Title
Negative Example Selection For Protein Function Prediction: The NEGGO database

Abstract
Negative examples are rarely recorded in the Gene Ontology database, yet are required by many machine learning algorithms applied to the protein function prediction problem. Despite this lack of negative annotation, there has not been significant research into methods to effectively choose high-confidence negative examples for protein functions. We present a comparison of heuristics used in the past for choosing negative examples, as well algorithms borrowed from Positive-Unlabeled learning scenarios in text-classification. To these we add two novel algorithms, and demonstrate that our algorithms achieve lower false-negative rates than the current state of the art. We also provide a database of negative examples for general use in machine learning for protein function prediction.

Intro

Despite the recent influx of machine learning algorithms applied to function prediction, there has been relatively little study devoted to the issue of class imbalance in function labels. The current standard for labeling functions is the Gene Ontology database [ref], yet this database rarely stores what proteins do not possess a function, leading to very few or often no verified training negative examples. This situation presents an obvious problem for the vast majority of machine learning techniques, which require examples of both the positive and negative class in order to train a predictor. Without these labeled negative examples, authors often resort to heuristics in order to define the non-positive class, which can lead to false negatives in the training set and detrimental classifier performance.

The situation described above, in which the only known labels are of the positive class, is not unique the protein function prediction (PFP) problem, but also occurs in several other domains. It has been given the name Positive-Unlabeled (PU) learning, and there has been a surge of interest lately in this particular subset of semi-supervised machine learning problems. One branch of PU algorithms attempts to learn in a one-class scenario, as has been applied to mRNA detection in Yousef et al., 2008. As the authors point out, however, 2-class machine algorithms often perform better when the negative class can be well-defined. Thus the majority of PU algorithms proceed by pre-classifying a set of reliable negative examples before applying a traditional machine learning classifier to the enriched data as usual. These 2-step algorithms take many forms (see Liu 2003 for an overview of several), but in this work we will refer to two main subcategories: passive 2-step PU algorithms, which learn the negative examples through a separate mechanism from the classifying algorithm, and active 2-step PU algorithms, which work in conjunction with the classifier to learn the negative examples.

The main focus of PU-learning literature has been on applying these algorithms in the context of text classification [Liu, 2003], where labeling documents is time-intensive and it is much easier to label a document's topic than all of the topics it does not contain. Yet the analogies to protein function are obvious: proteins are rarely labeled with the functions they do NOT possess, and proteins are nearly always multi-topic, in that the possession of one function does not exclude the potential for several other functional classifications. Therefore PU algorithms are highly applicable to the function prediction problem, and hold great potential for improvements in machine learning algorithms applied in this context. Indeed Youngs et al., 2013, showed how more-reliable negative examples can boost the predictive power of function prediction algorithms.

We proceed by focusing directly on the first step of the PU learning task, namely generating a reliable set of negative examples for protein function and evaluating the quality of those negative examples, rather than their indirect effect on classifier performance. While PU learning has been applied to the biological domain before [Bhardwaj; Yousef; Zhao], to the best of our knowledge no study has focused on evaluating the quality of negative examples for GO functions.

We examine many of the heuristics used for protein function negative examples in the past, including: designating all genes that don’t have a particular label as being negative for that label [Guan, 2008], randomly sampling genes and assuming the probability of getting a false negative is low (often done when predicting protein-protein interactions, as in [Gomez, 2003]), and (iii) using genes with annotations in sibling categories of the category of interest as negative examples [Mostafavi, 2009; Cesa-Bianchi]. To these heuristics we add two common PU algorithms used in text classification but here adapted to PFP, the Rochhio algorithm [Rocchio 1971] and the “1-DNF” algorithm [Ref], as well as our ALBNeg algorithm [Youngs, 2013], and one of the few previously-published protein-negative-example-selection algorithms, the AGPS algorithm [Zhao]. In addition, we present two new techniques: the first, Selection of Negatives through Observed Bias (SNOB), is an extension of our ALBNeg algorithm (which can itself be viewed as a generalization of the “1-DNF” PU algorithm), while the second, Negative Examples from Topic Likelihood (NETL), is based on a Latent Dirichlet Topic model of GO data. Great names(

In addition to showing the reduced false-negative rate of negative examples generated with our methods, we also provide a case study to show how these examples can benefit the performance of other algorithms. Lastly, we provide a resource, NEGGO, which contains lists of high-quality negative examples for GO categories in a variety of well-studied organisms.

Results
Evaluation of Negative Example Quality

While function prediction results are biased negatively by the fact that a positive prediction without a corresponding validation annotation might simply indicate lack of study rather than an incorrect prediction, negative example validations are biased positively by the same effect. Just because a gene is not annotated with the function in the validation set doesn't guarantee that it was correctly identified as a negative example. In order to attempt to rigorously evaluate potential negative example selection algorithms, we utilize the average false negative rate over categories in each of the three branches of GO.

We determine false negatives through a temporal holdout [Ref], running all of our algorithms on data from the human genome obtained in Oct. 2010, and then validating with data obtained in 2012. Any gene that was predicted as a negative example from 2010 data, which received a positive annotation in the 2012 data, is considered a false negative. For extra stringency, we consider even an “Inferred by Electronic Annotation” evidence code annotation as an indication of false negativity (even though these types of annotations are traditionally considered less reliable). We average the false negative rates across all GO categories in each branch that have between 3 and 300 annotations, so as to consider only functions specific enough to be interesting but not so specific as to have little chance of being validated.

As the trivial solution (predicting no negative examples) would obviously have the lowest false negative result, we present results in two dimensions, where the vertical axis is average false negative rate, and the horizontal axis is number of negative examples predicted (in this setup, the origin represents the trivial solution, while the upper right corner of the plot represents choosing all non-positive genes as negatives). Algorithms that do not have the capability to vary the number of negative examples that they predict appear as points on the performance graph, instead of lines. Since the magnitude of the false negative rate in each branch is dependent on the total number of new annotations added in that branch between 2010 and 2012, the numbers cannot be compared across branches. In order to provide a reference point that is comparable across each branch, we treat the performance of random selection of negative examples as a baseline.
Novel Negative Selection Algorithms

Our first novel negative example selection algorithm, SNOB, is an extension of our previously published ALBNeg algorithm [Youngs, 2013], which selected negative examples for a function based on whether or not a gene's most specific annotations had ever appeared alongside that function. ALBNeg in turn can be viewed as a generalization of a popular passive 2-step PU-learning algorithm known as “1-DNF” negative example selection. This algorithm works by identifying words that are enriched among the positive class, and using as negatives all unlabeled documents [do you mean documents?] which do not contain any of these positive “indicator” words [Liu]. If one considers each GO term annotation as a “word” in the “document” of a protein, then one can apply the “1-DNF” technique to choose negative examples for a protein function by excluding proteins with GO terms that are enriched among proteins containing the function of interest.

In ALBNeg, we generalized the idea of “enrichment”, by computing the empirical conditional probability of seeing the GO function of interest, denoted g, given the presence of each other GO function in all three branches (See [Youngs, 2013]). Proteins whose most specific annotations had non-zero conditional probabilities of being associated with g were ruled out from the potential negative set for g, effectively using the conditional probability as an indicator of potential positivity in the same way that the “1-DNF” Algorithm uses enriched terms.

In our new SNOB algorithm, presented here, we follow the same approach as ALBiasNeg, and for each GO term g, compute the pairwise empirical conditional probability of seeing g given the presence of each other GO term. We differ from ALBiasNeg, however, i) by including IEA annotations in our calculations as well. We then obtain a score for each protein for each GO term g, by averaging the conditional probabilities of all GO terms (including IEA) annotated to that protein, ii) by including all GO terms in the average, not just the most specific terms, and iii) instead of choosing all proteins with a score of 0 as negatives for the function g, we allow the user to set a desired number n of negative examples, and choose the n proteins with the lowest scores as our negatives for g. See the Methods section for details of this calculation.

Our second novel algorithm, NETL, again treats proteins analogously to “documents”, with the GO terms annotated to each protein as the document “words”, but now we consider the proteins to have latent “topics” as well. These hidden topics represent the “true” function of the protein, accounting for the conceptual fact that a GO annotation does not guarantee that a protein actually performs the function in question (due to potential errors in annotation, especially with IEA annotations). We can then apply a multi-topic inference algorithm, specifically Latent Dirichlet Allocation [Blei], to learn the distribution of these latent topics, or “true” functions, and also learn the conditional distribution of the “words” or annotated GO terms based on those topics. Once these distributions are known, NETL selects as negatives the proteins whose latent topic distributions are as dissimilar from the positive class as possible, allowing the user to specify how many negative examples are desired. The full procedure for NETL is described in the methods section. [Do we ever learn the latent topics or do we use them only as a means to an end? Say that here. The latent ones may in fact be interesting.]
Competing Methods

In order to provide a reference for the quality of our novel algorithm's negative examples, we include past heuristics used for negative example selection, as well as the popular passive 2-step PU algorithms, “1-DNF” and “Rocchio”, which we have adapted to the PFP context through the GO term “word” and protein “document” mechanism described above. In the case of the Rocchio algorithm, we made an additional adjustment allowing the number of negative examples to be varied (See Methods for details). We have chosen to focus on passive 2-step PU algorithms for two distinct but related reasons: 1. They avoid some of the issues of self-reinforcement that can occur with active 2-step algorithms, namely that the classifier identifies as negatives those proteins which are most different from the positive class by whatever mechanism that classifier is using, which only reinforces that particular kind of discrimination when the classifier is run again with the negative examples in the second step. A classifier is better-served with negative examples which are actually more similar under the classifying mechanism, in order to force the classifier to be more discriminative. 2. It is more difficult to judge the relative performance of active 2-step PU algorithms, since it is dependent both on the type of classifier being used by that algorithm, and the underlying genomic data being fed into the classifier. The exception to this focus is the AGPS algorithm, which is an active 2-step PU algorithm with which we make a comparison. [This paragraph is kind of unsatisfactory. Reason 1 is no reason not o compare. Reason 2 is vague.]
Performance of Negative Example Methods

 Results for the methods tested on the human genome are presented in Figure 1. Among the methods tested, all algorithms performed better than the random baseline, with the exception of the sibling algorithm, whose weakness is also confirmed by Mostafavi, 2009. The heuristic of choosing all non-positive genes as negative also does not perform better then the baseline, as it is itself a special case of the baseline where the number of negative examples is allowed to be the size of the genome. The best performers across all branches of GO were the algorithms SNOB and NETL, as well as our adaptation of the Rocchio algorithm to PFP. Despite the strong performance of all three of these algorithms, the best performance was achieved by the SNOB algorithm, which achieved an equal or lower false negative rate than all other algorithms across all three branches, with the exception of small numbers of negative examples in the cellular component branch, where the Rocchio algorithm performed better.

Driving the performance of SNOB was its ability to achieve significantly lower false negative rates for more general GO categories (categories with more annotations in the human genome). Figure S1 shows false negative rates broken down by the specificity of the function, demonstrating that while the Rocchio algorithm can compete with or even outperform our SNOB algorithm on the most specific categories, it is eclipsed by SNOB in the more general ones. This discrepancy among categories is most likely driven by the fact that the SNOB algorithm directly utilizes the co-occurrence of functions (See the Methods section), and thus has less information to work with for the most specific categories. [Could the algorithms therefore be combined?]
[image: image1.png]Average False Negatlve Fate

Biological Process

== Random
gl| o ALBNeg
NETL
- sNoB
; Rocchio
© 1-DNF
o AGPS
6
5
4
7
7
3 /7
/

1000 2000 3000
Nurmber of predicted negative exarmples

[image: image2.png]Average False Negatve Fate

18

18

14

12

08

Molecular Function

Random
o ALBNeg

NETL
- sNoB
Rocchio .
© 1-DNF
o AGPS

1000
Nurmber of predicted negative exarmples

2000 3000

[image: image3.png]Average False Negatve Fate

a5

Cellular Component

== Random
o ALBNeg
NETL
- sNoB
Rocchio
© 1-DNF
o AGPS

1000 2000 3000
Nurmber of predicted negative exarmples

Figure 1: Performance measures for negative example prediction on the human genome, in each of the three branches of GO. The “Sibling” heuristic has been left out of the comparison as its poor performance dramatically skewed the scale of the images (see figure S2 for results including the sibling method). The “All non-positive as negative” heuristic has also been omitted, since it would lie on the random line but also skew the scale of the plot. Restate the conclusions from the text but briefer.

Despite being significantly improved upon by our work presented here, our previously published ALBNeg algorithm still achieves comparable or better performance than the AGPS algorithm. This comes as somewhat of a surprise, since AGPS has the benefit of access to a wealth of biological data beyond the GO information utilized by our algorithms, and much of that data post-dates the training GO annotations, providing unfair bias due to the correlation of many data types with GO annotations. However, with that additional data comes additional noise, and we recognize that the AGPS algorithm might be able to improve upon its performance with parameter tuning and feature selection among the data inputs.
Case Study

We apply our SNOB algorithm to the work of Puelma et al., 2012, which employs discriminative local subspaces in gene expression networks to predict function in Arabidopsis Thaliana. We choose this work as a case study because the authors specifically mention the issues that false negatives can cause in their algorithm, and devise an algorithmic approach for selecting high-confidence negative examples for the 101 biological process categories they used to test their PFP method. We utilize their provided data to select negative examples with SNOB, generating the same number of negative examples per category as the author's original algorithm, and forcing the classifier to make the same number of test-set predictions as well. Table 1 shows the results of our case study, demonstrating that even though our algorithm only had access to 1/3 of the data it usually requires (here the authors provided only Biological Process data, and none from the other two branches of GO), SNOB produces significantly fewer false negatives, negative examples with greater specificity, and performs better when evaluated by the metric chosen by the authors.
	Algorithm
	False Negatives
	Negative Frequency
	Avg Enrichment P-Value

	Puelma Neg
	1806
	71.88
	39.00%

	SNOB
	1241
	29.05
	36.26%

Table 1. Results of our SNOB algorithm vs. the algorithm published in [Puelma, 2012]. The “False Negatives” column shows the total number of false negatives produces by each algorithm across all 101 BP categories examined in the paper, as determined by BP data collected by the authors two years after the training data. The “Negative Frequency” column shows the average number of times any gene was selected as a negative example for different function categories, if it was selected at all (a higher number means the same proteins are showing up as negative examples across more categories). The “Avg Enrichment P-Value” column is the metric the authors used to evaluate their function predictions, with a lower value indicating better performance (see Puelma, 2012 for details). Don’t we also want to say somewhere how many negatives were predicted by each algorithm.
Negative GO (NEGGO) Database

 We have collected negative example predictions from our SNOB algorithm in an online database for use by other researchers. While the NEGGO database uses the most current annotations for its ranking of negative examples, we have also included false negative rates for each species in the database, obtained from temporal hold outs on older data, to allow researchers to have a reference for the quality of negative examples in that organism. We describe the quality by the area under the false negative curve, going up to 20% of the size of the genome of that organism. The algorithms depicted are SNOB, NETL, and Rocchio, with the performance of random selection also shown to provide a baseline for each organism. These results are presented in Figure 2, and highlight the large reduction in false negative rates that can be obtained by utilizing one of these algorithms for negative example selection. For researchers who need to be able to determine how many negative examples to use for each category, NEGGO provides a plot for each GO function that shows the false negative rate as a function of the number of negative examples chosen (See figure S3 for a sample plot). For more details on how these validation numbers were obtained for each category, please see the Methods section.
Discussion

We have demonstrated, on both the human genome and a case study in A. Thaliana, that our algorithms can achieve significantly lower false negative rates than heuristics used in the past, or than popular techniques borrow from PU-learning in text classification, or algorithms for choosing protein negative examples that have been previously published. These results, supported by additional literature that has explored the inter-relationships between GO categories [Pandey; King, 2003], indicate that despite lacking a significant number of negative annotations, the GO database encodes implicit information about likely negative examples through its positive annotations.

Despite the success of our approach, there will inevitably be cases where the information from GO alone is not enough to predict a good set of negative examples. So-called “moonlighting” proteins, for example, can have unique combinations of functions that defy conventional annotation patterns. Additionally, approaches that rely on existing GO annotations are limited to proteins that have already been studied to some extent, which in many organisms can be a relatively small proportion of the genome. For these reasons, it is likely that further exploration beyond passive 2-step PU methods into active methods that can incorporate additional data types will be fruitful.

Nevertheless, the algorithms presented here represent a significant improvement even over the active 2-step AGPS method that has access to a wealth data outside of GO. Additionally, our SNOB algorithm achieved a lower false negative rate than any other comparison algorithm, significantly lower than the “1-DNF” algorithm that served as its conceptual basis. Through our case study, SNOB also demonstrated its ability to improve existing function prediction algorithms by directly plugging in the negative examples it produces. Though rigorous verification is required, Youngs et al. 2013 showed even a moderate increase in the quality of negative examples has the power to improve function prediction in general, indicating that SNOB will likely generate even more benefits for PFP methods that require a negative class.

Further work includes the incorporation of additional data types, and potentially the use of active 2-step PU methods. Another potentially fruitful avenue is the incorporation of the GO hierarchy in a negative example method. While GO annotations obey the “true path rule”, meaning that every protein with an annotation g also implicitly has all annotations which are ancestors of g, negative annotations follow the inverse of this rule: a protein p that is a negative for g is also implicitly a negative for all descendants of g. This rule, combined with the fact that our specificity-segmented plots (Figure S1) also show that some algorithms have performance correlated with the specificity of the function, or the number of desired negative examples, holds promise for ensemble methods that use one of multiple algorithms depending on a term's specificity, placement in the tree, and desired size of the negative class. [Right. Might be good to try this.] Lastly, we believe even more nuanced adaptions of text-classification algorithms can be utilized to improve the similarity metric used in NETL.

In conclusion, we have presented a significant step forward in the calculation of negative examples for protein function prediction. Following the example set for negative protein-protein interactions by the Negetome data base [Smialowski], we have made our predictions readily available for a variety of organisms. Our NEGGO database also includes useful statistics to allow researchers to choose the number of desired negative examples and the likely false negative rate of those examples when used in their own experiments and algorithms.

Methods
Data Processing
Data for the human genome was obtained from the GO database archive, with training annotations obtained from 10/2010 and validation annotations from 10/2012. The set of genes was obtained from HUGO by selecting all protein-coding gene symbols, resulting 19060 genes. GO terms for these genes were gathered by querying all official symbols for all annotations that have at least one annotated protein in the human genome, resulting in 7432 biological process categories, 2681 molecular function categories, and 997 cellular component categories.

For the case study in Arabidopsis Thaliana, all data was obtained from the supplementary materials provided by Puelma et al. 2012.
Validation Plot Generation
In order to generate the validation plots in Figure 1 and Figure S1, we plot the average false negative rate as a function of the number of negative examples. For algorithms that allow the specification of the size of the negative class, we sample the rate at 100, 200, 500, 1000, 2000, and 3000 negative examples. The average false negative rate is determined using the temporal holdout, by seeing how many proteins that were designated as negative received an annotation in the function in question (including an IEA annotation). Functional categories that received no new annotations during the temporal holdout are not evaluated, nor are categories with fewer than 3 or more than 300 annotations. Plots are broken down by branch of the GO hierarchy, with each plot showing an average of the results for functions in that branch that meet the specified criteria.
SNOB Implementation
The Selection of Negatives through Observed Bias algorithm takes as its basis the pairwise conditional probability calculation specified for the ALBias algorithm in Youngs et al., 2013:

[Equation].

As mentioned in the results, SNOB removes the restriction that the score be calculated from leaf annotations only, or that a protein must have an annotation in the same branch as the GO term in question in order to be chosen as a negative. In addition, all annotations are utilized, including IEA annotations. The score for a protein and a given GO function is calculated as the average of the conditional probabilities of its other annotations, which is efficiently calculable as:

[Equation].

These scores can then be ranked to produce a list of negative examples, with the lower scores indicating higher probabilities that a particular protein is a negative example for the GO term in question.
NETL Implementation
For the Negative Example from Topic Likelihood algorithm, we again formulate a protein as a document, with GO annotations (including IEA) from all three branches as the words in that document. We then run Latent Dirichlet Allocation (Code obtained from [here]) on the document corpus to identify the parameters of the Dirichlet topic distribution, and perform inference on each document to obtain the posterior topic distribution given the GO terms present in that protein (See Blei, 2003 for the details of LDA). For our experiments, we performed LDA with a setting of 300 latent topics [motivate this or provide results for other topic sizes?].

Since LDA discovers latent topics, it is not immediately obvious which topic corresponds to which GO term. Indeed, it is not necessarily the case that the correspondence is 1-1, but rather possible that some combinations of topics/GO terms relate to each other, making exact inference of the probability that a given protein possesses a given GO term difficult under the LDA model. [Here should I go into some things I tried before listing the final result? Should I motivate with Hu or Li?]. To overcome this problem, we chose to represent the positive class with the average of the Dirichlet posterior vectors for all proteins annotated to the function in question (including IEA annotations). Then for all unlabeled proteins, we calculated a score via the Pearson Correlation Coefficient (PCC) between the posterior Dirichlet vector for that protein, and the positive class representative vector. The unlabeled proteins are then ranked according to this score, with the lowest PCC values indicating the most likely negative proteins.

Random Baseline
In order to calculate the random baseline, we consider the positive class to be all proteins with an annotation in the function of interest (including an IEA annotation), and all other proteins to be the unlabeled class. We sample uniformly at random without replacement from those proteins in order to pick negative examples, allowing the user to specify the desired size of the negative class. In order to reduce noise from this stochastic operation, we calculate the baseline 10 times for each branch of GO, and then display the average of those ten calculations.

Rocchio Implementation
In order to adapt the Rocchio algorithm to protein function, we follow the pseudocode of Rocchio, 1971, treating the set of GO terms across all three branches as our lexicography, each protein as a document, and the annotations of that protein as a word. This formulation allows the computation of the tf-idf vectors required by the algorithm, and for each function we treat the positive class as all proteins with an annotation in that function (including IEA), and the rest of the proteins as the unlabeled class. The algorithm then builds a representative vector for the positive and unlabeled class, and computes the cosine similarity of the tf-idf vector for each unlabeled protein with each of the representative vectors. Where the traditional algorithm would assign as negative examples all proteins whose similarity to the unlabeled class vector is greater than to the positive class vector, we assign a score to each protein, defined as: UnlabeledSimilarity – PositiveSimilarity. This allows us to rank the proteins in terms of confidence of their negativity, with the highest-scoring proteins as the most likely to be negative examples.
1-DNF Implementation
For the 1-DNF algorithm, we again formulate proteins as documents and GO terms across all three branches as words. We proceed according to the pseudocode laid out in Liu, 2003, utilizing as the positive class all proteins with an annotation in the function of interest (including IEA). Other GO terms that appear more frequently in the positive set than the unlabeled set are considered our “enriched” words, and negative examples are all proteins that are not in the positive class and do not contain any of these enriched words. As there is no immediately obvious way to translate this decision into a score, we only implemented this algorithm for one choice of the number of negative examples, rather than thresholding it to allow the user to specify the desired size of the negative class.
AGPS Implementation
Code for the AGPS algorithm was generously provided by the authors of Zhao et al, [year]. AGPS requires features to operate, which we obtained through the similarity networks provided by the Genemania server [Mostafavi]. Each of these [number] networks represents similarity between pairs of genes according to a particular datatype. We translated the networks from being specified by ENSEMBL ids to gene symbols by using the HUGO lookup for gene symbol and ENSEMBL pairs, and then performed a simple linear combination of all of the networks. Each component network and the final network was normalized according to the scheme [equation]. Once the final network was obtained (a 19060x19060 matrix), we applied Principal Component Analysis to reduce the feature size to a 19060x200 matrix, which was the input feature set for AGPS. We ran the algorithm provided by the authors using all of the default constants provided, but as described in the author's text, ran cross-validation for each category and only used negative examples that were chosen in the majority of the cross validation runs. We choose to segment data into 5 cross-validation segments.

Because AGPS was only validated on functional categories with at least 85 annotations (since cross-validation increases the number of necessary positive examples for a meaningful result), and due to its lengthy runtime, we also only ran AGPS for function categories with more than 85 annotations. For GO functions with fewer than 85 annotations in the human genome, we utilized the inverse of the true path rule, and set the negative examples as the union of all of the negative examples of all parent categories of that GO term.

Sibling Heuristic Implementation
For the heuristic that chooses siblings as negatives for a function, we follow the specification laid out in Cesa-Bianchi et al., [year], whereby a protein is a negative for a function if it is annotated to the parent of that function, but not to the function itself. This includes proteins annotated to sibling categories, as well as those annotated to the parent but to none of the children of that parent. Because some function categories will have no proteins that satisfy these requirements, we revert in this case to the strategy of choosing all non-positive proteins as negative, where the positive class is all proteins with an annotation in the function in question (not including IEA annotations). As Mostafavi 2009 points out, the sibling approach is problematic in that many sibling categories are not mutually exclusive, but we present the technique here for completeness. Since the heuristic will produce different numbers of negative examples for different function categories, the point on the validation plot corresponding to this algorithm represents an average over different sizes of the negative class.

Data Access
Negative examples are available in the NEGGO database, located at: [url]. Negative examples are currently available for the following species: Human, Mouse, Yeast, Rice, and Arabidopsis. For each function in each organism, a ranked list of genes shows the most to least likely negative examples, according to the SNOB algorithm presented here. Accompanying each list is a sample validation plot (See figure S3), which shows the performance of SNOB against a random baseline, trained on GO data obtained from [month] 2012 and validated with data from [month] 2013. This plot gives a researcher an idea of the relative performance of the SNOB algorithm against the random reference, in order to give confidence as to the likelihood of false negatives, and also allows a researcher insight into how many negative examples to choose based on the false negative rate presented in the graph.

Acknowledgements
Thanks to all my adoring fans

References

Barutcuoglu, Hierarchical multi-label prediction of gene function. Why?

Ben-Hur, Choosing negative examples for the prediction of protein-protein interactions. Illustrate how GO can be used for high-quality negative examples, but how this can introduce bias if the new negative examples are more narrowly constrained. Maybe use this to show that in the case study, we have more spread out negative examples.

Bhardwaj, Genome-wide sequence-based prediction of peripheral proteins using a novel semi-supervised learning technique. Example of PU being applied in this domain.

-Blei, Latent Dirichlet Allocation. For LDA method.

-Cesa-Bianchi, Hierarchical Cost-Sensitive Algorithms for Genome-Wide Gene Function Prediction. For sibling definition.

-Gomez, S. M., et al. 2003. Learning to predict protein-protein interactions. Bioinformatics: Oxford University Press. 19, 1875-1881.

-Guan, Y., et al. 2008. Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biology: Biomed Central Press. 9(Suppl. 1), S3.

Hu, Estimate Unlabeled-Data-Distribution for Semi-supervised PU Learning. Maybe to motivate the way we use correllation for the LDA method.

Jansen, Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction. Point out that while negative class definition is an inherently difficult problem, as long as we still use GO to define function, we need to be able to define a good negative class for function-prediction. Work in somehow

-King, 2003.

Li, Negative Training Data can be Harmful to Text Classification. Another motivator for similarity measure in the LDA method, also perhaps for describing why PU is best for protein based on distribution differences between training and test.

-Liu, B., Dai, Y., Li, X., Lee, W. S., & Yu, P. S. 2003. Building text classifiers using positive and unlabeled examples. Data Mining, 2003. ICDM 2003. Third IEEE International Conference on (pp. 179-186). IEEE.

-Mostafavi, S., and Morris, Q. 2009. Using the Gene Ontology hierarchy when predicting gene function. UAI Conference Proceedings: AUAI Press 2009.

-Mostafavi, current genemania server paper.

-Pandey, Incorporating functional inter-relationships into protein function prediction algorithms. For motivating how existing GO data could be useful for predicting negative examples. Make sure to mention the upper bound on this due to moonlighters.

-Puelma, Discriminative local subspaces in gene expression data for effective gene function prediction. For my case study.

-Rocchio, J. (1971). Relevant feedback in information retrieval. In G. Salton (ed.). The smart retrieval system- experiments in automatic document processing, Englewood Cliffs, NJ.

Salton, G. and McGill, M. (1983). Introduction to Modern Information Retrieval. McGraw-Hill.

For the use of 1-DNF technique for PU.

-Smialowski, Negetome database. For similar idea for protein functions.

-Youngs N, Penfold-Brown D, Drew K, Shasha D, Bonneau R. Parametric Bayesian priors and better choice of negative examples improve protein function prediction. Bioinformatics. 2013 Apr 10. [Epub ahead of print] PubMed PMID: 23511543

Yousef, Learning from positive examples when the negative class is undetermined- microRNA gene identification. Examples of using one-class algorithms instead...would be good to talk about why this is bad also from somehwere.

-Yousef, Learning from positive examples when the negative class is undetermined- microRNA gene identification. Might potentially be useful for arguing against one-class if you can get good neg examples.

-Zhao, Gene function prediction using labeled and unlabeled data. For AGPS negative example.
Supplemental Figures
a.
[image: image4.png]Average False Negatlve Fate

Average False Negatlve Fate

== Random
© ALBNeg
NETL
~sNoB
Rocchio
© 1-DNF
o AGPS

101-300]

[31-100]

Average False Negatlve Fate

16

1000

2000 3000

Nurmber of negative examples

[11-30]

1000 2000 3000
Nurmber of negative examples

(1]

Average False Negatlve Fate

1000

2000 3000

Nurmber of negative examples

1000 2000 3000
Nurmber of negative examples

b.
[image: image5.png]Average False Negatlve Fate

Average False Negatlve Fate

25

[101-300]

[31-100]

B
&
2
H
hd
z
2
ooz aom ooz 3000
Number o negative examples Number o negative examples
111-30] 1310)
o !
&
2
H
hd
z
2

1000 2000 3000
Nurmber of negative examples

1000 2000 3000
Nurmber of negative examples

[image: image6.png]Average False Negatlve Fate

Average False Negatlve Fate

14

12

08

08

04

[101-300] (31-100)
4
2
3s .
£ “
2 .
g ,
s .
2 N
3 ? .
: ,
£is ,
g1 ‘o
§ 7%
o bl ="
0
Toon 2000 a0 Too0 2000 ao0n
Number of negative exarples Number of negative exarples
[11-30] {30
0s
. 2 .
, &
, 2
s g
-, N 2
s i
e &
3
2

1000 2000 3000
Nurmber of negative examples

1000 2000 3000
Nurmber of negative examples

c.

Figure S1. Performance of negative example selection algorithms broken down by specificity for a. Biological process, b. Molecular Function and c. Cellular component. Specificity is defined by the number of annotations present for a GO category in the human genome, split into buckets of size: 101-300, 31-100, 11-30, and 3-10.
