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Significant insight about biological networks arises from

the study of network motifs—overly abundant network

subgraphs1,2—but such wiring patterns do not specify when

and how potential routes within a cellular network are used.

To address this limitation, we introduce activity motifs, which

capture patterns in the dynamic use of a network. Using

this framework to analyze transcription in Saccharomyces

cerevisiae metabolism, we find that cells use different timing

activity motifs to optimize transcription timing in response to

changing conditions: forward activation to produce metabolic

compounds efficiently, backward shutoff to rapidly stop

production of a detrimental product and synchronized

activation for co-production of metabolites required for the

same reaction. Measuring protein abundance over a time

course reveals that mRNA timing motifs also occur at the

protein level. Timing motifs significantly overlap with binding

activity motifs, where genes in a linear chain have ordered

binding affinity to a transcription factor, suggesting a

mechanism for ordered transcription. Finely timed

transcriptional regulation is therefore abundant in yeast

metabolism, optimizing the organism’s adaptation to new

environmental conditions.

Cellular processes are mediated through intricate networks of inter-
acting molecules, whose local1–3 and global4,5 topology has been
intensively studied. Analysis of network wiring patterns has revealed
network motifs—local sets of interaction patterns that occur signifi-
cantly more often than expected by chance and potentially reflect the
functionality of the complex network. However, whereas such network
motifs correspond to the static wiring of the network, networks are
used dynamically and adapt to external conditions and internal states
in functionally distinct ways.

Such dynamic activity is particularly important in metabolic
processes, which are tightly controlled based on the cell’s environment.

Upon a change in environmental conditions, a cell may have to rapidly
reconfigure its metabolism to produce or degrade compounds to
ensure its survival in the new environment. Fluxes through metabolic
reactions are controlled by enzymes, the activities and abundances of
which are further controlled by post-transcriptional mechanisms.
Furthermore, protein abundance is partly determined by transcrip-
tional control6, which modifies the mRNA level of the gene through
binding of transcription factors. This complex hierarchy of regulatory
mechanisms raises questions about the individual roles and interplay
between the different regulation layers. For instance, is transcription
regulation tuned to fit the usage patterns of enzymes in the metabolic
network? Recent work argues for the predominance of hierarchical
control in the metabolic network7,8. Yet the metabolic network
exhibits significant changes in transcript levels in response to
environmental perturbations, suggesting the use of transcriptional
control. Moreover, recent work on transcriptional control of meta-
bolism identified cases of finer-grained patterns of co-regulation in
S. cerevisiae9,10. In one specific example in Escherichia coli, the genes in
a linear pathway for amino acid biosynthesis were reported to show
sequential transcriptional activation (‘‘just-in-time’’ transcription)11.

We developed an analysis framework based on the notion of an
activity motif (Fig. 1a) to systematically study the dynamical behavior
of such networks. Given a particular network structure (e.g., a linear
cascade of enzymes; Fig. 1b), an activity motif describes a specific
pattern of functional data, such as ordered timing of activation of the
corresponding genes (Fig. 1c(i)). Unlike network motifs, which reflect
the static wiring of the network (analogous to routes in a road
map)1,12, activity motifs reflect dynamic and functional patterns
associated with their use (analogous to traffic patterns that emerge
before, during and after rush hour). Activity motifs can be identified
by assessing the enrichment of activity patterns given the network
wiring structure.

We applied the framework of activity motifs to study the dynamics
of regulation of gene expression in the metabolic network in
S. cerevisiae. Using our systematic analysis, we identified abundant
activity motifs involving timed gene expression regulation, recurring
in different forms across many conditions. We demonstrate that the
same timing behavior can be conserved in the dynamics of protein
abundance, suggesting that timing patterns in mRNA expression can
have a direct effect on the timing of metabolic processes. Finally, by
studying activity motifs in transcription factor binding affinity, we
show that evolution of quantitative transcription factor binding
affinities provides a mechanism that can underlie some of this fine-
grained control of transcription timing. Overall, the activity motif
framework allows us to systematically investigate three levels ofPublished online 26 October 2008; doi:10.1038/nbt.1499
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regulation in the metabolic network. Our findings suggest that cells
have evolved to tune the timing of transcription regulation to better
respond to their changing environment.

RESULTS

To identify activity motifs in the transcriptional control of yeast
metabolism, we used a four-step approach (Fig. 1), which (i) defines
wiring patterns; (ii) specifies, for each wiring pattern, a set of activity
patterns involving onsets of transcriptional responses; (iii) extracts
transcription timing properties from expression profiles and maps
them to the metabolic network’s wiring to identify which activity
motifs occur in a particular biological condition; and (iv) compares
the transcriptional activity motifs to patterns of transcription factor
binding and protein abundance.

We defined a set of wiring motifs using a hand-curated model of the
S. cerevisiae metabolic network13, comprising 1,181 reactions catalyzed
by 598 enzymes. Each motif is a small graph of different topology
composed of four basic relationships: chains, forks and two types of
funnels (Fig. 1b). The set included 12 patterns, covering all possible
local network patterns among enzyme pairs and triplets in the
metabolic graph, and extensions to longer chains (Supplementary
Table 1 online).

Timing activity motifs in yeast metabolism

We focused on patterns in the transcriptional response of metabolic
genes after a sudden change in environmental or nutritional condi-
tions. The response in such experiments often follows a characteristic
‘impulse’ trajectory: an early dramatic ‘onset’ to a transient level,
followed by a later ‘offset’ to a new steady state (Fig. 1a,d). We focused
here on patterns involving onsets, as these measure a timing property
that is relatively invariant to other factors, such as transcription rate or
target protein levels.

We specified a set of possible activity motif types for each wiring
pattern (Fig. 1c and Supplementary Table 1), each being a specific
temporal order of the response onset times of the associated enzymes.

For example, for a wiring pattern representing a chain of enzymes
(e.g., A-B-C in the network), the forward-activation motif type
specifies that the enzymes’ expression is induced in the same order in
which they are used in the pathway (A’s onset precedes B’s onset
precedes C’s onset; Fig. 1a, bottom left and Fig. 1c(i)). Overall, we
enumerated all timing activity motifs (TAMs) that have a consistent
ordering (either forward, backward or ‘same time’) for the enzymes in
a wiring pattern, resulting in 64 types of activity motifs (Supplemen-
tary Table 1).

To identify occurrences of these TAMs, we analyzed experimental
data to assign onset activation times for each metabolic gene. We used
expression profiles from 76 time-course experiments in yeast (Sup-
plementary Table 2 online). Of these, 63 were previously published
and 13 are new time courses intended to broaden the range
of environmental perturbations. Each experiment collected data at
5–11 time points measured after a sudden change in environmental or
nutritional conditions. Inferring onset times from such time-course
experiments is a challenge14. Based on our observation regarding the
typical ‘impulse’ trajectory of the transcriptional response, we devised
an impulse response model15, which captures each gene’s expression
profile in terms of six biologically meaningful parameters: onset and
offset response times; initial, transient and steady expression levels;
and response slope (Fig. 1c and Supplementary Fig. 1 online). The
impulse model is fit separately for each gene and provides a very good
overall fit (Supplementary Fig. 1). Using the impulse model, we
extracted the response onset time for each gene in each condition.
Importantly, the timing information that we extract is much more
robust to noise than the raw measurements.

We then overlaid these timing data onto the network structure, and
identified the occurrences of each TAM in each condition. For example,
if, in a particular condition, the enzymes in the chain A-B-C are
activated at 5, 10, 20 min, respectively, this chain was labeled as an
occurrence of the forward-activation TAM. To further ensure the
validity of these motifs, we extract only timing relationships that are
robust to the perturbation of the mRNA expression data with noise.

Figure 1 Activity motifs overlay functional data

over known network wiring structure. (a) A

fragment of a network (top), whose edges and

nodes are annotated with functional data

(bottom). In this example, the nodes correspond

to metabolites and the edges correspond to genes

(A,B,C,D). Each edge (gene) is annotated by the

time of expression activation in a particular time
course (bottom left), by protein abundance

(bottom middle) and by the binding affinity to

a specific transcription factor (bottom right).

(b) Wiring patterns in a metabolic network—

chains, forks and two types of funnels—

correspond to the four possible relations between

a pair of adjacent reactions in the metabolic

network and reflect different dependencies

between them: chemical coupling (chains),

competition over a common substrate (forks),

production of the same compound (OR funnel)

and production of cooperating substrates (AND

funnel). (c) Examples of activity motifs over en-

zyme triplets. Order of activity is denoted for each

enzyme, yielding forward (i) and backward (ii)

orders in chains, as well as combinations of

ordered and same-time activation in branched pathways (iii–v). (d) Our impulse response model for an mRNA expression time course interpolates a

continuous curve (blue line) to fit a set of measurements (black squares). The model allows for two transitions of expression levels (in this example, first

up and then down). The impulse model has six parameters: onset and offset times; initial, peak and steady state level; and slope. The values of these
parameters are optimized to fit the measured expression time course of a single gene.
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Following previous work on network motifs1,12, we next aimed to
uncover the principles of the organism’s transcriptional response by
identifying motif types that occur significantly more often than would
be expected by chance. In each condition, we counted the number of
occurrences of each type of TAM and compared it to the distribution
of such occurrences in activity-randomized networks. This scheme
randomly shuffles the assignment of expression profiles to enzymes
without changing the network wiring, thus identifying activity profiles
that are enriched given the wiring diagram, rather than enriched
patterns in the wiring diagram itself.

We found several types of TAMs that are significantly enriched in
the yeast metabolic network across multiple conditions (Figs. 1c, 2
and Supplementary Table 3 online). The most frequently enriched
TAM was forward-activation, in which enzymes in a metabolic chain
are induced in the same order they are used in the pathway
(Fig. 1c(i)). This ‘just-in-time transcription’ pattern (also observed
in unbranched pathways of amino acid biosynthesis in E. coli11)
achieves efficient use of transcriptional resources. Forward activation
in three-enzyme chains was significantly enriched (P o 0.01) in ten
diverse conditions, including heat shock (268 occurrences found in
three-enzyme chains; only 56 expected at random, P ¼ 3.8 � 10�5,
Fig. 2a,d) and short-term anaerobiosis16 (135 occurrences versus 19
expected at random, P o 10�4). The complementary forward-shutoff
TAM (Fig. 2b), where enzymes in a linear chain are repressed in the
same order they are used in the pathway, was enriched upon a
temperature shift17 from 37 1C to 25 1C (144 occurrences in three-
enzyme chains, 48 expected at random, P ¼ 0.01) and nitrogen
depletion17 (9 found, 0.2 expected at random, P ¼ 0.0087). This
pattern may represent an efficient way of achieving a parsimonious
shutoff that gradually concludes the use of metabolic intermediates.
More surprising is the backward-activation motif (Fig. 1c(ii)), where
the timing of activation of enzymes in the linear chain propagates
backwards in the pathway. This pattern was enriched in several
conditions (Fig. 2e), including shifts from a fermentable to a non-
fermentable carbon source for three-enzyme chains (ethanol: 74
occurrences, 0.5 expected at random, P ¼ 2 � 10�4 and 139
occurrences, 0.6 expected, P o 10�5; galactose16 58 occurrences,

0.5 expected, P ¼ 0.0044 and 105 occurrences, 23 expected,
P ¼ 0.0028). In some cases, this TAM may serve for the fast removal
of an end metabolite that is either toxic or otherwise disruptive under
the new condition (see below).

Other significantly enriched TAMs are found at branching points.
The funnel-same-time triplet (Fig. 1c(v)) is a motif over a wiring
pattern with two enzymes that produce complementary metabolites
that are both used by a third reaction; this TAM was enriched under
exposure to a DNA damaging agent18 (344 occurrences, 137 expected,
P ¼ 0.02) and to 1M KCL (in both wild-type yeasts 276 occurrences,
78 expected at random, P¼ 0.0151; and an ssk1-ste11 double-deletion
strain, 330 occurrences, 65 expected, P ¼ 0.0002). A similar motif is
fork-same-time triplet, involving one enzyme producing two meta-
bolites then consumed by two separate reactions that are activated at
the same time; this TAM was also enriched under exposure to a
DNA damaging agent18 (412 occurrences, 126 expected at random,
P ¼ 0.002). Both TAMs optimize metabolite use by coordinating the
production or consumption of metabolites along co-dependent
branches. Consistent with previous results9,10, there is no enrichment
for same-time activation in a pair fork motif where the two reactions
both consume the same metabolite. A full list of motif enrichment
across conditions is given in Supplementary Table 3.

Activity motifs in the pentose phosphate and glycerol pathways

To further study the specific function of TAMs in yeast metabolism,
we annotated the complete metabolic graph, in each condition, with
the individual occurrences of TAMs from significant types. We note
that individual TAM occurrences must be interpreted with caution, as
ordered activation could occur by chance, especially because of the
large number of wiring network motifs tested (the multiple hypotheses
testing problem).

Nevertheless, studying individual motif occurrences provides
insight into the role that TAMs can play in fine-tuning the response
of the metabolic network. For example, we found a forward-activation
motif from glucose to ribulose 5-phosphate production covering the
oxidative branch of the pentose phosphate pathway (PPP, Fig. 3a) in
multiple conditions, including treatment with diamide, menadione,

Figure 2 Timing activity motifs across conditions.

(a–b) Enrichment of activity motifs relative to a

random permutation model. A blue arrow denotes

the pattern count in the original network and a

red histogram denotes the distribution of pattern

counts in networks with randomized expression

profiles. Each histogram was obtained from

10,000 randomizations of expression profiles
across the network (keeping the network wiring

fixed), followed by counting the number of

activity motifs observed in the randomized

networks. (a) Enrichment of forward activation in

heat shock17: 268 timed motifs observed in the

real data compared to 56 expected at random

(P ¼ 3.12 � 10�5). (b) Enrichment of forward

shutoff in de-heating: 144 timed motifs observed

in the real data compared to 48 expected at

random (P o 0.01). (c) Distribution of activity

motifs across conditions. Each row in the

histogram shows the relative prevalence of four

types of activity motif in a single condition (time

course). The length of each bar corresponds to

the number of occurrences of an activity motif in

that condition. Rows are grouped and sorted by

the similarity of the experimental conditions. (d) Enrichment of forward activation across all conditions. Abscissa shows an all-condition enrichment score of

the motif (arrow) compared to the distribution of scores in activity-shuffled networks. (e) Enrichment of backward activation across all conditions as in d.
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1 M sorbitol, amino acid starvation and heat shock (Fig. 3 and
Supplementary Fig. 2 online). The time scales of the observed timing
motifs varied from a few minutes (heat shock, diamide) to hours
(amino acid starvation), consistent with the time scale of the corre-
sponding response. This forward-activation pattern is consistent with
the recent observation of redirection of flux from glycolysis to the PPP
under oxidative stress—a phenomenon conserved from S. cerevisiae to
C. elegans19,20. Such redirection (and corresponding forward activa-
tion) provides reducing power, essential under stress. Consistently, the
immediate enzymes of the nonoxidative branch of the PPP (Rpe1,
Rki1) are repressed, on the same time scale as the forward-activation
TAM. Although previous studies highlighted the role of gluconeogenic
flux from lower glycolysis in this response19, our observed motifs
suggest additional flux from glucose, which may indicate the devotion
of major energetic resources to increasing reductive power. Notably, in
heat shock (Fig. 3b), we observe a second coordinated forward-
activation TAM from the gluconeogenic enzyme Fbp1 toward the
PPP (accompanied by concomitant repression of the glycolytic coun-
terparts Pfk1 and Pfk2). Thus, upon heat shock, flux through both the
upper part of glycolysis and the lower part of gluconeogenesis may
contribute to increased PPP flux (Fig. 3b). Finally, we also observe

backward activation (in acid and alkali treat-
ments, Supplementary Fig. 2) and forward
shutoff (in the de-heating experiment) of the
relevant fragment of the pentose phosphate
pathway. Backward activation may indicate
an immediate need for the change in
reducing power, whereas forward shutoff is
the result of simple reversal of the heat shock
response. Thus, we see that the same region
of the metabolic network can exhibit different
activity patterns in different conditions that
are functionally relevant to the pathways in
that region.

Interesting activity patterns can also occur
across extended regions composed of multi-
ple connected TAMs. This behavior is illu-
strated in the glycerol synthesis pathway
(Fig. 3a), where we find multiple occurrences
of significant motif types across four different
conditions (Fig. 3b–d). (i) Upon exposure to
diamide, cells increase the production of
glycerol to reduce protein denaturation
caused by oxidation of sulfhydryl groups.
Correspondingly, enzymes directly involved
in glycerol production follow a backward-
activation motif (Fig. 3d) along six reactions,
allowing a rapid build-up of glycerol based
on existing reserves of the necessary sub-
strates (2-phospho-D-glycerate and 3-phos-
pho-D-glycerate in this case). (ii) Upon
induction of heat shock, the pathway also
shows backward activation along four reac-
tions (Fig. 3b, bottom), again permitting for
rapid reduction in protein denaturation.
Furthermore, the two branches leading to
glycerol production are coordinated in a
funnel-same-time-activation motif. Interest-
ingly, four upstream reactions that produce
necessary compounds for glycerol production
are also activated, but this time following a

forward-activation pattern (Fig. 3b, top). (iii) Upon a temperature
shift from 37 1C to 25 1C, transcription of enzymes is slowly repressed,
again in a forward order, to gradually reduce glycerol levels and allow
protein renaturation (a forward-shutoff motif, Fig. 3e). (iv) Upon
exposure to menadione, glycerol production is also repressed, as both
menadione and glycerol increase oxidative stress21. In this case,
however, glycerol shutoff must occur rapidly—and hence the enzyme
that catalyzes the direct production of glycerol is the first to be
repressed, and repression then linearly propagates backwards along
five reactions (a backward-shutoff motif, Fig. 3c).

Our interpretation of the TAMs in the glycerol pathway suggests a
gluconeogenic flux for glycerol production under stress, in contrast to
the known glycolytic source during growth on glucose (without
stress). This interpretation is supported by the differential expression
of glycolytic and gluconeogenic enzymes in the corresponding condi-
tions. For example, in diamide treatment (forward activation of
glycerol), glycolytic enzymes (Pfk1, Pfk2, Pgi1) are repressed, whereas
gluconeogenesis enzymes (Pyc1, Mdh3) are induced. Similarly, in
heat shock (backward activation of glycerol) all gluconeogenic
enzymes (Fbp1, Mdh2, Mdh3, Pyc1, Pyc2, Pck1) are induced and
upper glycolysis enzymes (Pfk1, Pfk2) are repressed. Furthermore,

4 min

a

b c

d
e

7 min
ZWF1

PBI1 5 min

3,4,4
min

FBP1
Gluconeogenesis

DAK2

RHR2 GPD1
GPD2

GLK1
HXK1

GPD1 TPI1 PGK1
GPN2 ERR1

ERR2GPN3

GPD1
GPD2

TPI1 TDH3 PGK1 GPM1TPI1 TDH1
TDH3

TDH1
TDH2
TDH3

PGK1

8 min6 min
7 min

1 min
3 min

3 min 4 min 4 min 6 min 16 min
19 min

22 min
27 min4 min

6 min

4 min

3 min
Diamide

4 min

5 min
6 min

11 min

32 min24 min

10 min

7 min

32 min

GND2
SOL3

ZWF1

ATH1

ATH1

HXK1
HXK1 ZWF1 SOL3

NTH13

HXK1 SOL4

34 min

10 min

16 min
FBA1

DAK2

31 min

29 min

32 min DAK2
FBA1
41 min

53 min

GPD2 TPI1 TDH2 PGK1 GPM2

31 min 29 min 20 min 8 min

37 min

26,23
 min

De-heating

Menadione

9,13 min

64 min4 min

4 min

ZWF1 SOL3 GND2

4 min 5 min

FBA1 5 min4 min

2 min
PFK1,2
7,8 min

glycolysis

SOL3 GND2
7 min

Alpha-D-glucose
6-phosphate

D-glucono-
1,5-lactone

6-phosphate

D-Ribulose
5-phosphate

Rpe1

Rki1

D-xylose-
5-phosphate

D-ribose
5-phosphate

Glycerone

Glucose

Glycerol

Glycerone
phosphate

1,3-diphospho-
glycerate

3-phospho-
D-glycerate

2-phospho-
D-glycerate

6-phospho-
D-gluconate

D-glyceraldehyde
3-phosphate

Phospho-
enolpyruvate

Oxaloacetate

Malate

Pyruvatesn-Glycerol 3-
phosphate

7 min

ATH1
NTH2

HXK2,1
Heat shock

GLK1

Figure 3 Multiple activity motifs overlay the pentose phosphate pathway and glycerol biosynthesis.

(a–e) Shown are the PPP and glycerol synthesis pathway (GSP) (a), along with activity motifs identified

in four different conditions (b–e). Names in rectangles denote catalyzing enzyme; red denotes

activation, green denotes repression; values denote the time of activation or repression onset.

(b) Forward activation of the PPP and backward activation and funnel-same-time-activation of the
GSP in response to a heat shock. (c) Forward-activation of PPP and backward-shutoff of GSP in

response to menadione. (d) Forward activation of PPP and backward activation of GSP in response to

diamide. (e) Forward shutoff and funnel-same-time forward shutoff in response to de-heating.
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independent experiments show that upon exposure to high osmotic
pressure, when glycerol production is essential for cell survival,
glycolytic enzymes are typically repressed and gluconeogenesis
enzymes are induced, regardless of the osmolyte accumulated (data
not shown). This suggests that gluconeogenic flux may be a source of
glycerol production under stress. Interestingly, repression of glycerol
production in de-heating (forward shutoff) and menadione treatment
(backward shutoff) is consistent with repression of flux through both
upper glycolysis and gluconeogenesis.

Functional characterization of activity motifs

The specific instances of enriched TAMs are not randomly distributed
across the metabolic network, but rather tend to aggregate within
particular regions in a single condition, achieving orchestrated regula-
tion of multiple pathways into a coherent physiological response.
Notably, the overwhelming majority of TAMs (1,867 of 1,908 motifs in
chains of three enzymes) and the enzymes associated with them (179
of 232 enzymes, P o 10�13, hypergeomtric test) reside within central
carbon metabolism and its immediate periphery (Fig. 4a, Supple-
mentary Fig. 3 and Supplementary Tables 4 and 5 online). This is
not a mere effect of network topology as all types of wiring motifs can
be found both within and outside central carbon metabolism, with
comparable magnitude (e.g., 170 three-enzyme chains all inside
central carbon metabolism and periphery, compared to 393 three-
enzyme chains that are completely outside). This phenomenon
extends across a wide range of conditions, including not only changes
in carbon source but also environmental stresses and other nutritional
changes. This finding suggests that central carbon metabolism is a key
metabolic target for finely tuned temporal regulation of gene expres-
sion in S. cerevisiae. In contrast to prior work involving E. coli11, we
did not find similar fine-grained timing motifs in the amino-acid
metabolism pathways. This may be a consequence of differences
between organisms, and is consistent with the lack of ‘just-in-time’
patterns in a recent experiment measuring protein abundance time
courses in amino acid metabolic enzymes in S. cerevisiae22.

We also found that the extent to which an enzyme participates in
TAMs is strongly correlated (Spearman correlation, P o 10�14;
Fig. 4b) with the ‘metabolic flexibility’ of the reaction it catalyzes23,
as defined by the range of flux values consistent with optimal growth

in a flux-balance analysis model24 (Fig. 4b). This observation suggests
a model where reactions that admit a broad range of flux values
require finer-grained transcriptional control. In addition, many of the
enzymes associated with significant TAMs also exhibited greater
evolutionary volatility25, sustaining a significantly (P o 0.01) higher
number of duplication and loss events compared to other metabolic
enzymes (Fig. 4c). This correlation may reflect a need to tune these
key genes to evolutionary niches. Such mechanisms may be particu-
larly critical within central carbon metabolism, which coordinates
many of the most essential aspects of yeast metabolism. Nonetheless,
timed enzymes are enriched for these properties even more than other
enzymes of central carbon metabolism.

Binding activity motifs

Which mechanisms could underlie the extensive ordered timing of
transcription control? On the conceptual level, timed control patterns
could be the result of an interactive feedback, where levels of
individual metabolites are continuously monitored and affect
the transcription of each enzyme; or, they can arise from a ‘pre-
programmed’ response, where the system executes pre-defined timed
control patterns. One mechanism for achieving the latter is by having
differences in the affinity of a common transcription factor for the
promoters of various genes in the pathway, resulting in different
transcription onsets. Such a mechanism has been reported in the
flagella pathway26 and the SOS response27 in E. coli. Other recent work
also supports the functional relevance of transcription factor binding
site affinity28–31. The continuous values obtained by chromatin
immunoprecipitation (ChIP-chip) assays can be interpreted as quan-
titative transcription factor binding affinities and have biological
significance throughout a broad range of binding P-values28.

To systematically test for the presence of an affinity-based mechan-
ism, we applied our activity motif framework in a different manner.
Here, we mapped transcription factor binding affinities (rather than
onset times) onto the network wiring. We used genome-wide ChIP-
chip32,33 for multiple transcription factors across several conditions,
focusing on 48 pairs of experiments where transcription factor
binding and gene expression were measured in comparable conditions
(12 pairs in heat shock, 34 pairs in adenine starvation, 2 pairs in acid
exposure, Supplementary Table 6 online). We restricted attention to

Figure 4 Functional characterization of activity

motifs. (a) The overwhelming majority of the

reactions and enzymes associated with at least

one activity motif are within central carbon

metabolism (CCM) or one reaction away

(CCM+1). The 345 CCM+1 enzymes (57% of

598 total enzymes) intersect with 1,867 of

1,908 three-enzyme chain motifs. Furthermore,
179 (77%) of the 232 enzymes associated with

activity motifs are in CCM+1 (hypergeometric,

P o 10�15). (b) Metabolic flexibility of timed

enzymes23. Flexibility is defined as the range of

flux values that are consistent with optimal

growth in a flux-balance analysis for the yeast

metabolic network24. Shown is the distribution of number of conditions in which an enzyme is associated with an activity motif for low- (orange, top) and

high- (blue, bottom) flexibility enzymes23 in CCM+1, indicating that enzymes associated with activity motifs are much more flexible than other CCM+1 genes

(t-test, n ¼ 75, P o 10�15). Arrows denote the mean of each distribution; short error bars denote the s.e.m. and long bars the s.d. of each distribution. The

flexibility of an enzyme was also strongly correlated with the number of conditions in which it participated in activity motifs (Spearman correlation for

metabolic genes P o 10�56, for CCM+1 genes P o 10�14). (c) Distribution of evolutionary volatility25, defined based on the number of duplication and loss

events. The volatility of timed genes is compared to other genes in CCM+1. The background distribution of volatility for all CCM+1 transporters and

enzymes, as approximated by a Gamma distribution, is shown in gray. Red bars denote volatility values that are significantly different from the background

distribution (P o 0.01, tail of the Gamma distribution). These timed enzymes are more evolutionary volatile than expected, suggesting that timed enzymes

are more strongly tuned during evolution.
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the set of genes bound by a transcription factor with a P-value smaller
than 0.5, and used the binding P-values to define binding activity
motifs (BAMs): linear chains of enzymes whose genes exhibited
patterns of ordered affinity for that transcription factor (Fig. 1a).
We then used the same permutation test above to measure whether
the set of three-enzyme chain forward-activation TAMs (within the
bound genes) were enriched for ordered binding. Importantly, the
permutation test corrects for any artifacts that may arise from overlap
between different motifs. In 20/48 of the binding-expression pairs, we
find significant overlap (at a false discovery rate (FDR) of q ¼ 0.05)
between forward-activation TAMs and BAMs (overall P o 1.9 �
10�14). The partial correspondence between TAMs and BAMs could
be due to several factors: the fact that mRNA levels reflect a balance of
transcription and mRNA degradation; possible epistasis between
transcription factors; or lack of binding measurements of relevant
transcription factors. Overall, our finding suggests that a fine-grained
tuning of transcription factor binding affinities may play a significant
role in the temporal regulation of metabolic transcription.

Protein timing activity motifs

A key question regarding the biological significance of our results is
the extent to which patterns that are observed in mRNA profiles are
indicative of activity levels of the corresponding enzymes, which
execute the metabolic reactions. The levels of active enzymes are
only partially determined by mRNA levels, with multiple levels of
subsequent regulatory control, including translational efficiency and
protein activation. In general, although there is a high general
correlation between mRNA levels and active enzymes34, there is also
significant intergene variation, with some genes exhibiting much
lower correlations34. Moreover, protein half-life can also affect the
relation between changes in mRNA levels and protein levels6. Impor-
tantly, however, our motifs are based not on mRNA levels, but rather
on transition times in the mRNA profiles, a quantity that is more
likely to be robust to variation in the downstream efficiency of protein
creation and stability.

To test whether these transitions induce corresponding changes at
the protein level, we measured a time course of protein levels for the
nine genes participating in timed motifs after exposure to dithiothrei-
tol (DTT) (Fig. 5 and Supplementary Fig. 4 online). Treatment with

DTT was chosen because it does not interfere with measuring the
protein profiles and it induces expression activation, which can be
reliably measured. We observed that the level of an activated gene’s
protein product roughly resembles a scaled, time-delayed integral of
its mRNA level (Fig. 5b), with protein levels increasing after the
increase in mRNA levels, and then stabilizing. This finding is con-
sistent with well-understood cellular mechanisms: an increase in the
level of mRNA allows an increase in protein production; but once
protein is produced, its relatively slow degradation rate allows the new
protein levels to be maintained with lower mRNA levels. To quantify
the relationship between the timings of the mRNA and protein
activation, we extracted the onset time of the activation of the proteins
in our timed motifs, and found them to be in good correlation with
the onset time of the mRNA activation (P o 0.0025 in 1st replicate;
P o 0.015 in 2nd replicate; Spearman correlation, n ¼ 9; Fig. 5c). By
contrast, there was no correlation between the mRNA response level
and the protein response level (r ¼ –0.05). When considering our
finer-grained timing motifs (Fig. 5a), we found that 9 of the 11 pairs
of ordered timing relationships that were observed at the mRNA level
were conserved at the protein level (permutation test, P ¼ 0.0043),
although the differences in timing were smaller in the protein level.
Similarly, six of eight ordered three-enzyme chain motifs found in the
mRNA were also conserved at the protein level (permutation test,
P ¼ 0.0080). This result demonstrates that timing relationships that
are observed in mRNA can also carry through to protein activation
timing, and supports the predictive ability of our analysis.

DISCUSSION

Our results shed light on the relative contribution of transcriptional
and hierarchical control in the metabolic network. Although others
have argued compellingly that ‘hierarchical control’—using primarily
feedback loops at the protein level—is predominant in metabolic
networks7,8 their conclusions were based on experiments performed in
an equilibrium condition. In contrast, the current analysis specifically
focuses on transitions induced by changes in environmental condi-
tions. It is well established that drastic changes in transcript levels
occur after such transitions17. It is likely that changes in transcript
levels cause corresponding changes in protein levels35, allowing the cell
to produce enough active protein to survive in the new condition.
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Figure 5 Protein timing motifs in response to DTT. (a) Part of central carbon metabolism that contained backward activation of RNA TAM’s in response

to DTT. Protein onsets are denoted in black and RNA onsets in gray. Arrow colors correspond to time (ranging from orange for early, to green for late).

(b) Protein and RNA profiles of three enzymes that participate in a backward-activation three-enzyme-chain TAM. Overall, we saw significant correlation

between mRNA onsets and protein onsets; 9 of the 11 pairs (Supplementary Fig. 5) of ordered timing relationships that were observed at the mRNA level

were conserved in the protein level (permutation test, P ¼ 0.0043); 6 of 8 ordered three-enzyme-chain motifs found in the mRNA were also conserved at
the protein level (permutation test, P ¼ 0.0080). (c) Onset time extracted from nine RNA and protein profiles. Onsets are significantly correlated (n ¼ 9,

Spearman r ¼ 0.87, P ¼ 0.0025, Pearson P ¼ 0.01). Correlation remains significant even when removing the bottom left measurement (Spearman,

r ¼ 0.83, n ¼ 8, P ¼ 0.01).
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These slower changes in protein levels can mimic and reinforce faster
changes in protein activity, which allow the cell to adjust rapidly to
drastic environmental perturbations. Subsequently, the transcript
levels generally return to a new steady state, which is often significantly
closer to the original transcript level before the transition. At that
point, which corresponds to the previous experiments7,8, it is plausible
that the cell contains sufficient protein product, and enters a regime
where hierarchical control dominates. Indeed, our protein experi-
ments suggest that protein abundances persist essentially at their new
levels even after transcript levels return to the new steady state. This
demonstrates that the short-term mRNA impulse has long-term
effects on protein levels and suggests that the metabolic network
may undergo two distinct control regimes. First, transcriptional
control is necessary in times of sudden environmental change to
adjust the overall levels of the required protein product. Hierarchical
feedback control is then used more predominantly, to allow a rapid
adjustment of active enzyme levels to small fluctuations.

The situation for repression of mRNA levels is probably more
complex. Here a transcriptional response may not be sufficient to
induce a rapid reduction in protein levels, and may well be accom-
panied or even entirely driven by regulation at the post-transcrip-
tional36 or post-translational levels. Indeed, only our binding affinity
analysis is related specifically to transcription, and it is plausible that
some of the observed changes in mRNA levels are caused by regulated
degradation36. Understanding the mechanisms by which post-
transcriptional regulation can lead to fine-grained temporal effects,
of the type we observe, is an exciting direction for future study.

Recent studies have identified important principles of network
function by considering functional data in the context of the topology
of a metabolic9,10 or protein-protein interaction network37,38. Activity
motifs can provide a tool for identifying functional patterns in
different networks. In their general form, they can represent frequently
occurring patterns in labels on the edges and nodes of any network,
including cis-regulatory networks, signaling networks, or even social
and World-Wide-Web networks. However, they can also encode
functional patterns involving rich, quantitative data of many different
types, like the timing and binding motifs studied here, as well
as phylogenetic or phenotypic profiles, genetic interactions or
protein abundances.

When applied to transcription control, the activity-motifs approach
reveals two intriguing regulatory mechanisms. First, we find that cells
have evolved to carefully coordinate the timing of crucial metabolic
processes, to optimize responses to environmental perturbations.
Second, we show that some of this fine-grained regulation of timing
may be achieved by a corresponding fine-tuning of the affinity of
transcription factor binding, suggesting that even small differences in
transcription factor binding sites may play a functional role. It would
be interesting to study the extent to which similar mechanisms occur
in other biological pathways and in other organisms.

Overall, our findings demonstrate that our approach for the
definition and discovery of activity motifs provides a useful frame-
work for systematic and refined investigation of network function.

METHODS
Metabolic network and motif finding. As a model of the S. cerevisiae

metabolic network, we used the model reconstructed by Forster et al.13. The

13 metabolites with highest degree (metabolic currencies) were removed from

the network before extracting the network wiring motifs. Bidirectional reac-

tions were represented as pairs of directed reactions. To find the wiring motifs,

we then searched the set of reactions for pairs and triplets that follow the

relevant constraints (the entire list can be found in Supplementary Table 1).

For example, a chain of two enzymes is a pair of reactions where the products

of the first reaction were equal to the substrates of the second one. Funnel

motifs are triplets of reactions, (R1, R2, R3) where the third reaction, R3, uses at

least one product of R1 and one product of R2 as its substrates. Similar

constraints were used for finding forks.

Gene expression time courses. We generated a set of 13 time courses by

measuring gene expression after a metabolic change. Yeast strain KCN118

(MATalpha ade2) was grown at 28 1C in 400 ml of synthetic complete media

with 2% dextrose (SCD) to an OD600 of 0.6. Synthetic complete was prepared

using the standard recipe, except 75 mM inositol was included. At OD600 of 0.6,

100 ml of cells were collected by centrifugation and frozen as a reference

sample, and the remaining cells were rapidly collected by filtration, washed with

distilled water and resuspended in 300 ml of one of the following media: SCE

(SC + 2% ethanol), SCG (SC + 2% galactose), SM1 (SCD lacking amino acids

A, R, N, C, Q, G, K, P, S, F and T), SM2 (SCD lacking amino acids L, I, V, W, H

and M), S0 (SCD lacking all amino acids), S0G (no amino acids, 2% galactose)

or S0E (no amino acids, 2% ethanol).

To measure response profiles, we resuspended 50 ml aliquots of yeast and

added them to 500-ml flasks shaking in a 28 1C water bath for 15, 30, 60, 120 or

240 min. At the indicated times, cells were collected by centrifugation for 2 min

at 3,700 r.p.m., and were flash frozen in liquid nitrogen. Poly-A RNA

extraction, mRNA labeling and cDNA microarray hybridization were per-

formed as previously described39.

We also collected 63 gene expression time courses from multiple pub-

lished experiments, including responses to changing media16,17,39,40 and

stress17,18,41–44. A detailed list can be found in Supplementary Table 2a.

Impulse model for expression time courses. Each of the conditions above had

expression levels measured on multiple time points after a change in environ-

mental conditions (Supplementary Table 2b). To model the profile of a time

course, we develop an impulse model to fit each gene separately15. After

environmental perturbation, typical expression profiles follow a two-phase

behavior: an early change to a transient level is often followed by a second

change to a new steady-state level. We use a model that allows for two

changes in expression levels, each modeled as a sigmoid. Formally, the

family of impulse functions is specified by six parameters: The initial

level (h0), the transient level (h1), the steady state level (h2), the time

of the first and second transition (t1 and t2) and the transition slope (b).

Together these parameterize an impulse function: fðxÞ ¼ 1
h1

s1ðxÞs2ðxÞ, where

s1ðxÞ ¼ h1 + ðh1 � h0ÞSigmoidðb; t1Þ, s2ðxÞ ¼ h1 + ðh1 � h2ÞSigmoidð�b; t2Þ,
and Sigmoidðb; tÞ ¼ 1= expð�bðx � tÞÞ. In some experiments, the measure-

ment at time zero was used to normalize the data, yielding a zero value for the

expression in log space. To push the fit impulse functions to be near zero before

the onset of environmental change, three pseudo measurements were added at

time (–30, –20, –10), with value zero. This favors functions that have near-zero

values and near-zero gradient before time zero, but in a soft way, rather than as

a hard constraint. Given a fit of an impulse function to the expression

measurements, we identified the onset time of the response of each gene as

the time at which the gene first reached half of its peak level. Additional details

of the model and algorithms, and empirical evaluations that include compar-

ison to other parametric models for gene expression time courses, can be found

in ref. 15.

Defining temporal transcription patterns. The transcriptional response of a

pair of genes is ordered when the onset time of one gene precedes the onset

time of the other. However, this relationship may be sensitive to small

perturbations in the gene expression data. To provide a robust definition of

ordered transcriptional response, we repeatedly perturbed the log-ratio expres-

sion values for each gene with Gaussian noise with zero mean and a s.d. of 0.1,

and performed the impulse model fitting for each perturbed time course. This

level of noise was chosen because estimates of individual gene’s variability

demonstrate lower average variability45 (in terms of the mean absolute

deviation, MAD ¼ 0.035). None of the genes participating in our chains

motifs had a variability 4 0.1 in a previous study45. We repeated the

perturbation process 30 times for each gene yielding a distribution of onset

times. A pair of genes is viewed as ordered if the distributions of their onset
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times, in the perturbed data, is significantly different (Po 0.01). The P-value is

estimated using a Wilcoxson test relative to the 30 perturbed measurements of

onsets for each gene in the pair. We further define a chain of enzymes to be

ordered if the geometric average of the P-values of all pairs in the chain is

significant (P o 0.01). We defined same-time motifs as an onset time within

2 min, with significance measured in the same way.

Statistical analysis of pattern abundance. Overrepresentation of patterns was

estimated using a Monte Carlo approach. The assignment of expression profiles

to enzymes was randomly shuffled, without changing the wiring pattern of the

network. This last point is important, as motifs often overlap, and randomizing

the network structure could introduce biases. We repeated this process for

10,000 randomized assignments, and counted the number of patterns in each

one. This process was used to obtain an empirical P-value by calculating the

fraction of randomizations with higher pattern count than the true network. In

addition, for very significant patterns (P o 10�4), we further refined the

P-value in the following way: each random distribution of counts was fit using

a gamma distribution (Fig. 2a,b), and a P-value was calculated as the tail of the

cumulative distribution. This P-value is calculated in a similar way that a

z-score is calculated from the mean and variance of a sample, but instead of

using a Gaussian distribution, it uses a Gamma distribution, which fits better a

distribution over positive values. A Kolmogorov-Smirnov (KS) test was used to

test the adequacy of the fit by measuring the similarity of the empirical and the

fit distribution. This KS test usually rejected the hypothesis of different

distributions (P ¼ 0.1) (cases where the hypothesis was not rejected did not

have a significant P-value in the first place). The P-values based on the gamma

distribution were highly correlated with the empirical P-values obtained from

shuffling (data not shown).

To quantify overrepresentation of an activity motif over all conditions

(Fig. 2d,e), we first calculated an enrichment score for each condition, which

was the log base-10 of the individual empirical P-values of the motif in that

condition. The total score is a sum of the 76 independent scores for the

different conditions, and is well fit by a Gaussian distribution (KS test,

probability of null hypothesis 4 0.9).

Affinity data and coverage. We used genome-wide ChIP-chip32,33 for multiple

transcription factors across several conditions, and used binding P-value as a

measure of binding affinity, as previously done32.

We analyzed the relation between TAMs and BAMs using a Monte Carlo

approach that is similar to our general analysis of activity motif, and to our

specific TAM analysis. We focused on a set of 48 binding experiments that were

measured in conditions that match the RNA expression measurements (Sup-

plementary Table 6), and analyzed each pair of expression and binding data

separately, as follows. We consider only enzymes that are more strongly bound

by the corresponding transcription factor (with P-value lower than a threshold

Pbind o 0.5). We identify the set of three-enzyme-chain TAMs that are strongly

bound by the transcription factor, and the set of three-enzyme-chain BAMs for

the same transcription factor (those where the binding P-values were ordered).

We counted the overlap between these two sets, and evaluated the probability of

observing such an overlap at random, by shuffling the binding affinity values

across all bound genes 105 times. Importantly, this permutation approach

corrects for any potential artifacts arising from the structure of the motifs,

including overlaps between different three-enzyme chains, as these same

artifacts also hold in the permuted data. Given the set of P-values for all 48

conditions, we used FDR to correct for multiple hypotheses, and found 20

conditions to be significant at q¼ 0.05 (22 at q ¼ 0.1, 17 at q¼ 0.005). We also

calculated an upper bound on the overall probability of observing 20 condi-

tions that are significant at q ¼ 0.05, using a binomial distribution B(48,0.05),

yielding P o 1.9 � 10�14.

Protein time courses. Stress conditions were selected based on the compat-

ibility of strains tested in genomic expression studies17 and the green fluor-

escent protein (GFP)-tagged library (Invitrogen)46. The genotype of the

collection is as follows: MATa his3D1 leu2D3 met15D0 ura3D0 XXX-

GFP(S65T)-His3MX, where XXX represents the gene fused to GFP(S65T)47.

We cultured 5 ml cultures overnight with a single colony in rich medium

(YEPD) at 25 1C (for DTT exposure) or 30 1C (for diamide treatment) and

shaken at 250 r.p.m.17. Overnight cultures were back diluted to an OD600 of 0.1

in 40 ml of YEPD, and grown to an OD600 of 0.4 at the same temperature and

shaker speed. A 200 ml sample was taken as the zero time point before the

addition of stress at a final concentration of 2.5 mM for DTT exposure and

1.5 mM for diamide treatment. We manually delivered 200 ml samples to an

analytical cytometer (LSR-II; Becton Dickinson) using an auto sampler device

(HTS; Becton Dickinson) every 10 min for 4.5 h. GFP was excited at 488 nm

and fluorescence emission was collected at 505 nm46. To eliminate systematic

errors in uneven sample flow, raw cytometry data was processed as previously

described46. Each time point collected reflects the median GFP intensity over an

isogenic population in arbitrary units. The resulting time courses can be found

in Supplementary Figure 5 online.

Extraction of onset times from protein profiles. To extract the onset time

from each protein profile, we first linearly rescaled each set of measurements to

the range [0,1], then added three zero pseudo measurements at times –10, –20,

–30 min, and added three pseudo measurements with level 1 and times +10,

+20, +30 after the last measurement. We then fit a sigmoid to each profile,

Sigmoidðb; tÞ ¼ 1= expð�bðx � tÞÞ, tuning the two free parameters, the onset

t and the slope b, to minimize the squared fit error.

P-value for protein activity motifs. The probabilities of observing 9 ordered

pairs out of 11 pairs, and 6 triplets out of 8 were calculated using a permutation

test, over 105 permutations, yielding P ¼ 0.0043 for pairs and 0.0080 for

triplets. This permutation test correctly takes into account that the pairs and

triplets are not independent.

Accession numbers. GEO: The microarray data have been deposited with

accession code GSE13219.

Note: Supplementary information is available on the Nature Biotechnology website.
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