equivalent linear diagram,
representing the binding of stacks as it is schematically in the solution. The cycle diagrams
are generated automatically for arbitrary stacks by the code we provide as part of our
clocked DNA compiler. Complementation in cycle diagrams is denoted with a star here,
i.e ᾱ = α∗.



4 1. INTRODUCTION

Figure 1.2b. After adding a ‘tick’ strand (blue here), it binds to the free α toehold at
the start of a stack (green).
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Figure 1.2c. Utilizing strand displacement, the ‘tick’ strand (blue) binds preferentially
to the ‘anti-tick’ binding region (green).
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Figure 1.2d. The completely bound ‘tick’-‘anti-tick’ complex is removed from the dia-
gram as it can no longer further react. The β-complementary region of the first instruction
in the stack, a (red), is free to bind to an incoming ‘tock’ strand.
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Figure 1.2e. The ‘tock’ strand (blue) hybridizes partially with the β∗ toehold on the
instruction a (red).
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Figure 1.2f. Utilizing the same strand displacement mechanisms, the ‘tock’ strand
(blue) binds fully to the instruction (red), leaving the stack one instruction shorter but at
the same state as (1), and the instruction a free of the stack, available for reaction with
other constituents of the solution.
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1.2. Gated stacks

A solution may contain large quantities of stack complexes, and we will be
able to pour in ‘tick’ and ‘tock’ strands (henceforth referred to as clock strands)
at quantities only approximately equal to the number of stacks. Because of that
and because of the underlying stochastic nature of the chemical process, we cannot
assume exactly one instruction will be released off the top of each stack every
time we pour in clock strands. Hence, every time a stack contains more than a
single instruction, and clock strands are added to the mixture, we must assume
some stacks will very likely unwind a little or not at all while others may unwind
all the way. These stacks which release more than one instruction are known as
runaway stacks. They will not constitute the majority of stacks, because the rates
of reaction are such that operating on available instructions at the tops of stacks
is favorable to unwinding the same stack twice. Nevertheless, runaway stacks will
certainly occur. The rates of reaction and resulting distribution of stack unwinding
states is discussed further in chapter 3. However, Chang and Shasha also describe a
stack gating mechanism which can be used for synchronizing the execution so that
instructions are not released before we intend them to [3].

A gated stack contains one or several additional strands, preceding its instruc-
tions, bound to the stack in a way that prevents the clock strands from unwinding
it. The only way to unwind a gated stack is by first removing the gates using their
complementary sequences. The chemical reaction is a strand displacement reaction,
similar to the one used for unwinding the stack. In this manner, one gate may be
removed at a time. The gate strands may be designed to complement any specified
sequence we desire, and are oriented so that they may hybridize with free instruc-
tions in the solution. Thus we establish a means of ensuring a stack will unwind
only once its gates are removed (gates must be removed in sequence), and thereby
allow stack unwinding to occur uninhibited only for ungated stacks. By combining
several different stacks (i.e containing different gates and different instructions) in a
mixture, and using the reaction kinetics of strand displacement, we can ensure the
process proceeds in the intended order with very high probability [27]. Hence, we
have a general mechanism for synchronous and asynchronous computation taking
place solely using DNA.

Furthermore, this system is capable of storing programs and executing them by
the simple addition of the same DNA strands into a mixture repetitively, and can
be efficiently simulated to ensure that proper results will be achieved in vitro as
they do in silica. In essence, this gives us a simple model with which to think about
the sort of constructs found in procedural programming languages on a computer
and recreate them in DNA.

In the following chapters we discuss several such programs in length. However,
to give the reader an example to motivate the discussion, we consider the following
problem: Suppose we have a fluorescent red marker (denoted R), and a fluorescent
green marker (denoted G), which we can detect in the solution. Once activated,
they flash momentarily, and consequently turn off. Suppose also that there is a
single-stranded DNA segment in the solution, perhaps from a bacteria or virus,
and we wish to detect if it is one of 4 possible types: a, b, c or d. This is a simple
variation of a classic logic riddle. One possible solution could be summarized in the
following logic (see Figure 1.3 below.)
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Figure 1.3. A simplified gated stack model for differentiating between
4 domains. The constituents of the solution are denoted in brackets. The
experiment progresses by following the steps in the top-right square.
The table at the bottom-right section indicates the output: Seeing two
red flashes, for instance, corresponds to the unknown strand having the
sequence d.

In a first set of stacks, we have 4 stacks. Two stacks, one gated by the ā
domain complementary to the a strand, and one by the b̄ complementary to the
b strand, release the green fluorescent molecule. The two other stacks, gated by c̄
and d̄ respectively, release the red fluorescent molecule. In a second set of stacks,
ā and c̄ each gate a stack releasing the green fluorescent molecule, while the b̄ and
d̄ domains gate a stack with the red fluorescent molecule.

We now have a coding scheme by which, we can attach a sequence of lights
to the domain that had to be in the mixture to trigger it. If we see a green light
followed by a red light, for instance, we know the sequence labeled a must have
been the one in the solution.

The importance of the gates in this example is twofold. First, they have a
branching function: We receive different outputs for different inputs because the
gates only allow the correct stacks to unwind. Second, it synchronizes the steps of
computation: We can ensure that only the first set of stacks is free to react during
the first stage, and the second set of stacks will only come into play after we had
the chance to measure the effect of the first set in isolation.

1.3. Existing work

We compare our model to outstanding work done with chemical computation,
specifically using DNA as a substrate, in the past two decades. A general form of
computation with DNA is afforded by programming finite automata using cleav-
age and ligation proteins[2]. Solutions to classes of problems such as boolean logic
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3-SAT [15] or directed hamiltonian paths [1] have been worked out. An electrical-
engineering influenced framework for creating both logic circuit and analog circuit
equivalents with DNA had also seen significant developments [7] [25]. Using restric-
tion enzymes, DNA programs capable of answering some queries by propositional
logic deductions have been proposed [19]. Controlled self-replication leading to
computation by a model like cell automata [17] and several general frameworks for
Turing-complete computation by utilizing chemical reactions with differing rates
have been described [12] [14] [24]. A primary inspiration for our work here has
been the general computability (Turing completeness) of Stochastic Chemical Re-
action Networks (SCRNs) proved by Winfree,[24]. His work demonstrates how
DNA strands of specific lengths can serve as the chemical compounds demanded by
these SCRNs, using toehold-mediated strand displacement kinetics as the reactions
taking place in the network [20].

Compared to the work reviewed above, our model possesses two important
properties. First, it can be applied to a wide range of problems solvable by a
finite stochastic automaton. Second, it is very specific in that it prescribes the
exact nucleotide sequences and required complexes as well as the progression of the
computation and expected yield, using our compiler. It also enjoys an important
practical advantage: Computation is based solely on DNA molecules, which are
relatively cheap and easy to obtain, are stable for long durations of time under
standard conditions and can be used in conditions mimicking a living cell.





CHAPTER 2

Chemical underpinnings

2.1. Introduction

Computation can be viewed as a discrete process – a sequence of steps – in
which initial data is being transformed according to some rules, until it reaches
an end state, the result of the calculation. These transformations occur either
autonomously or as a result of some external stimuli (input). Upon completion,
the output must be extracted by some means. In this chapter we will review each
of these components in the context of our model.

In our model, states of the computation are described by the molecules con-
tained in a dilute solution under constant temperature and pressure conditions. The
number of molecules used is assumed to be sufficiently large so that the thermody-
namic limit equilibrium is reached and small-population effects can be neglected.
Each state transition corresponds to pouring more DNA strands into the mixture:
Either clock strands or input molecules containing one or several labeled domains.
We then need to consider both the kinetics of the transition and its thermodynam-
ics. The kinetics govern how new species are generated as a result of interactions
between the molecules already in the solution and the input molecules, while the
thermodynamics govern the new equilibrium reached.

2.2. Thermodynamics

The thermodynamics are derived from knowing the free energies of the dif-
ferent possible complexes and the partition function. The change in free energy
between two single stranded DNA molecules and their hybridized, double-stranded
DNA complex has been found empirically to be accurately modeled by the nearest-
neighbour formula [18],

(2.1) ∆G◦total =

n∑
i=1

∆G◦(pi) + ∆G◦init(p1)

Where p1, . . . , pn are pairs of neighhboring bases on each strand (e.g AG pairing
with CT) and ∆G◦init is an extra term affected only by the first, or initiating, base
pair (which is either A pairing with T or C pairing with G). The key here is that
there are no long-distance effects or length-dependent effects on the change in free
energy: All that matters are the pairing bases and their immediate downstream
neighbors. Values for the enthalpy change ∆H◦ and entropy change ∆S◦ for the
ten possible nearest neighbor pairs and the initiation factor have been empirically
found for 37◦C and are presented in SantaLucia’s paper[18]. ∆G◦(pi) can be
derived using ∆G◦ = ∆H◦ − T∆S◦ and extrapolated to other temperatures in a
reasonable range where we do not expect the heat capacity Cp of the strands to
change much. Another term can treat solutions in which the salt concentration is

13



14 2. CHEMICAL UNDERPINNINGS

other than 1M NaCl, but we refer the interested reader to the original paper [18]
for further details, whereas we just outline the use of these formulas in our model.

We can now use these Gibbs free energies to calculate the partition function

Q =
∑
Ω

e−∆G(s)/kT

where k is the Bolzmann constant, T is the temperature and we sum over all pos-
sible complex configurations (base pairings) in a complex containing the specified
strands. This can be used to calculate several desired quantities for our simulation
of the computation, such as the probability of a specific configuration, given by

P (Ω) =
e−∆G(Ω)/kT

Q

This can be further used to design sequences that are highly likely to bind to each
other in some predetermined way.

To actually compute the partition function and design the sequences that are
used for the various instructions, clock strands and gates we rely on the NU-
PACK nucleic acid design and analysis software. NUPACK includes algorithms
that comprehensively and precisely model interactions among several DNA or RNA
molecules. However, NUPACK requires that the molecules in a complex be unpseu-
doknotted.

2.2.1. Pseudoknotted Complexes. A complex of DNA strands can be rep-
resented by first ordering the involved DNA strands in some way, and then enu-
merating the bases of all comprising strands in 5’-to-3’ fashion sequentially. For
example, a complex comprising of the two strands 5’-ACCG-3’ and 5’-TTAC-3’ can
be enumerated in the order presented, so the index of the first A will be 1, the
index of the first T will be 5 and the index of the terminal C will be 8. We can
then define the set P of paired bases (i, j) in the complex, where a base pair is
always written with i < j. An unpseudoknotted complex is one that satisfies a
nesting property: ∀ i, j, k, l s.t. (i, j), (k, l) ∈ P, i < k < l < j. A polymer graph is
a representation of the complex with the strands drawn as arrows, pointing to the
3’ end, in a circle. Edges between the arrows represent paired bases. The reader
may refer to Figures 1.1 and 1.2A-F for examples. An ordering of the strands is
derived from this representation.

A complex Ω = {s1, s2, . . . , sk} is connected if it cannot be written as Ω =
Ω1 ∪ Ω2 where Ω1 ∩ Ω2 = ∅, and there are no (i, j) ∈ P with {i, j} ∩ Ω1 6= ∅ and
{i, j} ∩ Ω2 6= ∅. When this property fails to hold, i.e in a disconnected complex, it
means there are Ω1 and Ω2 such that there are no pairs connecting both complexes,
and they can travel separately in the solution. Any unpseudoknotted complex can
be drawn in a polymer graph with no intersecting edges, and if it is also connected,
there is a unique way of doing so, up to rotations. That is the content of Theorem
2.1 (Representation) in Winfree et al. [6]:

Theorem 2.1. For every unpseudoknotted connected secondary structure Ω =
{s1, . . . , sk}, there is exactly one circular permutation π on {1, . . . , k} that yields a
polymer graph with no crossing lines.

We further note that for complexes without the nesting property, any ordering
of the strands will yield a graph with intersecting edges.
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It is key, then, that we demonstrate that at every step, all complexes involved
are unpseudoknotted. Otherwise, we cannot justify using NUPACK’s algorithms
as an accurate calculation of the partition function.

All multi-DNA complexes in our computation fall into these two categories:
They consist of either a stack, or a complex resulting from interactions of instruc-
tions with other instructions or input strands. Stacks may be gated, and they may
be in some stage of unwinding, as portrayed in Figures 1.2A-F.

We consider these interactions to be the only ones possible because our com-
piler ensures that all domains comprising either inputs, gates or instructions have
sequences that are distinct from the ones used for clock strands. Furthermore, the
process of stack unwinding is designed so that an instruction is never exposed at the
end of a stack. The physical conformation of the stack complex inhibits any poly-
mer whose length is comparable to the length of an instruction from binding to the
single-stranded “free-hanging” instructions in a stack. As no polymers of shorter
lengths are considered by the compiler in the first place, asides for clock strands
which will not interact with instructions due to their sequences, these sequences run
no risk of creating unwanted reactions. An example of this principle in action can
be portrayed by the following plot, which corresponds to the stack in Figure 1.2a.
In this plot we can see how the nucleotide sequences chosen for the clock strands
and instruction domains create extremely stable stacks. The only probable con-
figuration of the complex is the one we had designed – i.e whose only hybridized
regions are these that bind the stack’s instructions together. These probabilities
are based solely on the free energies of the nucleotide sequences and do not include
any steric effects.

Taken together, these considerations mean that we can assume stacks interact
only with tick and tock strands, and instructions interact only with other instruc-
tions, gate domains of gated stacks, or input strands. Additionally, our model’s se-
mantics do not allow complicated binding patterns for instructions or input strands
that may result in pseudoknotted complexes, single-stranded loops or multi-strand
constructs: These arise from partial interactions between sequences, whereas our
compiler ensures that every domain is assigned a unique sequence minimizing un-
wanted interactions. The only interaction with significant probability of occurring
is the complete hybridization of a domain with its complement. This always creates
a double-stranded complex that is easily seen to be unpseudoknotted: It contains
only two strands bound over a consecutive sequence of pairs in anti-parallel fashion.
Reading the strands in the ordinary 5′ → 3′ direction, the binding starts from base
i1 on one strand, extending to base j1 on that strand, and from base i2 through to
base j2 on the other strand. Without loss of generality, we can start the enumer-
ation so that i1 is the smallest of the numbers (that is, we may pick for i1 any of
the two strands). Since i1 and j1 are on one strand, and i2 and j2 are on the other,
we have i1 < j1 < i2 < j2. Since DNA strands hybridize in opposite directions,
i1 binds to j2, i1 + 1 to j2 − 1 and so forth until (j1, i2) form a base pair. This is
easily seen to satisfy the nesting property.

In fact, the same principles hold in a stack is throughout its unwinding. This
can be asserted by examining Figure 1.2a which we recommend the reader con-
sult with to clarify the argument: We choose the following ordering for a stack
| a1a2 . . . am: First its instructions in reverse order (am, am−1, . . . , a1), then m+ 1
binding strands consisting of α−β domains (in 5′ → 3′ direction). Each instruction
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consists of its domain (ai) followed by ᾱ − β̄ domains. In terms of domains, this
ordering gives us:

am, ᾱ, β̄, am−1, ᾱ, β̄, . . . , a1, ᾱ, β̄, α, β, α, β, . . . , α, β

In Figure 1.2a this can be witnessed by starting from the instruction b (black) and
proceeding in a clockwise fashion.

The binding of the ᾱ domain in the i’th instruction with the α domain in the
i+1’th binding strand and of the β̄ domain in the i’th instruction with the β domain
in the i’th binding strand completely describes a correct construction of the stack.
This binding pattern includes only nested pairs: The ordering we chose for the
strands means the first ᾱ domain encountered hybridizes with the last α domain,
the following β̄ domain binds to the one-before-last β, which precedes the last α
domain. The following ᾱ domain then binds to the α domain preceding the second-
to-last β domain, and so forth. The anti-parallel binding of DNA means that inside
each domain the nesting property is maintained. This argument is much better
elucidated by looking at the corresponding figure and witnessing no lines cross each
other. It continues to hold true for the rest of the transformations we make to the
complex as we unwind an instruction from it, as well as for domains that unlock the
gates and the stacks they interact with. We do not bother the reader with details
as they require only minor modifications to the general scheme above. It can be
simply stated that all of these transformations on the basic stack structure involve
operations at the deepest nesting level in the list of pairs, and none of them violate
the nesting property. Figures 1.2B-E are examples of how binding is altered at the
deepest level of nesting when clock strands are introduced to unwind a stack.

2.3. Kinetics

The kinetic model we use is that of DNA hybridization and toehold-mediated
strand displacement. These reactions can be accurately controlled so as to virtu-
ally eliminate unwanted reactions, and control the rates of reaction and resulting
equilibrium distributions [27]. This control is exerted by varying the sequences and
the length of the toehold used. A toehold is a single stranded section at the end
of a hybridized pair of DNA molecules. It is present whenever the ends of the two
composing strands do not have the exact same sequence, or one is shorter than
the other, as opposed to blunt ends which arise whenever there is an exact match
between the ends of the strands. Our stack design extensively exploits toeholds: In
all steps in the unwinding of a stack there is a toehold present at the end of the
stack to catalyze the reaction leading to the next step in the unwinding.

A toehold-mediated strand displacement is a reaction in which 3 single-stranded
DNA molecules are involved. Let us refer to them as A,B and C. The reaction
begins with A hybridized to B, and ends with A free in the solution, and B and C
hybridized: Effectively, C has displaced A from its bound state with B. This can
obviously occur only if A and C share a sequence which is complementary to some
region in B. However, If the region where A complements B is the exact same region
where C complements B, this reaction will be exceedingly slow: In order for C to
displace A, A must first completely disassociate from B - a highly energetically
unfavorable reaction, and then C must be near B so that they may hybridize.
However, if there is a way for C to be near the region of B that it competes on
with A, the reaction may actually be likely. This can happen, obviously, when C
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is already bound to B. Specifically, if the relevant region of A extends all the way
to one end of A’s sequence, and C and B share a region of complimentarity that
includes the region A and B share, but also extends beyond that region, where A
has ended, then C can partially bind to B while A is still bound. This co-locates C
with B, so that random disassociations of the end of A from B are competitively
replaced by C binding to B. In this manner, A unbinds from B while C takes over
until A detaches completely – bringing us to the state where A is free while B and
C are bound in both the region where A had previously been and the extending
sequence which assisted in the displacement of A by C. This region of extension
is B’s toehold for C, and the effect is especially accentuated if the toehold extends
all the way to one end of B’s sequence.

Figure 2.2. Stages of toehold exchange. Strands A and C share a do-
main β̄ complementing B’s center domain β, but each also complements
B at a different region flanking β. In (2) C collocates with B allowing it
to initiate strand displacement and replace A’s binding of the β region.
In (3) this step is complete, and toehold-mediated strand displacement
has occurred. Here ā is a short toehold for A. The process may reverse
or it may proceed. If it proceeds, we are in (4), where A disengages from
B and a toehold exchange had occurred.

The process, depicted in Figure 2.2, can then be described by the following 3
steps:

AB + C
kCtoe−⇀↽−

kCuntoe

ABCA

kC−⇀↽−
kA

ABCC

kAuntoe−⇀↽−
kAtoe

A + BC

Where ABCA denotes C hybridized to the toehold on B and A completely hy-
bridized to B, and ABCC denotes C hybridized completely to B and A only hy-
bridized to B at regions extending beyond the regions where A and C overlap, if any
such regions exist. The different rates of reaction correspond to C hybridizing or
de-hybridizing with the toehold region (kCtoe and kCuntoe respectively), exchange
of places in the overlapping region (kC for C displacing A, and kA for A displacing
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C), and finally, A disassociating from B in any remaining region of complemen-
tarity. The latter can symmetrically be viewed as B’s toehold for A, and is hence
denoted kAtoe and kAuntoe. The toehold binding and unbinding rates of reaction
are derived from the very same DNA hybridization free energies discussed above.
Values for kC and kA are the result of modeling the branch migration between A,
B and C as a symmetric random walk with absorbing barriers, on the sequence of
B [23]. The expected time for the walk from the state ABCA to ABCC can be
calculated and kC effectively becomes its reciprocal: 1

kC
is proportional to the first

passage time of the walk to the end of the overlapping complementarity region,
which is the length of that region squared. All intermediate states in the walk are
transient, so that in the limit we find that the molecules are in a dynamic equi-
librium between the two end states. The probability for each state is determined
by the free energies of both complexes. It is acknowledged in the literature that
this model is somewhat simplistic in its neglect of sequence-specific step rates and
its treatments of the initiating step as a barrier rather than allowing a cancellation
of the random walk. Nevertheless the model is accepted as an approximation and
agrees with experimental data to a large extent.

The three-step process above is a slight generalization of toehold-mediated
strand displacement in that it allows A to have a region of complementarity with
B which overlaps but is not fully contained in C’s complementary region. If A’s
complementary region is indeed contained entirely within C’s, we may drop the
intermediary ABCC step, effectively treating kAuntoe as immediate (or rewriting
the rate equation with ABCC = A+BC). The full three-step process is termed a
toehold exchange rather than strand displacement. This is because it begins with
A and B hybridized and a toehold on B available for C to bind to, and ends with a
different toehold, the one for A, available for binding. The largest contributions to
the rate of the entire reaction are made by the lengths and nucleotides chosen for
A and C’s toehold domains, and by varying the toehold length anywhere between
two and eight nuncleotides long we achieve a degree of freedom in the forward
and backward reaction rates for AB + C ↔ A + BC that ranges over six orders
of magnitude. This is the mechanism, alluded to in Chapter 1, allowing us to
guarantee reactions take place with high probability, specificity and in the correct
order.

2.3.1. Simulating toehold exchange processes. While toehold exchanges
underlie much of the mechanics of our computational model, they are not in-
cluded in the simulations our compiler provides for DNA programs. There is a
stochastic simulator made specifically for toehold exchange driven processes, called
VisualDSD[11]. Unfortunately the source code for the project is proprietary and
unavailable, making it somewhat difficult to combine its capabilities with the re-
quirements of our compiler. An interesting future project may be to leverage its
algorithms and significant power in stochastic simulations as a part of the output
our compiler provides, as an addition to the thermodynamic data we produce.

2.3.2. Limitations. We note that several assumptions are made here that
might not accurately reflect the realities of an actual experiment. For one thing,
there are several ∆G◦ contributions that are not considered by the papers we con-
sulted. An example may be contributions from the secondary structure of the stack
that may behave differently than the model due to the existence of “hanging” single
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strands, also referred to as coaxial stack dangles [8]. Furthermore, there is inten-
tional neglect of reactions considered to be so unfavorable or so slow that they
result in very little products during the course of computation. This is done to
avoid an exponential increase in the size of the resulting state space. Such is the
case when we consider all domains to be either entirely hybridized or completely
un-hybridized. In an actual solution we may find a dynamic equilibrium with par-
tially hybridized domains very rapidly associating and disassociating a single base
at the ends of the domain, for example. These omissions are standard approxima-
tions and considered safe as they are generally second- and higher-order effects and
will not significantly alter the result of a computation where order of magnitude
differences in output are used to differentiate the terminal states.

Different kinds of limitations arise from the conditions under which the model
is applicable. One is that we consider a dilute solution, specifically under a critical
concentration of molecules demanded by the kinetic model of toehold-mediated
strand displacement [27]. Another stems from the accuracy of the thermodynamic
parameters calculated by NUPACK software and used by our compiler to predict
the efficiency of the calculation. The accuracy of these parameters holds only in
specific ranges of specific salt concentrations, temperatures and so forth. These are
fairly lax restrictions - many experiments in synthetic DNA chemistry including
motors, circuits and DNA origami have been performed under these very same
conditions. Nevertheless the compiler might require alterations to be useful in a
significantly different environment.
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Figure 2.1. Heat-map plot of the probabilities of a pair of bases (i, j)
binding in a stack containing two instructions, at its initial state. The
length of the instruction’s unique domain is 20 bases and the length of
the clock strand is 16 bases. Thus, the total length of an instruction
strand is 36 bases and the length of the complete stack including its
three binding sequences is 120 bases. The entries in the last column,
121, correspond to the probability of the base i remaining unbound, so
that it is equal to one minus the probabilities of binding to any other base
in the complex. The ordering is done with the instructions first followed
by the binding regions, as if we started counting with the first base of the
last instruction to be unwound (the one appearing in black in Figure 1.1,)
and went around in a clockwise direction on that diagram. In the heat-
map, red denotes high probability and white denotes low probability.
It is clear that the stack’s sequences are such that the correct binding,
depicted in Figure 1.1, occurs with very high probability, as the “stairs”
match exactly the position of the binding strands hybridizing with the
clock domains of the instructions. The bases in lighter red correspond
to the first binding element, which has a slightly “frayed” ending.



CHAPTER 3

Probabilistic Automaton Model of Clocked DNA
Computing

3.1. Introduction and existing results

The general framework we operate in is one where several species of reactant
molecules (DNA strands) and products (hybridized DNA strands) interact in a
solution. A fundamental question to ask then, is what kind of computation is the-
oretically available within that setting? Stochastic Chemical Reaction Networks
(SCRN), a model that conceptualizes the interaction of many species in a solution
where many possible reactions can take place, have been shown to be Turing uni-
versal with just two different reaction rates, via comparison to Petri Nets, Vector
Addition Systems and Register Machines [24]. That paper contains a discussion
of a chemical clock for achieving arbitrary probability of correct state transition at
the cost of slower execution, as well as discussion of the computability of Primary
Recursive functions. However, the model suggested there is highly theoretical in
that it does not specify which species and reactions can be used and how to choose
them, rather focusing on the asymptotic bounds to reliability and computational
properties. Another paper shows an infinite set of chemical reactions to be Turing
complete using a register machine [12] and includes a language for programming
with these reactions, but again the discussion is at the level of arbitrary molecules.
That chemical reactions with various speeds can do basic arithmetic and algebraic
operations is portrayed in Riedel et al.[14]. There, output is given as the exact num-
ber of product molecules so high precision in measurement is required to extract
output.

We present a model with more limited computational capabilities that is never-
theless specified in concrete species and reactions. We describe a theoretical frame-
work for computation using our models. We have also developed a compiler that,
given an abstract description of the “program”, will specify which DNA molecules
should be used, under which conditions, and how to expect the computation to
progress. Our compiler extends the great work done with NUPACK.

3.2. Clocked DNA computation as an automaton

Taking a higher level view than the one in the preceding chapter, we can look at
a molecular computer as a probabilistic finite automaton. This description limits
the model’s theoretical computational power which, as discussed above, can be
shown to be Turing universal. However, many interesting implementations can be
realized by probabilistic finite automata and this remains an interesting model for
specification and engineering of certain classes of problems.
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To model our clocked DNA computer, we introduce the following notation:
The program is represented by a graph, whose nodes are states in the computa-
tion. Edges indicate transitions between states. Each state describes the contents
of the solution that can potentially react. An instruction is identified by a label
(a, b, c, . . .), and a stack of instructions is denoted by a vertical bar (|) containing
one or more such labels. |a is the one-instruction stack containing a. The top
instruction of the stack is the first one to pop when ‘tick’ and ‘tock’ strands hy-
bridize with the stack. Instructions with multiple domains are rarely used, but
can be denoted by concatenating the domains delimited by dashes. For example,
the instruction a-b-a is a single strand containing the sequences of a, then b, then
a again (in the 5′ → 3′ direction.) A complement is denoted, as in Chang and
Shasha [3], by a bar. ā complements a and they bind to form aā. Hence we note
the complement of a-b is a− b = b̄ − ā, though, again, this is rarely used. Once
two complementary strands pair up, they are no longer free to react: The reaction
for melting a long complementary region and hybridizing with a different strand
without the assistance of toeholds is so energetically unfavorable under standard
temperatures, that we treat these double-stranded DNA molecules as essentially
inert. In our state diagrams we will just remove them from the state description,
except when they help illustrate a concept.

The edges encode for the inputs of the program (known as transitions or actions
in automaton theory), and they correspond to pouring strands into the solution.
We assume the tick and tock strands hybridize solely with their corresponding
anti-tick and anti-tock strands on the stack (and we can guarantee this with high
probability using our compiler). Thus, we model popping one instruction from the
top of any available stack as a single operation instead of bothering with speci-
fying the intermediate steps of the reaction illustrated in Chapters 1 and 2. We
denote this action of introducing clock strands by t. Any other species of strands
can be poured into the solution. They are denoted as domains in the very same
way the instructions are. However, their actual sequence is considered to contain
several nucleotides flanking the active domain, so as to prevent unwanted reactions
from occurring with strands that are part of the stack. Hence sometimes, a as an
instruction and a as a poured-in input might not have the exact same sequence
(except at their middle section). Again, our compiler takes care of the underlying
sequences, and due to the molecular structure of the stack very few nucleotides on
either side of the domain are required. Hence, the difference between the molecules
is not important enough to necessitate more notation in the model.

Figure 3.1 contains an example of a very simple state machine following the
rules described above. However, it is far from an accurate model for the actual
reactions taking place in a mixture and is included just as a basic example of the
principles described thus far.

Our real model includes several modifications. First of all, we note unlike a
classic automaton (of any variety), which can receive only one input letter per
step, our model can receive several inputs at once - for example by pouring in a
mixture of ā and b̄ strands. Thus, if Σ denotes the alphabet of possible inputs,
our automaton model handles states whose transitions are in 2Σ. An example is
portrayed in Figure 3.2.

A natural question to ask at this point is whether the inclusion of multiple-
input actions matters, or whether sequentially introducing the same inputs will
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Figure 3.1. A simple deterministic state
machine in our notation, starting with one
single-instruction stack. The final state
could be empty, but for clarity we have in-
cluded the resulting double-stranded com-
plex.

Figure 3.2. A deterministic clocked
DNA automaton starting with one 2-
instruction stack. Not all possible transi-
tions or states are denoted, but enough to
give the reader an idea of the possibilities
resulting from multiple inputs.

achieve the same result. The answer is that it does matter and in fact even the
order of introducing the inputs matters. The reason lies with the nature of the
equilibrium that the states are in. Except for toehold exchanges, (which are the
mechanism used in order for the tick and tock strands to unwind the stack), it is
highly unlikely for a long region of bound duplex strands to unbind and have one
of the single stranded DNAs hybridize with a different single-stranded molecule,
unless the temperature is very high. For this reason, in a case where we have some
a instructions free in the solution, and we introduce first ā strands and then ā− b
strands, equilibrium is first achieved with the introduced ā strands, whereby almost
all free a instructions form aā complexes. The ā−b strands introduced later remain
in the solution as single-stranded polymers. However, if we first introduce ā − b
strands and then ā, all free a instructions will form aā− b complexes, leaving none
to react with the ā strands. We then end up in a different state – one where ā
strands, not ā − b strands remain free to react in the solution. If we introduce
them together in a well-mixed solution containing the same number of moles as
introducing them sequentially (i.e twice the number of free a instructions), we end
up with a state containing both ā− b and ā strands free, as approximately half of
each population will bind to the instructions.

The discussion above naturally brings us to the other modification we make to
the finite automata model - that of the nondeterministic automaton.

3.2.1. Probabilistic nature. The automata described so far can be actually
formulated easily as deterministic finite automata, with an appropriate labeling
of the states and 2Σ (i.e the Power Set, containing all subsets of Σ) as its input
alphabet. However, they are again a very simplistic model of what occurs in the
actual solution. In fact, in a mixture, any addition of an input molecule (e.g.
a tick and tock strand) will reach some equilibrium between the reactants and
the products of all possible reactions caused by the addition of that molecule.
This equilibrium distribution is determined by the concentration of the reactants
and products, and by the rate constants of the reaction. In order to describe
this equilibrium, we treat each state as describing a single product configuration
of the several possible ones achieved. Multiple states are reached by each input
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transition. We do neglect the states that are thermodynamically unstable in the
sense that we do no expect them to exist in equilibrium - for example hybridization
between domains with non-complementary sequences. In Chapter 2 we discussed
the underlying chemistry necessary to simulate this process, and addressed the
actual computation of the distribution among these resulting states. Here we satisfy
ourselves with ascribing some variables to these probabilities.

Figure 3.3. An example of a partial probabilistic finite state automa-
ton starting with a single two-instruction stack. Not all transitions are
marked. Example probability distributions are attached to transitions
as illustrations. An example super-state is marked. Within the super-
state, all states are in equilibrium, their probabilities summing to 1.
Transitions from the superstate to itself will change the equilibrium
concentrations, but not the constituents of the solution.

Our model abstracts the details of the underlying concentrations of materials
in the tube, instead it considers different states by the species constituting the
solution. We may symbolically remove some constituents when considering reac-
tions that have a negligible probability of reversing at the constant temperature
the experiment is considered at, e.g fully hybridized instruction-input pairs such
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as aā. However, nothing ever leaves the solution. Furthermore, our input actions
may introduce new strands into the solution. Hence, if we were to consider each
state as distinct whenever it contained a different number of molecules, even when
the species remained the same, we would never arrive at the same state again - we
would have a cycle-free automata. In this case, the underlying probability space
would be a Markov chain, albeit not a very useful one because it would never return
to the same state. Also, there would be an explosion of states.

Instead, we extend the nondeterministic automata shown above with informa-
tion about the distribution of constituents in each state. This extension takes a
familiar form for those versed in probabilistic automata: It is the adversary (or pol-
icy or scheduler). The adversary is a function that resolves the non-determinism
of an automaton by assigning a measure, consistent with the axioms of probability,
to each path - an ordered sequence of states visited and inputs into the machine.
We start by specifying the states. These can be uniquely and explicitly denoted
by their constituent species and labeled for conciseness. For instance, the state at
the top-right of Figure 3.3, consisting of the stack with instructions a and b, an
unbound clock strand and an unbound input strand ā is written

σ6 = {|ab, t, ā}
A transition or input between states is just the set of input strands provided,

e.g {t} or {ā, b̄}. A path is an ordered sequence of states and inputs, beginning
and ending in a state. For example a path leading to the state σ6 defined above,
in Figure 3.3, is

τ = ({|ab} , {t} , {|ab, t} , {ā} , {|ab, t, ā})
From a probability theory point of view, we restrict ourselves to finite input

(and stack component) alphabets and finite-length stacks. Thus the space of pos-
sible inputs and space of states are both discrete and finite. This limitation is
not grave as many of the practical computations we’d like to perform are finite in
nature. An extension to a countably infinite state space requires a standard but
somewhat more sophisticated application of measure theoretic arguments like the
use of extension theorems. It is discussed in the specific context of probabilistic
automata in a review paper by Stoelinga [21], and we do not address it here. The
probability space of the adversary, Π, is the space of possibly infinite sequences
of states and inputs. Standard constructions show that this is consistent with the
requirements of a probability space.

For instance, an adversary Π that is consistent with Figure 3.3 above would
have

Π ({|ab} , {t}) (x) =

 0.002 x = {|ab, t}
0.749 x = {|b, a}
0.249 x = {a, b}

Note that in general the adversary depends on the entire path, i.e the history
of all inputs and states visited, and hence is not necessarily Markov. In fact it
is trivial to see that in our case it will not be Markov: if we return from the
state {|ab, t} to itself by inputting more and more t strands, the reaction will be
driven strongly towards the clock strand reacting with the stack to release the
instructions, ending up at states {|b, a} and {a, b}, so that the probability of state



26 3. PROBABILISTIC AUTOMATON MODEL OF CLOCKED DNA COMPUTING

{|ab, t} becomes lower and lower each time. In other words, looking at the state
space as a stochastic process, with PΠ (σ|τ) denoting the probability of ending with
state σ after taking the truncated path τ (a truncated path is a path that ends
with an action, not a state,)

PΠ ({|ab, t} | ({|ab} , {t})) 6= PΠ ({|ab, t} | ({|ab} , {t} , {|ab, t} , {t}))

That is, the path-independence (Markov) property often doesn’t hold.
An additional notation introduced for clarity is marking all the states which

result from an input to some given state as belonging to the same super-state.
This is similar to the grouping done when transforming non-deterministic automata
to their equivalent deterministic counterparts. The probabilities of all states in a
super-state sum up to one, and it is sometimes useful to observe the behavior of the
system in the super-state graph rather than the state graph to extract information
about all potential species found at some step of the computation. For example, in
Figure 3.2, the action t moving from the super-state to itself would correspond to
having t actions outgoing and incoming from every state in the super-state. This
is summarized with a single action at the super-state level.

We have arrived at a description of our clocked DNA program as a probabilistic
automaton, and can now benefit from the extensive literature and results on the
subject. An open question we do not treat here is whether the converse is true, that
is whether every finite (probabilistic) automaton can be modeled using a clocked
DNA program. In the results section we describe a DNA program for evaluating
finite propositional logic formulas, which is certainly one interesting problem solved
by finite automata.

However, we have not yet discussed what kind of adversary to use, or in other
words what will realistically be the distribution of states we expect to see in the
experiment. For that we need to introduce another notion into our model.

3.2.2. Molecular Concentrations. Thus far, the model we described lacks
a key determinant of the actual equilibrium distribution of the reactants and pro-
ductions in a chemical reaction: their molar concentrations. If we know the con-
centrations of the constituents of each state and the concentration with which we
add each input, we can derive an adversary. We do that using the rate equations
for all possible reactions, which gives us the distribution of next states - we have
a way to resolve the non-determinism of the system. However, we will need to
first extend our definition of the adversary to include concentrations. To do so,
we order our finite alphabet of inputs Σ arbitrarily and denote this ordered set S,
with N = |S|. We now consider paths whose states are the same but whose actions
are replaced with vectors in RN

+ , the N -dimensional real space with positive coor-
dinates. Such an action vector x with Ci in its ith coordinate means we input the
i’th strand of S such that its concentration in the solution increases by Ci times
the initial concentration of the components of the first state in the path. The key
here is that concentration ratios of products and reactants are all that matters to
determine the equilibrium concentrations in the following state, not the absolute
values. So we can arbitrarily fix the initial concentration of all components of the
initial states to 1. The initial concentration in an actual computation using the
model can then be specified at any value and with any units without hindering the
general applicability of the results.
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This does not limit us because we may have the initial state be a state con-
taining only some virtual inert molecule with a reference concentration, arbitrarily
chosen to be 1 in some units. That virtual molecule has the property that it cannot
interact with any other species ever produced by our state machine. Now we can
add the stacks as possible input words of our alphabet, and pour them at the quan-
tities desired as inputs of the first step, using the general action vector notation.
Since the stacks are designed so as not to react with one another we only increase
the size of our state space by one as a result of this, and the probability to arrive
at the desired state will always be one. This allows us to have arbitrary, unique
concentrations for all species in our initial state by introducing a single extra state
to the program.

A more significant limitation that our extension imposes is that we now have
to consider a different and much larger probability space, that is harder to work
with. We must now consider a space generated by the cones1 over finite extended
paths, those composed of states and action vectors in RN

+ , beginning and ending
at a state. Note that the underlying graphical model is still the same, because an
input described by the vector x corresponds to the input set {si ∈ S : xi > 0}, and
all vectors x with the same input set will lead to the same states. But the resulting
distribution between all states in the super-state will be different, depending on the
values of the coordinates of the different action vectors.

Note that we can now arrive at our previous description of the model by using
only action vectors whose coordinates are either 1 or 0. Hence our extended model
can be treated as a generalization of the simpler model that ignores concentrations.
In fact we will describe example problems in chapter 5 using the simpler model -
we keep the concentrations in mind only to accurately simulate an experiment and
anticipate its results.

3.2.3. Gated stacks. Using the language we have covered so far we cannot
implement very interesting computations. The stacks can unwind to sequentially
introduce free instructions to the solution, and these may bind or not bind to
various inputs. But essentially after enough clock strands have been introduced we
arrive at a state where all stacks have unwound and the computation boils down
to the result of throwing in all instructions and all inputs together at once into the
solution. Interestingly enough there are questions this can answer, such as simple
variations of the recognition problem described in Chapter 5. It is, however, in
some ways analogous to writing a procedural computer program with no branches
or loops (or recursion, for that matter) – which for the most part rules out many
interesting applications.

We recall the gating mechanism described in Chapter 1. These gates allow
for the equivalent of “if” statements in most computer programs as well as a rudi-
mentary version of functions receiving no parameters and looping a predetermined
number of times [3]. We use these gates to demonstrate some interesting compu-
tations afforded by our extended probabilistic automaton model together with the
gated stacks.

1By cones we refer to the standard construction in countably infinite product spaces where

an element of the basis for the set of measurable sets in the space is the set of all elements whose
first i coordinates are a fixed prefix and the rest of the coordinates are taken to be the entire space

of the coordinate.
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A gated stack will be denoted by a ‘dagger’ (†) followed by the gate domain.
Thus, †ā|bc means a stack containing the instructions b and c that is gated by the
domain ā. Adding clock instructions will not do anything to the stack until an a
domain has been introduced, at which point the gate on the stack will be removed
from the state notation (as it can no longer react in ordinary circumstances) and
we will remain with |bc. The choice we made to remove any domains that have
undergone reaction from our state notation now pays off as we can have cycles in
our state graph from states with gated stacks to states containing non-gated stacks
of the same type (along with some remaining gated stacks, of course).

Stacks may have several gates and it is necessary to remove each of the gate
instructions in order: †āb̄|ab is a stack that has the interesting property that with
enough clock instructions, it will continuously unwind copies of itself until they are
all exhausted. It releases a instructions to bind with the †ā gate, b instructions
to bind with the †b̄ gate, removing itself completely from further reaction in the
process. At the end, we remain with a and b instructions only, in the same quantity
as was initially inserted to trigger the reaction. This is a form of non-explosive
chain reaction.

3.2.4. Extracting output. A natural question about practically executing
experiments with these models of computation is how to extract the output of the
computation from the mixture where it had proceeded. While this is slightly out of
the scope of our discussion, we do offer some options to the interested reader. First
of all, at least some of the interest in biological computation and specifically DNA
computation models has as its goals targeted pharmaceuticals and target-specific
remediation. These do not require any output to be extracted and require only that
the computation end with high reliability at the required state based on the inputs
of the environment it is running in. That environment might be, for instance, a
cell in vivo, as in Kossoy et al. [10] where a colony of bacteria develops different
phenotypes based on a computation occurring inside the cells.

To monitor the results of the experiment in vitro we have considered several
methods and found FRET to be the most likely to be useful in reliably providing
information about the result of a computation. FRET, which stands for Fluores-
cent Resonant Energy Transfer involves two molecules, one containing a fluorescent
donor and the other an acceptor, also called a receiver. When the molecules are
very close to one another (on the order of 10nm), and excited with an external
light source at the correct wavelength, they will emit detectable light, at a different
wavelength than that which is emitted when the molecules are far away. Due to the
relatively low concentrations used in our DNA processes, distinct molecules will get
close enough for the FRET phenomenon to occur only when they hybridize. They
are detectable even at concentrations of just 200,000 molecules per mL[4]. A typical
procedure for extracting output using FRET will be to mark one or several of the
instruction domains used in the computation with FRET acceptors, run the com-
putation, and after it completes introduce the complementary domains modified to
contain FRET donors (these are sometimes referred to as flouromers). When we
then excite the fluorescent donors with light, we will see fluorescence only at the
receptors’ wavelength if there is a high concentration of them that are not bound to
other molecules: So we measure the concentration of instructions that were released
but did not hybridize with anything and remain single-stranded. We can release
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fluorescent probes with different domains sequentially, measuring fluorescent out-
put after each release. This way, we learn of each possible output in order. We may
also fit the instructions with different fluorescent markers so that we have multiple-
wavelength outputs that can be measured simultaneously. This is of course limited
by the availability of flouromers with different wavelengths. Knowledge of the un-
derlying probabilistic automaton is useful in that it informs us of which possible
outputs need be measured to differentiate between different ending states.

Another viable option is gel electrophoresis. In this technique we extract all
DNA molecules from the solution at the end of the experiment. Using radioactive
film and a denaturing gel through which a current is passed, we receive indication
of the approximate lengths (in nucleotides) and quantities of molecules occurring in
the solution. To differentiate between several results in this case, we need to design
the computation such that the output has varying lengths based on the result of
the computation.

A final possibility is using iron balls coated with strands complementary to one
of the expected output strands. We weigh the balls separately, then introduce them
into the solution and, using a magnet, secure the balls while we wash out the rest
of the solution. If a strand complementing the DNA sequences the balls are coated
with is found in the solution, it will hybridize with its complement on the surface of
the balls, and not be washed out. The iron balls will then weigh more than they did
before the experiment. One may even use several sets of balls, specific to different
sequences, if careful controls are employed.

In the example problems we demonstrate solutions using our DNA computer
model, we utilize FRET as an example of extracting output. The reasons for this
are that it is simple to use and very accurate, but also that it allows one to make
several assays without disrupting the experiment. Much like the toy example given
in Chapter 1, we can observe the output at one stage of the experiment and then
continue, whereas with iron balls or gel electrophoresis we generally destroy the
solution as a result.





CHAPTER 4

Simulation algorithms

4.1. Implementation of a compiler

In this chapter we describe the actual tangible product of our theoretical work,
which is a ”compiler” for computations expressed in the model of clocked DNA
programs described thus far. In computer science, a compiler has several functions,
the chief of which being turning algorithms expressed in an abstract and high level
computer language into machine-specific instructions for executing the algorithm
on a specified architecture and operating system; But a secondary function of the
compiler is also to assist the programmer in ensuring his program is correct, for
example using type systems. Our software, then, is somewhat analogous to a com-
piler: We take a high-level description of the program to be executed, design the
specifics of the experiment that should be run such as the specific DNA sequences
to use, and then provide insight into the expected behavior of the computation. By
the last part we mean that, since we cannot actually execute the experiment on a
digital computer, we instead simulate the computational process and provide statis-
tical summaries of the margins of error, the states that the computation undergoes
and the expected output. This verifies that the code indeed behaves in solution as
its creator intended, at least in accordance with the laws of the simulator if not
those of chemistry (though they are intended to match each other for the cases we
deal with).

4.1.1. DNA Programs. Input into the compiler is provided in the form of
a file containing a description of the constituents to be added into the solution
at each input step and their concentrations. Thus it may specify we start with
the state {|ab, |cd} at concentrations (1.0, 1.0) and then compute by pouring {t} in
concentration (2.0) where t denotes tick and tock strands. Internally, we represent
the program as a list of super-states. Each super-state contains a set of states, and
each of the states contains a set of all molecules in the solution. Concentrations
are tracked for each of the constituent molecules in a hash table, and are updated
as we progress in reading the input steps.

The output of the compiler consists of several parts. We output sequences
for all domains, including the implicit clock domains. The sequences are selected
to ensure the correct binding between them occurs so that the desired complexes
form at the desired temperature and salinity conditions. We also output the heat
map plot shown in Figure 2.1, depicting the probabilities of the sequences binding
to each other in the intended way, to verify the specifics of the design. These
outputs are generated by transforming the program from its representation as a
series of domain instructions above to its representation as a series of bases with
an unpseudoknotted hybridization pattern, feeding this representation as input for
the NUPACK algorithms, and reading back the output and plotting it as necessary.
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Because of the relative simplicity of this task and its reliance on previous work we
do not dwell on its implementation nor prove its performance, which is dominated
by the algorithms NUPACK employs.

The other output we provide is a graph, similar to Figures 3.1 and 3.2, of the
pathway that the program takes with the output distributions of states. This graph
is a path in the probabilistic finite automata implicitly defined by all of the stacks,
instructions and possible inputs. The specific path described, then, comprises of
just the actions defined in the program file. To compare different executions paths,
one must provide a file with alternate input. This is preferable to an interactive
approach because of its modularity and potential to be easily integrated into a
larger automated software suite.

4.1.2. Programming model. The program is provided as single ASCII file.
In that file, the ASCII notation for our model, described in Chang and Shasha [3] is
used. In that notation, domains are written as their labels, while complements are
denoted with stars (so ā becomes a*.) Stacks are denoted with a ‘pipe’ character
and gates with the ‘plus’ character: the gated stack †āb|cd̄ becomes +a*b|cd. A
reserved symbol, t, is used for denoting clock strands. We do not currently support
strands composed of several domains, such as a− b, so no notation is provided for
these.

The file describes the inputs into the solution. The entire program is a sequence
of inputs, the first set of inputs corresponding to the initial state. Each input may be
followed by a floating point number which will be used as the concentration to intro-
duce it with. If the concentration is not specified, a default of 1.0 is used. The under-
lying format is YAML, described at http://www.yaml.org/spec/1.2/spec.html.
The file is a sequence of inputs, and each input is a sequence of constituents. For
example, the program beginning at {†a|bc, †b|ac̄} and followed by the inputs t,

{
āb̄
}

where the clock is introduced in a concentration of four times as much as the other
constituents will be written as:

-

- ’+a|bc’

- ’+b|ac*’

-

t: 4.0

-

- a*

- b*

4.2. Algorithms for describing the state space of a program

The graph of the state space is created in a straightforward manner: We main-
tain a set of current states, starting with the initial state. Then, for every input
step in the program file, we apply the ReactWithInput(S, I) function with the
S being the last set of states it returned to us and I being the current set of in-
puts. This tail recursion discovers all possible outcomes of all possible reactions
and populates the state space with it.
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Procedure 1 ReactWithInput(S, I)

1: for s ∈ S do
2: s← s ∪ I
3: end for
4: repeat
5: for s ∈ S do
6: Snew ← S
7: S ← S ∪ StateReactions(s)
8: end for
9: until |S| = |Snew|

10: return Snew

Lines 4-9 constitute the “convergence loop”. We generate more and more states
by letting the constituents of the state to react with each other. This is important
when for example we unwind a stack, and the instruction that gets released further
reacts with another input of the state. We terminate the loop once there was no
change in the states generated between this and the previous iteration, because it
means we are in equilibrium: If nothing changed in the contents of the states from
the previous iteration to the current, there is nothing new that can cause further
reactions in the next iteration. The nature of the actual underlying chemical equi-
librium may be dynamic, but inasmuch as the species involved are concerned, this
is a correct representation of the equilibrium. It means we have fully explored the
state graph reaching out from the initial states S with the inputs I, and discovered
that all reactions now loop back into previously discovered states or there are no
further reactions possible.

We must show that this iterative process is guaranteed to terminate. One
argument is that we start with a finite number of states S and a finite number
of input molecules I, each state containing a finite number of constituents which,
if they are stacks, have a finite number of instructions. There is no room for
infinity to emerge: Stacks become shorter with further reactions, and the solution
gains exactly one instruction for each one a stack loses. Other constituents are
instructions or input strands - these either do not react and so do not change or
do react and are removed from solution, as they become unavailable for further

reaction. Thus the space of states is bounded, specifically by |S| ·MK · 2(|I|+KM)2

where M is the maximal stack length (number of instructions plus number of gates)
and K is the maximal number of stacks per state (which corresponds to the number
of stacks in the input plus number of stacks in the initial state, since additional
stacks are never created as a result of a reaction). The first term, MK comes from

all the states of unwinding for K stacks of length M . The second, 2(|I|+KM)2 is
an overestimate of all possible interactions between single domains released from
the stack or found in inputs: Each either reacts and disappears, or doesn’t react.
So we have a choice of reacting or not reacting in the space of pairs. Finally we
multiply everything by the number of states we can start from, the initial |S|. This
expression also bounds the number of iterations. We are guaranteed not to be stuck
in a non-converging state because we solely employ set unions, which means |S| (in
the pseudocode) either grows or stays the same. This also means |Snew| ≤ |S| is
an invariant throughout the procedure. Specifically it is an invariant in line 9, and
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as |S| is a bounded natural number, and in line 6 |Snew| = |S|, we have that they
must become equal at some point.

Procedure 2 StateReactions(s)

1: S ← {s}
2: for {c1, c2} ∈ s do
3: T ← S
4: for r ∈ Reation(c1, c2) do
5: for t ∈ S do
6: T ← T ∪ {s \ {c1, c2} ∪ {r}}
7: end for
8: end for
9: S ← T

10: end for
11: return S

In StateReactions we create a state set that is the result of all possible
interactions between two different constituents of the state. The iteration in line 2
takes all (unordered) pairs from the state. The Reaction procedure returns a set
of all possible results of a reaction between c1 and c2. This means it always returns
c1 and c2 as an unreacted pair, as well as all possible results of the reaction. We
use this to create copies of the original state, without the reactants but with the
products of the reaction in line 6. The end result is similar to a cartesian product of
all possible reactions of two constituents, but where each resulting vector is treated
as a set - a single possible resulting state. Mathematically, then, we produce the
following: {t : t ∈ v} : v ∈

∏
{c1,c2}∈s

Reaction(c1, c2)


Procedure 3 Reaction(c1, c2)

1: if (c1, c2) are (Ungated Stack,Tick) then
2: return {ti : ti = {l1, . . . , li−1, si},

si is the stack without its i top instructions,
li is the i’th instruction on the stack,
0 ≤ i ≤ |Stack|}

3: else if (c1, c2) are (Instruction,Gated Stack) and the instruction complements
the top gate on the stack then

4: return {{c1, c2} , {Ungated stack}}
5: else if (c1, c2) are (Instruction, Instruction) and they complement each other

then
6: return {{c1, c2} , ∅}
7: else
8: return {{c1, c2}}
9: end if

Finally, the Reaction method is a description of our semantics of interactions
between molecules: A gated stack can interact with an instruction strand to remove
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that gate, if they are complementary. Two instructions (or input strands, for that
matter) that are complementary, may be considered to be removed. A clock strand
interacting with a stack will return all states of unwinding for the stack, from
remaining unwound to completely dissolving into its constituent instructions, but
the clock strand itself is always removed from the solution. This introduces the
states corresponding to “runaway” stack unwinding. Finally, if none of the cases
hold, there is no reaction - returning the same pair of molecules will cause us to
leave the state unchanged. We use pair notation here (as in “(c1, c2) are (Ungated
stack, Tick)”) to mean that one of c1, c2 is an ungated stack and the other is a tick
strand. The reactions are symmetric and we do not care which is which – we use
this notation only to simplify the pseudocode.

4.2.1. Complexity. The complexity of the Reaction procedure is deter-
mined by the size of the set it returns. The creation of the set that results from
the reaction of an ungated stack and clock strands dominates all other possible
return values. This set contains O(|Stack|) elements, so its complexity across all
possible stacks in the program could be bounded by O(M) where M is the maximal
length, in instructions, of any stack in the program (either input or one of the initial
stacks).

The StateReactions procedure takes every pair of constituents of the initial
state, and for every possible reaction between them, updates all previously created
states. As noted in the description, this is similar to calculating the cartesian
product. The number of operations is on the order of O(M ·K4), where K = |s|,
the size of the input state. A K2 factor comes in from iterating over all pairs of
constituents, and for each iteration we add all of the possible O(M) outputs from
Reaction to T . T grows from 1 to the full cartesian product which is certainly
bounded by O(M · K2), so we iterate at most this many times for each pair of
constituents. The state set T and each of the states in it are sets represented
as hash tables. However, since the program can be read entirely and the input
alphabet precomputed as a preprocessing step, we can create a perfect hash, so
that we can add and remove entries from s and T in O(1) time.

Looking at ReactWithInput, we note that despite the fact that the theo-
retical bound on the number of convergence iterations is astronomically large, in
practice almost all programs converge within 1-3 iterations. The reason is that for
non-convergence to be maintained, you have to constantly introduce new states into
the solution. But new states are created only by unwinding stacks (releasing instruc-
tions) or unlocking gates. The typical reaction requiring the convergence loop is one
in which a clock strand releases instructions, which later react among themselves or
with gated stacks. All instructions that can possibly unwind and all gates that can
possibly be removed do so in one call to StateReactions. We see that this way
the exponentially-large state tree is being explored layer by layer, and the number
of layers is of course logarithmic in the size of the tree (the branching factor here is
almost always larger than 1, as is evident from the return values of Reaction.) The
longest chain of reactions that can actually occur is one in which several instruc-
tions are released due to clock strands or directly input in the solution, followed by
sequential ungating of all stacks by these instructions, exposing new gates. This
proceeds at a rate of one gate being removed from all of the stacks at every iter-
ation, which means you will not see in practice more convergence iterations than
the maximal number of gates on any stack, which is certainly bounded by the size
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of the largest stack, M . So we have O(M) calls to StateReactions (this includes
the internal loop), and that is the largest of the terms for ReactWithInput’s
time complexity. Combining this with StateReactions’ complexity we get to a
grand total of O(M2 ·K4 · |S|) , where I’ve rolled into K the terms K + |I| repre-
senting the size of a state. In practice M2K4 serves as a constant ”program size”
and is relatively small. |S| begins at 1, the sole state being the initial state in the
program, but grows as we add inputs in stages to the solution. Subsequent calls
to ReactWithInput are made with the Snew received from previous calls, until
input is consumed. The tracing of the state graph for an entire program with D
input steps, then, can be thought of as an exponential O(M2K4 · φD) where φ is
the average branching factor, bounded on the number of states. In the first call we

have 1 state and we can certainly have no more than MK · 2(|I|+KM)2 states at the
end.

4.2.2. Simulation. There are various approaches to biochemical simulations.
By and large, these can be divided into 3 categories: stochastic, approximate sto-
chastic, and hybrid[13]. All of these methods are relevant whenever exact methods,
relying on algebraic solutions to the equations that govern the system are either
insoluble or have no known solution. Also, when the number of molecules is rel-
atively small, so that these equations which describe the expectation rather than
the law might not hold because of small population effects, we will wish to use sto-
chastic simulations. In the latter case the behavior can vary widely due to random
fluctuations, and samples from the range of the possible outcomes, which provide
confidence intervals instead of exact values, are of interest (e.g to determine thresh-
olds). Many software packages provide these kinds of simulations, and VisualDSD
specifically does so for simulating DNA interactions. However, its closed source
nature has somewhat restricted us from interacting with it in a manner favorable
to us, and since we are modeling behavior based on millions of complexes at once
(i.e the thermodynamic limit behavior rather than small-population dynamics), we
instead have used NUPACK. NUPACK gives us the partition function and free
energies for each resulting state, allowing us to report the fraction of the molecules
in the mixture that will result in each state, specifically in the states corresponding
to the desired output. Our intention is that the researcher may then look at the
output and decide if the fraction of correct computations is significant enough for
his purposes, and if it is not, tweak his mechanism (the underlying state machine,
gated stack composition and so forth), or the various parameters of the compu-
tation such as temperature, lengths of instructions and clock domains, and the
salinity of the solution in order to derive more favorable conditions. The following
chapter deals with an example class of computations that might be of interest to
researchers, defined using our model. When these are input as programs to our
compiler, it will instruct the researcher on what are the exact sequences to be used
for each of the domains (possibly fixing certain sequences to ones specified by the
researcher), and what will the distribution of final states look like.



CHAPTER 5

Results and example clocked DNA programs

In this chapter we will give example problems that are solved by our model eas-
ily and are otherwise difficult to construct an experiment for. These problems were
chosen for benefiting from the availability of synchronous operations, branching and
procedural programming in our model.

5.1. Strand recognition

The strand recognition problem is one in which we would like to differentiate
between possible input strands, detecting the presence or absence of certain do-
mains. The very simplest case is detecting whether a certain domain, a, is present
or not in input strands. For example, one might imagine a to be a short sequence of
DNA encoding for a particular harmful property - perhaps a mutation in a certain
protein, or a region with some other meaning we would like to detect. We have
several tubes containing DNA strands from different sources, and we would like
to be able to say which, if any, of these tubes contains strands with the specific
domain we are looking for.

An experimenter that would like to determine this without using our clocked
DNA model faces no big problem: She may, for example, add to each tube the
complementary ā domain in the form of a strand that she synthesized. That popu-
lation of strands should all be taken so that they are of the same length (in bases).
In a control tube she will keep just that strand ā, by itself. Wherever the a do-
main existed in the strands already in one of the solutions, the introduced strand
containing the ā domain will hybridize and form the stable double-stranded DNA
complex aā. She can now either employ iron balls binding ā domains (i.e coated
with a strands) and see that they did not bind any ā in the solution, by weighing
the balls, or she can apply gel electrophoresis to each of the mixtures and detect a
missing band compared to the control solution.

We note that a solution involving fluorescence has a drawback in this scenario:
Using a modified ā strand containing a fluorescent acceptor molecule may inhibit
to some degree its hybridization with the unknown strands a that we wished to
detect in the tube. Results derived in this manner, then, could be slightly inac-
curate if used to measure rates of hybridization, for example. The clocked DNA
program solution avoids this problem and allows us to use a fluorescence signal
which is more accurate, and easier to apply experimentally compared to methods
like iron balls and electrophoresis, and allows for a continuous signal over time -
a capability we later show can be exploited by the clocked computation to derive
output unattainable in other systems.

When the target strand to be detected does not consist of a single domain, but
rather a boolean logic propositional expression P over possible domains, such as
”find an a or a b, but not an a and a c”, the experimenter using naive techniques
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such as the one above has a much bigger problem. In fact, to answer exactly the
question above one would classically be forced to split his original mixture into at
least two separate tubes. He will then test for the presence of a in one, and b or c
in the other, and combine the answers from both in order to decide the value of the
original propositional logic formula P . There are variations of the experiment above
utilizing different lengths of strands, balls coated differently or multiple fluorescent
markers that would be able to achieve this in a single tube. But as the number
of domains involved in the expression grows so does either the complexity of the
experimental procedure, the resolution of instruments required, or the number of
tubes and control assays. In comparison, a clocked program utilizing branches and
synchronization is an ideal system to easily model these problems. In pseudocode
we may write the predicate above as

Predicate 4 (a ∨ b) ∧ ¬(a ∧ c)
1: p← False
2: q ← True
3: if a then
4: p← True
5: end if
6: if b then
7: p← True
8: end if
9: if a then

10: if c then
11: q ← False
12: end if
13: end if
14: if p then
15: if q then
16: return True
17: end if
18: end if
19: return False

This pseudocode is a convoluted way to express something most modern pro-
gramming languages will let you express in one statement – but it is an accurate
transcription of how our model will solve this problem. We will have each sub-
expression generate a “result” strand (equivalent to the variables p and q in the
example above). We then combine the result strands in the same fashion we com-
bine the underlying, base-level queries about domains in the solution such as a, b
and c in this example. The final result strand (represented by return statements
in the text above) will be a FRET acceptor DNA molecule. When we pour in its
complementary DNA sequence with a fluorescent donor molecule into the solution,
the existence or lack of fluorescence will inform us whether the entire expression
evaluated to true or false.

We assume everything is in the solution prior to “executing” the program (by
pouring in the clock strands). Another way of doing this is simply pouring the
program into the solution containing the input DNA strands to be detected.
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To demonstrate how we solve this specific expression and general propositional
logic formulas in our model, we start by presenting a solution to detecting just a
single domain, say a.

A very straightforward solution would be to have a stack containing a single
instruction, ā tagged with a fluorescent marker that will exhibit FRET when it
binds to an output extraction molecule containing both the domain a and a flu-
orescence donor. This simple approach does not necessitate procedural programs
or instruction stacks at all. It is very similar in nature to the trivial approach we
initially described, and only artificially places the probe strand ā inside of a stack
instead of introducing it directly. As such, it also doesn’t scale as the complexity
of the propositional expression grows (indeed, detecting the presence of a and b
together in the target strand but not either of them alone is already impossible
with this approach). It also suffers from requiring that the domain-detecting mol-
ecule contain the fluorescent marker molecule, which may interfere with its regular
binding to the target.

A more refined approach, then, would be to include both a stack containing
the instruction ā as well as another stack, gated by the domain a, and containing
a flouromer with a separate domain, denoted f . This solution is portrayed in
Figure 5.1 below. If the target strand in the solution contains the a domain, then
once clock strands have released the ā instruction to freely interact with other
constituents, we expect that the instruction will bind to both the gate a and the
target. The number of molecules bound to each of the two species is determined
by the respective concentrations of the gated stack and the target. If we set both
to be equal, thermodynamics dictates that half of the released ā instructions will
bind to the target and half will bind to the gate. Thus, once we introduce more
clock strands into the solution to release the f instructions from the now ungated
second stack, we expect to see half of the fluorescent signal that we would see in
a solution without the a target strands (where all stacks containing f are ungated
because there was no competitive binding).

We refer here to receiving half the fluorescent signal instead of specifying exact
units because it is often the case when using spectroflourometry that units are
arbitrarily set by measuring a ground state with no excitation (i.e in the dark)
and a state with the maximal concentration of fluorescent molecules possible in the
experiment. In dilute solutions the absorbed light is linear with the concentration
of the fluorescent particles [4], so we can express fluorescence as a simple fraction
of the maximal attainable in our experimental system.

Returning to our current approach, we find it is better in that it does not
rely on a having a fluorescent receiver molecule, but it is still not scalable: The
dependence on detecting the level of fluorescent signal will cause us to run into
problems once we introduce more complex queries (propositional logic expressions
consisting of more clauses and domains). For instance, we might want to trivially
extend this by asking whether a or b is in the target strand. The amounts and
concentrations of the various components would have to be carefully managed so
we can differentiate the cases where both a and b were found in the target versus
cases where either a or b were found or cases where neither were in the solution.
In a naive implementation, the existence of both a and b will lead to seeing a
quarter of the fluorescent signal. Either of them but not both will give half of the
signal, while the maximal fluorescence achievable by the f domains released from
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Figure 5.1. Detection of a domain without decoupling. Not all states
depicted. The initial state is marked S0. Gates on a stack are denoted
by a tick mark on the stack bar immediately preceding them. Adding
an a domain together with clock strands will cause half of the released ā
instructions to bind to the gate of the second stack, while half will bind
to the a domain. As a result, adding the f̄ flouromer will cause half
the maximal level of fluorescence, compared to the other input pathway.
The other input pathway corresponds to pouring any strand µ 6= a. If
that occurs, pouring clock strands will cause all of the ā instructions
released to bind to the gated stack, releasing the fluorescent receptor
f . Upon subsequent addition of complementary fluoromers f̄ , we will
get fluorescence. Thus full fluorescence signifies the logical expression a
evaluated to false, while half fluorescence indicates a is true.

the stacks is emitted when neither is in the solution. This may sound appealing
due to the amount of information that can be extracted from a single measurement
of fluorescence – here, we have 3 possible results instead of a binary “true or false”
output. However, it can in fact lead to practical problems in the resolution and
accuracy of measurement instruments, as well as a complicated experiment design
requiring careful control of the concentrations of various stacks, clock strand poured
and so forth. Similar problems also arise whenever there are multiple occurrences
of a in the target strand: For example under this naive implementation, two non-
overlapping occurrences of the a domain in the target will cause only a third of
the fluorescent signal to appear. We wish to remove the dependence on the level
of fluorescent signal in interpreting the results. In a sense, we wish to digitize the
signal as one does in electronics when moving from analog circuits to reliable digital
ones.

5.1.1. Decoupling. All of these problems essentially stem from the lack of
decoupling between the reactions allowing a to bind to the target if it exists, and the
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reactions allowing a to bind to the gate if it doesn’t exist. This causes a to “divide
its attention”, so to speak, between two competitive products having the same free
energy and therefore the same rates of reaction. Thus we employ the power of
the clocked DNA model to allow synchronizing the reactions so that they occur
separately, using the following robust design for one-domain detection (Figure 5.2).

Figure 5.2. Detection of an a domain with “half” decoupling. Not
all states are depicted. The initial state is marked S0. Adding an a
domain together with clock strands will cause most of the released ā
to bind to the input domain a. Rare runaway stacks will release s
instructions, which will ungate the second stack (†s̄a|f), allowing rarer-
still remaining ā instructions to further ungate that stack, and lead to
very slight fluorescence once f̄ fluoromers are added. Adding µ 6= a
domains instead of a domains will lead to the input pathway at the
bottom of the figure, where clock strands cause gradual ungating of the
stacks until all possible fluorescent donors (f instruction) are released,
leading to full fluorescence when their complementary f̄ fluoromers are
added. Thus full fluorescence signifies the logical expression a evaluated
to false, while very slight fluorescence can be treated as no fluorescence,
signifying a is true.

To detect the presence of the a domain we have a stack containing two instruc-
tions: ā (a’s complement), and s, a special auxiliary synchronization instruction. s
is guaranteed by our compiler to never interact with a or ā. We also have a gated
stack, whose gates are the domain s̄ complementary to s, followed by the domain
a. That stack is our result stack, and it contains a fluorescent receiver attached to
a sentinel instruction f .

What we have ensured by this is that the instruction f is released only after all
ā instructions have had the chance to bind to a domains in the input strand(s), if
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Figure 5.3. Fully decoupled detection of a domain: Runaway stacks
are incapable of causing unwanted fluorescence. Again the initial state
is marked as S0, and here adding a with a clock strand will lead to
either binding to the input a, or cause runaway stacks to ungate the
second stack. However, more clock strands are necessary to ungate the
third stack (the result stack), and therefore no fluorescent f strands are
released. Instead, there is ample time for the released ā instructions to
react with a inputs until all of them hybridize correctly. Then, additional
clock strands will ungate the remaining stacks, but no ā instructions are
left to ungate the final stack, which means no f strands are released,
so no fluorescence occurs. Conversely if µ 6= a is introduced into the
solution, clock strands will cause complete ungating of all stacks until
all f strands are free, with the consequent addition of f̄ fluoromers
causing full fluorescence. Here there is no ”leak” signal: Fluorescence, if
it occurs, will always be entire and means the propositional expression (a
in this case) was false. Conversely no fluorescence means the expression
was true (a was present)

these exist in the solution. The reason this is ensured is that when the experimenter
pours in the clock strands at a quantity less than or equal to the quantity of the
first ungated stack, they release the ā instruction, and to a small extent, the s
instruction in the case of runaway stacks. The ā instructions released are unable
to bind to their complementary gate a, since it is blocked by the s̄ gate preceding
it. Instead, they bind to the input instruction containing a domains if it exists,
or otherwise remain free in the solution. Some instructions s created by runaway
stacks do bind to the s̄ gate and remove it, allowing any remaining ā instructions
to bind to the following gate. But the rate of reactions governing the unwinding
of a stack makes runaway stacks relatively rare. In addition, the extra reactions
necessary to first bind the s gate, then disassociate the gate complex from the
stack, thereby revealing the a gate, are both slow, with rates on the same order of
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magnitude of binding the a domain. Thus there is an almost complete decoupling
of the reactions.

In fact, complete decoupling (Figure 5.3) may be achieved by using one addi-
tional intermediate stack, gated by s and releasing s′. The released s′ then controls
the gate of the final result stack instead of the s̄ gate (that is to say, we replace
the s̄ gate by s̄′). Then, the addition of clock strands by the experimenter is nec-
essary for the result stack to unwind, achieving a decoupling of the two reactions
by an arbitrary time delay imposed by the experimenter. This is achieved because
the rate of reaction for clock reactions versus instruction reactions (like binding to
gates) is determined primarily by the length of the instruction domain, which is
designed to be longer than the clock domain. The orders of magnitude difference in
the rates of reaction for clocks and gates ensures that nearly all of the clock strands
released will be consumed by releasing the ā and s instructions, and furthermore
that nearly all of the ā instructions that could interact with free a domains in the
solution will do so before binding to the a gate, because the s′ reactions won’t be
released yet: There are no more available clock strands to release them, having
all been used up quickly in unwinding the initial stack. Figures 5.1 - 5.3 above
illustrate the difference between the levels of decoupling.

5.1.2. Half-decoupling output fluorescence levels. We now know what
to expect of the “no decoupling” and “full decoupling” states in terms of the level of
fluorescence expected as output in case a is in the solution, or it is not. For the half-
decoupled setting, the equilibrium concentrations for the number of ā instructions
bound to the a gate and the number of ā instructions bound to the target, if it
exists, are governed by the following equations (assuming all concentrations of all
constituents is the same):

[āa] = [ā0] · k1

k1 + k2
[Gateāa] = [ā0] · k2

k1 + k2

Where k1 is the rate of reaction for the hybridization of ā with its complement,
discussed in Chapter 2, k2 is the combined rate of reaction for the binding of s
to the s̄ gate and disassociation of that s̄s complex from the stack, and [ā0] is
the concentration of ā instructions existing in the solution. Note all of these ā
instructions are a result of runaway stacks, the probability of which is in turn
determined by the rates of reaction of the mechanism of unwinding of the stacks.
These rates can be determined experimentally, but by estimating the rates involved
we believe that this decoupling is satisfactory for most cases. Furthermore, the
complete decoupling outlined above guarantees that very few stacks will unwind
unintentionally, the cost being an additional stack and additional strand species
per domain in the propositional logic expression. Adding additional decoupling
stacks (gated by s′ and releasing s′′ and so forth) adds virtually nothing to the
isolation of reactions achieved by the full decoupling method.

One should note that, as we move towards more complicated cases involving
several steps, each s domain is unique to the specific stack it appeared in – i.e it
decouples only the binding of the instructions in that stack to the result stack. Two
separate stacks used for detecting different strands will have distinct synchroniza-
tion domains that do not interfere with each other.

We note the result instruction, f , is released if and only if the following two
conditions occur: (1) ā hybridized with the a gate on the result stack and (2) the
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result stack had unwinded by subsequent pouring of the clock strand. Condition
(2) occurs if and only if ā had not first hybridized with an a domain on the input
strand. So, in conclusion, fluorescence appears when there was no a domain in the
input strands. This will remain a property of our computation and is important in
order to reason about the behavior of the system: The absence of a result strand
means the expression it acts as a result for evaluated to true. Its existence free in
the solution indicates falseness of the expression. In a sense this is the reverse of
the prevalent design principle of electronic circuits where the presence of voltage
on a wire often indicates truth value. Otherwise the two systems are somewhat
analogous. That analogy is elaborated in a later section.

We have discussed, then, detection and interpretation of the result for a single
domain. We will now show how this serves as a building block for arbitrary finite
propositional logic expressions.

5.1.3. OR stacks. The construction of arbitrary OR expressions, d1 ∨ d2 ∨
. . . ∨ dm uses a single result stack that has all of the domains di as gates one after
the other. Thus, the resulting f fluorescent instruction is released if and only if all
of the gates were opened, corresponding to a case where none of the di’s matched
the input domain. Again, full fluorescence always results from a false predicate.
An example a ∨ b stack is demonstrated in Figure 5.4.

Figure 5.4. The configuration for solving a ∨ b with half-decoupling.
This abbreviated graph does not show runaway stacks or incomplete
transitions. Starting from S0, the addition of a, b or both and enough
clock strands will finish in a state where no f fluorescent receiver strands
are free, signifying a ∨ b was true. Addition of µ 6= a, b instead causes
the f stack to be released and fluorescence is emitted once f̄ fluoromers
are introduced into the solution. This means neither a nor b were in the
solution.
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5.1.4. AND stacks. The construction of arbitrary expressions of the form
d1 ∧ d2 ∧ . . . ∧ dm is by multiple result stacks: The first is gated by s and d1, the
second by s and d2 and so forth. All stacks are present in the same concentration
and thus full fluorescence occurs if any of them is ungated, signifying that one of the
instructions d̄i hybridized with the gate and not with input strands, which means
the complementary domain is missing in the input strands, and the expression
evaluates to false. Here the number of resulting fluorescent instructions is actually
saturated by having more than one missing domain. However, since we only end
up pouring a known quantity of the FRET donor molecule, fluorescence will still
be at either the full level if any of the result stacks were ungated, or none at all if
all domains were found on the target strand.

Note that both of these constructions are also able to detect overlapping regions
in the input so long as the input strand is supplied in high enough concentration
as to allow each possible di instruction to bind to a single input copy (hence, a
concentration m times the concentration of the di stack should suffice).

In both the OR and the AND stacks, it is not important whether the di’s lie
in the same stack or on separate stacks. We shall assume they do lie in the same
stack, as it simplifies the abstraction process when we combine them to form more
complex stacks detecting composite queries.

Figure 5.5. The configuration for solving a ∧ b with half-decoupling.
Again we show only most probable transitions. Starting from S0, the
addition of both a and b and enough clock strands will finish in a state
where no f fluorescent receiver strands are free, which we interpret as
a ∧ b being true. Addition of anything else causes the f stack to be
released and fluorescence is emitted once f̄ fluoromers are introduced
into the solution. This means we did not find both of the domains in
the solution.
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5.1.5. NOT stacks. A naive approach might have been to treat a logical not
by simply reversing the way we interpret the output: I.e, treating the evidence
of a FRET signal as meaning that the logical expression is true rather than false.
However, this fails in all but the simplest of cases because once several domains are
combined the effects of NOT have to be modeled in the component stacks themselves
to affect the logical calculation, not only in our interpretation of the result. The
stacks for ¬d, then, are implemented by adding the flourescent instruction f to
the initial stack containing d̄, and replacing the contents of the result stack by an
non-fluorescent f̄ instruction (i.e one that does not induce fluorescence, as it does
not include a FRET donor molecule). Hence, whenever d̄ binds to the gate of the
result stack (when it did not find any input strands to bind to in the solution), this
“quenching” f̄ hybridizes with the f instruction, preventing further reaction with
FRET donor molecules and thereby preventing fluorescence. The benefit is that we
interpret the output as in the previous cases: The expression ¬d is true, or in other
words, d is not in the input strands if there is no fluorescence. If, however, d had
been a domain in the input, f̄ would not be released as nothing would ungate the
result stack. The f instruction released from the initial stack would react with the f̄
fluoromer we introduce when we wish to read the output, giving us the fluorescence
which we interpret as meaning ¬d is false, that is d is true.

Figure 5.6. The constituents for the ¬a query, with half-decoupling.
We omitted the states that are not part of the main pathway demon-
strating the solution. We start from S0, where addition of clock strands
will release an f instruction together with the “probe” domain ā. If
a is not in the input, the f̄ (non-fluorescent) domain will be released,
hybridize with the f domain to form the stable ff̄ complex, and no fluo-
rescence will occur even after we introduce the fluoromer f̄ . If, however,
a was in the input, the fluoromer f̄ will bind to the f domain and the
fluorescence emitted will let us know the proposition ¬a had been false.

One trivially sees that this also works for negating stacks of the ”or” or ”and”
types: Adding the f instruction in the initial stack and replacing the f instruction
in the result stack with a non-fluorescent f̄ instruction achieves the correct behavior.

5.1.6. Summary of the fundamental logical recognition components.
We have described the components of a propositional logic expression in terms of the
components of a clocked DNA program that can check if the expression is satisfied
given a set of input variables coded as different DNA domains. In the process,
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we loosely used the terms “initial stack” and “result stack”. In moving forward
to demonstrate how to combine these building blocks into arbitrary propositional
logic expressions, we formalize these notions. The map F between a propositional
logic expression P and the DNA program Ω used to satisfy it has the following
properties:

P = d1 ∨ d2 ∨ . . . ∨ dn ⇒ F (P ) =
{
|d̄1 . . . d̄nsP , †s̄P d1 . . . dn|fP

}
P = d1 ∧ d2 ∧ . . . ∧ dn ⇒ F (P ) =

{
|d̄1 . . . d̄nsP , †s̄d1|fP , †s̄P d2|fP , . . . † s̄P dn|fP

}
P = ¬d⇒ F (P ) =

{
|d̄fP sP , †s̄P d|f̄P

}
P = ¬(d1 ∨ d2 ∨ . . . ∨ dn)⇒ F (P ) =

{
|d̄1 . . . d̄nfP sP , †s̄P d1 . . . dn|f̄P

}
P = ¬(d1 ∧ d2 ∧ . . . ∧ dn)⇒ F (P ) =

{
|d̄1 . . . d̄nfP sP , †s̄P d1|f̄P , †s̄P d2|f̄P , . . . , †s̄P dn|f̄P

}
Where all domains involved (di, sP , fP for 1 ≤ i ≤ n) are distinct and do not

interact with each other (except with their own complementary domains). F gives
us, for every simple proposition of the kinds described above, the constituents of
the solution necessary to compute it. The result of F is a set of stacks in our
notation, that will evaluate the expression using the mechanism we described. We
wrote F here using half-decoupling, but one may trivially add the decoupling stacks
necessary to establish full decoupling for F , keeping in mind that s and s′ should be
specific to the predicate P , as denoted above. The stacks containing the fP strand
are called the result stacks of the expression, the stack containing the domains di
is the initial stack, and any intermediate stacks, if present, are decoupling stacks.

5.1.7. Composing subexpressions. The key to combining these expressions
is that fP does not have to be fluorescent in itself. It may instead become the
input to further gates and hence determine the computation. In fact, this becomes
a physical form of lazy evaluation – if fS for a sub-expression S in P is not released,
because that expression was satisfied, and in the case that expression is taken in
a disjunction (i.e P = S ∨ T ), no further reactions in T are necessary, and indeed
none will occur because the gates for the stacks with the logic for verifying T are
not opened.

We now want to solve the problem of detecting whether a general logical propo-
sitional expression P over domains d1, . . . dm is satisfied by the inputs of a solution.
In fact we will see we are able to do even more, and determine which of the sub-
predicates contained in P matched the input strands. The importance of this result
is in its practical application to experimenters: We have devised a system which
enables an experimenter to decide among many possible features of DNA strands
in the solution by simple repetitive pouring of clock strands and a single colored
fluorescent marker, with no temperature cycling or washing steps and with readily
interpretable output. To demonstrate this construction we will demonstrate it with
the simple example predicate (a ∧ b) ∨ (c ∧ d).

We denote S = a ∧ b and T = c ∧ d consider only F (S) and F (T ), but do not
use fluorescent instructions fS and fT . Instead, we construct an ”or-type” result
stack for S ∨ T , i.e an additional stack gated by fT and fS and releasing fP , a
FRET-marked domain, if and only if both fT and fS were released. Thus both fS
and fT have to be released (i.e both S and T are false) in order for fluorescence to
occur (again, in the presence of the complementary FRET donor f̄P domain.)

We note that further decoupling stacks are not necessary for combining higher-
level expressions in this form: The decoupling is merely necessary to allow all
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domains to interact with input domains initially, to ensure hybridization with input
strands happens prior to exposing competitive gates. The result strands in higher-
level expressions cannot possible react with inputs, with one exception: Use of
semi- or full decoupling is again beneficial when ”not”-type operators are used,
as these release strands to the solution that compete with gates sharing the same
sequence. If T is an expression determined by F (T ), ¬T can be determined by
releasing together with the initial stack for T , the domain fT indicating T is false,
and releasing its complement f̄T in the result stack for T . Here we need decoupling
to allow T to evaluate (i.e undergo reactions necessary to determine its value) prior
to fT reacting with further stacks in the expression.

We hope the reader can understand from this example the general mechanism
by which we combine sub-expressions to form our final propositional logic statement
P . A recursive definition of F according to the representation of the statement P
as as tree, extending the definition of the initial cases above, is the following:

F (T ∧ S) =F (T ) ∪ F (S) ∪
{
†f̄S |fT∧S , †f̄T |fT∧S

}
F (T ∨ S) =F (T ) ∪ F (S) ∪

{
†f̄S f̄T |fT∧S

}
F (¬T ) =F (T ) ∪

{
|f¬T , †f̄T | ¯f¬T

}
5.1.8. NAND gates. From the point of view of conciseness, one may have

simply designed a NAND gate. NAND, standing for “NOT AND”, is the boolean
logic binary operator whose value is ‘true’ if and only if both of its operands were
false. It is a basic fact of logic theory that it is universal, meaning that any of
the 24 possible binary boolean operators can be constructed by chaining several
NAND gates. Furthermore if we fix one input, we can construct the NOT logical
operation. Therefore we may have simplified the definition of F somewhat, as well
as made our arguments slightly shorter, without losing the generality of our results.
However, as is the case with electronic circuit design, using AND, OR and NOT
gates is both more efficient in terms of the number of components in the circuit, as
well as being easier to reason about. The construction of the NAND gate in our
case can be read off of the recursive definition of F (¬(a∧ b)) and interested readers
may follow that direction.

5.1.9. Asymptotics. We now proceed to discuss some emergent properties
of the model. We wish to count the number of stacks N and number of reactions
R necessary to evaluate a proposition P over the domains D. First we note that
the initial stacks in F (P ) for some P need not be counted: If P = `(S, T ) (here `
stands for either logical ‘OR’ or logical ‘AND’), we can combine the initial stacks
of S and T into one long stack releasing all the initial constituents. As we do
this for the whole tree, we discover that in essence, we just have to include all of
the domains in D in a single stack. This stack can be unwound immediately, the
rest of the evolution of the computation progressing by interactions between the
result strands fPi

, fPj
for some sub-expressions Pi, Pj of P . There is no need to

introduce further initial stacks. This is evident from the definition of F above. The
only exception to this is when we negate an expression, computing ¬Pi. Then we
need to introduce one more strand, the fluorescent receiver domain fPi , into the
solution initially. In the notation for F , we do this as a separate ungated stack.
But this is not compulsory – rather, it simplifies the notation for F to introduce
it separately. We can in fact simply include this instruction as part of the initial
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stack containing all domains in D. To summarize, there need only ever be one
initial stack no matter how complex the expression P is. Furthermore, the size of
that initial stack is always |D|+Mneg instructions, where Mneg is the total number
of logical NOT operators used in the expression. In our exploration of the effect of
logical tautologies on the parameters N and R we will treat the effect of different
equivalent forms of P on Mneg.

We see that for a proposition P = d1 ∧ . . . ∧ dn, F (P ) has n result stacks in
half-decoupled form, each with two gates and one instruction. For P = d1∨ . . .∨dn,
F (P ) we have one result stack, gated by n + 1 domains, and containing a single
instruction. In fact, n + 1 domains are needed only for the half-decoupled in the
case that the stack is gated only by first level domains. By this we mean the
domains that may appear in the input, as opposed to being gated by the result
strands from stacks for other clauses. Instead of accurately capturing the different
conditions it will suffice to say we require o(n) gates in that case. This also holds
for conjunctions and disjunctions of higher-order expressions Pi, so the same results
hold for expressions of the form F (P1 ∧ . . . ∧ Pn) and F (P1 ∨ . . . ∨ Pn).

Already a curiosity arises in relation to the construction of a tree of propositions.
Where the logical expression (a∧ b)∧ (c∧d) is equivalent to a∧ b∧ c∧d (i.e AND is
associative), in our system a∧ b∧ c∧ d is preferable from a number of stacks point
of view as it requires 4 stacks, compared to 6 required by (a∧b)∧(c∧d). The latter
has two stacks for each clause and two for the combination S ∧ T . On the other
hand, for d1 ∨ . . . ∨ dn we need one stack with o(n) gates in the un-parenthesized
case, whereas each parentheses introduced, so to speak, costs us an additional stack
and an additional gate. When designing large queries then, we will be guided by
altering the sequence to arrive at forms that include long sequences of conjunctions
or disjunctions, rather than many alternating cases. In electronic circuit design,
coincidentally, placing the parentheses differently does not affect the number of
components, though it does effect the length of the longest chain of operations.
Similarly, we turn to the analysis of the number of reactions.

5.1.10. Longest critical chain. Specifically the interesting measure of the
number of reactions is not the aggregate number but rather the longest chain of
reactions that have to occur one after the other. In essence this chain is the crit-
ical path of the whole computation and determines the time required to run the
computation. This is similar to the notion of T∞ in parallel algorithm design. We
ignore the time required to unwind stacks as this involves only clock reactions which
are orders of magnitude faster than stack ungating and instruction hybridization
reactions. We have the following properties:

• For a conjunction of n domains, all reactions are parallel. The value is
determined within the duration of one reaction after all initial domains
have been released. That is because each stack is gated by a single domain.
In the case of semi-decoupled or fully-decoupled stacks we in fact need an
extra constant number of reactions. But as before, we can simply say o(1)
reactions per conjunction are needed.

• For a disjunction of n domains, we can determine the output only after
allowing the result stack to become ungated. As it has o(n) gates, this
will require o(n) reactions.
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• A negation requires o(1) reactions: There is an additional reaction beyond
the gate reaction that we must wait for – the binding of f¬a to the result
strand ¯f¬a, but it is still a constant number of reactions.

One immediately sees the interesting trade-off between OR and AND operations
arising from our model: AND clauses are evaluated faster, but require more stacks.
The requirement for more stacks is a practical design limitation since each species
of stacks needs to be constructed separately. OR stacks, on the other hand, take
longer to evaluate but require a single stack (though it is longer). De Morgan’s
law for converting ¬a ∨ ¬b to ¬(a ∧ b) has a very concrete effect: It halves the
time required at the cost of twice the number of stacks. In fact, we can see that
an expression P over n domains, once transformed to conjunctive normal form,
will run in at most o(n) reactions even if it ends up having 2

n
2 disjunction clauses.

This might involve o(2
n
2 ) different stacks, but it is still remarkable to parallelize so

trivially such that we can evaluate the expression in just o(n) time.
We defer the full analysis of the optimizations that can be made to the solutions

of this problem using logical tautologies to future work. There has been much work
in the area of optimizing propositional logic expressions under the constraints of
implementation by electronic gates and that literature can serve as a basis for
anyone seeking to explore this further. We will, however, finish this section by
applying the analysis to our running example of the predicate (a ∧ b) ∨ (c ∧ d).
As it is written, it requires five stacks: Four for the conjunctions and one for the
disjunction. The time we have to wait before introducing the f̄ fluorescent probe
strands in order to allow all reactions to occur is three reactions long: Two for the
disjunction and one for all conjunctions. If we use half decoupled stacks this grows
to four, to account for two reactions necessary to ungate the conjunction stacks.
However, if we use De-Morgan’s law to turn this proposition into the logically
equivalent ¬(¬(a ∧ b) ∧ ¬(c ∧ d)), we now use one more stack, for a total of six
stacks: Two for each conjunction. The longest chain of reactions is extended by
the multiple negations so we do not arrive at a shorter reaction time, and this
does not gain us anything. However, if we apply De-Morgan’s law once more,
to each of the conjunctions, we get ¬((¬a ∨ ¬b) ∧ (¬c ∨ ¬d)). This now requires
just four stacks (one stack less than our original expression), and the number of
reactions until we can tell the result is now six: Each of the disjunctions requires
four reactions to calculate the result, including the negations and half-decoupling.
The negated conjunction takes two more. A final use of De Morgan’s law will turn
this into (¬(¬a ∨ ¬b) ∨ ¬(¬c ∨ ¬d)). Here only three stacks are needed (two less
than the original expression) but the number of reactions is the highest at seven
reactions. Interestingly, To accurately detect (a∧b)∨(c∧d) in a different system we
need just four results stacks: one gated by a, c, another by b, d, another by a, d and
a final one by b, c. This ensures that at least the combinations of a and b or c and
d must be present in the solution to prevent any stack from opening, and any other
combination of two or less of the domains a, b, c, d in the input will cause one of the
stacks to open. The reaction length is two reactions, or three for the half-decoupled
version. This is equivalent to the expression (a∨ c)∧ (b∨d)∧ (a∨d)∧ (b∨ c), but it
omits the conjunctive stacks by simply using the same fluorescent activator strand
f for all disjunction stacks, so that if any disjunction failed the entire expression
fails immediately. This optimized version works in this case because of the number
of domains involved and the type of expression, given in disjunctive normal form.
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It saves us both stacks and reaction time only because for n = 4, 4 = 2
n
2 = n so

that we lose nothing by the exponential growth of stacks.

5.2. Digital Electronic Logic Circuit Analogy

In a way, there is an analogy between the solution of our so-called recognition
problem and familiar logic circuits. This analogy is both interesting and will help
elucidate our second example problem. Circuits implementing a specific logical
expression are built in a tree with input wires e1, . . . , en and an output wire f .
The input wires carry voltage to signify that ei is true, and no voltage otherwise.
Gates like AND and OR combine two input wires by producing or not producing
voltage on an output wire oj leading out from them to other AND and OR gates,
until a single wire f leads out of the circuit with a charge indicating the expression
evaluated to true, and no charge otherwise. A NOT gate places electric charge on
its output wire if its input had none (usually using an auxiliary gate, constantly
charged, since current cannot be generated without a source of power). Physical
location in a circuit – the ordering of components and the wiring between them –
determines the combination of the inputs that produce the output. The location,
which we abstractly label by e1, . . . , en, o1, . . . , om, f is determined in theory by the
underlying physical model (wires have to run into a gate and out of it) and then in
practice using design software implementing trace and route algorithms which place
the wires on a chip. In the DNA program, there is no concept of location: multi-
tudes of molecules can interact with multitudes of other molecules in a uniformly
mixed solution. However, the role of locations is fulfilled by sequences of bases,
specifying very precisely which strand interacts with what other strand – equiv-
alent to the wiring scheme of a circuit specifying which wire runs to which gate.
These we too abstract using labels (the domains we’ve used so far like a, b, di, s, f)
and their realization is handled by “low-level” software determining the exact se-
quence – NUPACK, managed by our compiler’s understanding of the model (which
is equivalent to the physical model underlying the electronic circuit). The neces-
sity to include an extra input strand for every NOT operator in the expression
is similar to the requirement in electronic circuit design for NOT gates to receive
an extra input wire carrying charge. Finally, the tree structure for decomposing
logical expressions, used in evaluating complicated propositions has the exact same
structure in both cases. There is a converse analogy in reading the output of both
systems as well. Where voltage on the output wire (existence of electron flow, es-
sentially) is usually interpreted as the logical expression being satisfied in the case
of electronics, we interpret the existence of the result strand as a false proposition,
and vice-versa. The key observation in this analogy is that the specificity of cur-
rent attained by wiring in electronic circuits (a spatial property of the model) is
replaced by the specificity of DNA hybridization using sequences. The fact that
DNA base sequences allow us to control which molecules interact with each other
will instruct our intuition on how to proceed in solving further problems using the
DNA computation model.

5.3. Future research directions

Many questions arise from this model, not the least of which being its ex-
perimental applicability. While experimental evidence of orderly construction and
unwinding of stacks as predicted by the model has been demonstrated by Daly in
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Chang and Shasha’s original work [3], an experiment involving many gated stacks
together with FRET proceeding accurately has yet to be conducted. Further the-
oretical questions involve the limits of this model’s computability. We have not
demonstrated it is Turing Universal and in fact have not even shown it to be
equivalent to the class of languages represented by Finite Automata, although we
suspect this to be the case. At least one constraint will have to be imposed on
the equivalence, and that is having a bound on the length of input consumable by
the automaton (until, in our case, it runs out of molecules able to further react).
Other interesting problems may be worked out in our model. There is also further
work on simulating low-population behavior in the compiler’s code, or enriching
it by allowing higher level languages, closer to modern procedural programming
languages, to generate a description of the domains and stacks involved.
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