
Products of Mixed Covering Arrays of Strength Two

Charles J. Colbourn and Sosina S. Martirosyan
Dept. of Computer Science and Engineering

Arizona State University
P.O. Box 878809

Tempe, Arizona 85287
{charles.colbourn,sosina.martirosyan}@asu.edu

Gary L. Mullen
Department of Mathematics

The Pennsylvania State University
University Park, PA 16802, USA

mullen@math.psu.edu

Dennis Shasha
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

251 Mercer Street, New York, NY 10012
shasha@cs.nyu.edu

George B. Sherwood
Testcover.com LLC
41 Clover Hill Road

Colts Neck, NJ 07722
gsherwood@att.net

Joseph L. Yucas
Department of Mathematics
Southern Illinois University

Carbondale, IL 62901
jyucas@math.siu.edu

Abstract

A covering array CA(N ; t, k, v) is an N × k array such that every N × t sub-array contains
all t-tuples from v symbols at least once, where t is the strength of the array. Covering arrays are
used to generate software test suites to cover all t-sets of component interactions. The particular
case when t = 2 (pairwise coverage) has been extensively studied, both to develop combinatorial
constructions and to provide effective algorithmic search techniques. In this paper, a simple
“cut-and-paste” construction is extended to covering arrays in which different columns (factors)
admit different numbers of symbols (values); in the process an improved recursive construction
for covering arrays with t = 2 is derived.

1 Introduction

Component based software development poses many challenges for the software tester. Interactions
among components are complex and numerous. Components are prone to unexpected interaction
faults. Ideally we would test all possible interactions, but this is usually infeasible. Consequently,
we are interested in generating test suites that provide coverage of the most prevalent interactions.

Suppose that we have 20 components. If two of these have four possible configurations, while
the rest have three, we have 42 × 318 or 6,198,727,824 possible interactions. We can cover all of
the two-way interactions among these components with as few as 19 tests. Likewise, we can cover
the three way interactions with only 90 tests. Recently, these methods have been applied to the

1



generation of software test suites allowing one to guarantee certain interaction coverage in software
systems [3, 4, 5, 6, 10, 11, 25, 26, 27, 28].

At the current time there are two primary areas of active research on combinatorial designs
for software testing. The mathematics community is focusing on building smaller designs of higher
interaction strength [1, 2, 21, 23, 24]. The software testing community is focusing on greedy
search algorithms to build arrays in a more flexible environment, one that more closely matches
real testing needs [3, 4, 10, 11, 25, 26, 27]; in addition, more powerful search techniques such as
simulated annealing have been employed recently [5, 6]. Ideally we ought to combine these ideas
to build interaction test suites that are minimal and efficient to generate. An initial investigation
along these lines was conducted in [7]. Since the methods of building covering arrays for testing are
varied, a trade-off must occur between computational power and the cost of running the final test
suites. In this paper we examine some methods of combining computational search and recursive
combinatorial construction to build test suites efficiently. Part of our main objective is to develop
a flexible combinatorial construction; then heuristic search can be used to find ingredients for use
in the construction.

2 Covering Arrays

The problems faced in software interaction testing are not unique. Similar problems exist for testing
in other disciplines such as agriculture, pharmaceuticals, manufacturing and medicine [8, 12, 19].
The primary combinatorial objects used to satisfy the coverage criteria for these types of problems
are orthogonal arrays and covering arrays. We begin with a few definitions.

An orthogonal array OAλ(t, k, v) is an λvt × k array on v symbols such that every λvt × t
sub-array contains each ordered subset of size t from v symbols exactly λ times. When λ = 1 we
omit the subscript. We do not need such a stringent object for software testing. Instead we can
use a covering array that allows some duplication of coverage.

A covering array CAλ(N ; t, k, v) is an N × k array such that every N × t sub-array contains
all tuples from v symbols of size t at least λ times each. When N is unknown or unspecified, the
notation CAλ(t, k, v) is also used. When λ = 1 we omit the subscript. The covering array number
CAN(t, k, v) is the minimum number N of rows required to produce a CA(N ; t, k, v). In a covering
array CA(t, k, v), t is the strength, k the degree, and v the order. We focus on strength t = 2 in
this paper.

It can happen that some of the entries of the array are not needed in order to cover all t-tuples.
In this case, we can replace the entry of the array by ?, to indicate a “don’t care” position. When
such a replacement is made, t-tuples containing a ? are deemed not to match a t-tuple of the v
symbols. The profile (d1, . . . , dk) of an N ×k array is a k-tuple in which the entry di is the number
of ? entries in the ith column.

Often factors have different numbers of levels. A mixed level covering array MCA(N ; t, k, (v1, . . . , vk))
is an N×k array in which the entries of the ith column arise from an alphabet of size vi; in addition,
choosing any t distinct columns i1, . . . , it, every t-tuple containing, for 1 ≤ j ≤ t, one of the vij

entries of column ij , appears in columns i1, . . . , it in at least one of the N rows. We sometimes use
exponential notation, writing su1

1 · · · s`
u` to indicate that there are k =

∑`
i=1 ui factors, of which

ui have si levels for 1 ≤ i ≤ `. As for covering arrays, we can omit N when it is not determined;
we can also introduce ? entries as before, and define a profile to indicate their distribution in the
MCA. An example of type 5236213 is given in Figure 1; while it is optimal in terms of number of

2



tests (since 5× 5 = 25), other distributions of ? entries can arise.

1 1 ? ? ? 1 ? ? ? 1 ? ? ? ? ? 1 ? ? ? ? ?
1 2 2 ? ? 2 2 2 ? ? 2 ? 2 ? ? ? 2 ? ? 2 2
1 3 3 3 3 3 3 3 1 1 2 1 1 1 1 1 2 1 1 1 ?
1 4 1 1 1 1 2 3 2 2 1 2 2 1 2 2 1 2 2 2 1
1 5 1 2 2 2 1 1 1 1 1 1 1 2 2 1 1 1 2 1 2
2 1 2 3 1 2 3 1 2 ? 2 2 1 2 ? 2 ? 2 ? 1 2
2 2 1 ? 3 1 1 2 1 ? 1 1 2 1 1 2 1 1 1 ? 2
2 3 3 2 2 1 2 2 2 2 ? 2 ? 2 1 ? ? ? 2 2 1
2 4 ? 2 ? 3 1 3 2 1 2 2 2 2 2 2 2 ? 1 ? 2
2 5 2 1 3 3 2 1 ? 1 1 1 ? 1 1 1 2 2 1 2 1
3 1 3 1 2 2 1 3 ? 2 ? ? ? 1 2 ? 1 1 1 ? ?
3 2 1 3 ? 3 3 2 ? 1 2 ? ? ? ? 1 1 2 2 2 1
3 3 ? 2 1 ? ? 1 ? ? 1 ? 2 ? ? ? 2 ? ? ? 2
3 4 2 ? 3 2 2 2 1 2 ? 2 1 2 1 1 ? 1 ? 1 1
3 5 3 3 1 1 3 2 2 2 1 1 2 ? ? 2 ? ? ? ? ?
4 1 1 2 3 ? 2 2 2 1 1 ? 2 1 2 1 2 1 2 2 1
4 2 3 1 1 1 3 1 1 ? 2 ? 1 2 1 ? ? 2 1 1 2
4 3 2 3 2 2 1 ? ? ? ? ? ? ? 2 2 1 2 ? ? ?
4 4 ? ? 2 3 3 1 ? 2 ? 1 ? ? ? ? ? ? ? ? ?
4 5 ? ? ? ? ? 3 ? ? 2 2 ? ? ? ? ? ? ? ? ?
5 1 ? ? 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
5 2 2 2 2 1 3 3 2 2 2 2 2 2 2 2 2 2 2 1 2
5 3 1 1 3 2 ? 2 ? ? ? ? ? ? ? ? ? ? ? ? ?
5 4 3 3 ? ? 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ?
5 5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Figure 1: An MCA(25; 2, 21, 5236213)

3 Products of Strength Two Arrays

When a CA(N ; 2, k, v) and a CA(M ; 2, `, v) both exist, it is an easy matter to produce a CA(N +
M ; 2, k`, v). To be specific, let A = (aij) be a CA(N ; 2, k, v) and let B = (bij) be a CA(M ; 2, `, v).
Form an (N + M) × k` array C = (ci,j) = A ⊗ B by setting ci,(f−1)k+g = ai,g for 1 ≤ i ≤ N ,
1 ≤ f ≤ `, and 1 ≤ g ≤ k. Then set cN+i,(f−1)k+g = bi,f for 1 ≤ i ≤ M , 1 ≤ f ≤ `, and 1 ≤ g ≤ k.
In essence, k copies of B = (bij) are being appended to ` copies of A = (aij) as shown in Figure
2. Since two different columns of C arise either from different columns of A or from two different
columns of B, the result is a CA(N + M ; 2, k`, v). This appears, in different vernacular, in [18]; it
is also the essence of the block recursive construction from [23].

We first consider two extensions of this simple concatenation, to allow mixed level covering
arrays and to exploit “don’t care” positions. The extension to mixed levels is treated in [15],
without exploiting the ? positions. To simplify the presentation, we assume a factor with v values
always takes on values from {1, . . . , v}, and hence the corresponding column of the array contains

3



a11 a12 · · · a1k a11 a12 · · · a1k · · · a11 a12 · · · a1k

a21 a22 · · · a2k a21 a22 · · · a2k · · · a21 a22 · · · a2k

N rows
...

... · · ·
...

aN1 aN2 · · · aNk aN1 aN2 · · · aNk · · · aN1 aN2 · · · aNk

b11 b11 · · · b11 b12 b12 · · · b12 · · · b1` b1` · · · b1`

b21 b21 · · · b21 b22 b22 · · · b22 · · · b2` b2` · · · b2`

M rows
...

... · · ·
...

bM1 bM1 · · · bM1 bM2 bM2 · · · bM2 · · · bM` bM` · · · bM`

Figure 2: The structure of A⊗B

only these symbols, and possibly ?.

Theorem 3.1 Suppose that there exist

1. an MCA(N ; 2, k, (v1, . . . , vk)), A, with profile (d1, . . . , dk);

2. for each 1 ≤ i ≤ k, an MCA(Mi; 2, `i, (wi1, . . . , wi,`i
)), Bi, with profile (fi1, . . . , fi,`i

), and for
which wij ≤ vi for 1 ≤ j ≤ `i.

Then for T = N + maxk
i=1(Mi − di), there exists an

MCA(T ; 2,
k∑

i=1

`i, (w11, . . . , w1,`1 , · · · , wk1, . . . , wk,`k
)).

Proof. Form an array C with T rows and
∑k

i=1 `i columns, indexing columns as (i, j) for 1 ≤ i ≤ k
and 1 ≤ j ≤ `i. On the first N rows, column (i, j) is column i of A. (At this stage, it is possible
that vi > wij ; if so, each occurrence of vi − wij of the symbols can be changed to ?.) Now for
i = 1, . . . , k, select the di rows of A in which the ith column contains a ?, and from the last T −N
rows choose any Mi − di rows, so that Mi rows are selected in total. Then on these rows in the
chosen order, place the entries of the jth column of Bi in the column (i, j), for 1 ≤ j ≤ `i.

Two columns (i1, j1) and (i2, j2) of the result cover all pairs when i1 6= i2; indeed these are
covered on the first N rows. When i1 = i2, restricting to rows arising from Bi1 , we find all pairs
covered. �

While C is sufficient to cover all pairs, there is much redundant coverage. A simple argument
takes advantage of this. Call a row of an MCA constant if the only pairs that it covers are of
the form (x, x). Suppose that we require every ingredient, without loss of generality, to contain a
constant row consisting of all “1” entries. If this is done, then by always selecting the same row of
C in which to place the constant row of each Bi, the resulting matrix C has two constant rows of
“1” entries. One is redundant and can be removed, leaving no pair uncovered but reducing the size
of C. Although this can be done in general, it saves one test only. This simple argument imposes
too stringent a condition, since we do not need duplicated rows to have redundant rows. Phrased
more generally, then, since the rows of C arising from A, in two columns indexed by (i, j1) and
(i, j2) cover all pairs of the form (x, x), we can delete all constant rows of each Bi prior to applying

4



Theorem 3.1. This can reduce the size of C by many rows in some instances. Moura, Stardom,
Stevens, and Williams [15] exploit constant rows effectively to reduce the size of the resulting array.

Unfortunately, in some cases we must sacrifice columns to obtain many constant rows. When q is
a prime power, the standard CA(q2; 2, q, q) from the finite field on q elements has q disjoint constant
rows, but its extension to a CA(q2; 2, q+1, q) can have at most one, no matter how the symbols are
relabeled. For example, taking two CA(25; 2, 6, 5)s allows us to produce a CA(49; 2, 36, 5) while us-
ing instead one CA(25; 2, 5, 5) with five disjoint constant rows allows us to obtain a CA(45; 2, 30, 5).
We examine a generalization that enables us to obtain a CA(45; 2, 35, 5), sacrificing one column in
the product rather than one column in an ingredient.

A1 A2

P X

Figure 3: A partitioned covering array (PCA)

For the sake of clarity, we develop a construction for covering arrays first, and then generalize to
mixed level covering arrays. We consider covering arrays exhibiting a specific structure. Consider
a CA(N ; 2, k1 + k2, v), shown in Figure 3. Here A1, A2, and X are (N − v)× k1, (N − v)× k2, and
v×k2 arrays, respectively. However P is a v×k1 array with a specific structure, namely that every
column is a permutation of {1, . . . , v}. When a CA(N ; 2, k1 + k2, v) admits such a partition, it is a
partitioned covering array PCA(N ; 2, (k1, k2), v). The structure is not altered by applying (possibly
different) permutations to the v symbols in each column, and hence without loss of generality P
can be assumed to be the matrix D in which each column is the identity permutation. If we assume
in addition that X is a constant matrix (all entries equal), and without loss of generality that X
is the all ones matrix O, we obtain a further restriction: An SCA(N ; 2, (k1, k2), v) is defined to be
a CA(N ; 2, k1 + k2, v) in which, for 1 ≤ i ≤ v, row N − v + i is a (k1 + k2)-tuple in which the
first k1 entries are equal to i and the last k2 symbols are equal to 1. When q is a prime power, an
OA(2, q + 1, q) yields an SCA(q2; 2, (q, 1), q).

Now we turn to the main product construction for covering arrays:

Theorem 3.2 If a PCA(N ; 2, (k1, k2), v) and an SCA(M ; 2, (`1, `2); v) both exist, then a PCA(N+
M − v; 2, (k1`1, k1`2 + k2`1), v) also exists.

Proof. Take a PCA(N ; 2, (k1, k2), v) with a partition as in Figure 3 into A1, A2, D and X; and
an SCA(M ; 2, (`1, `2), v) with partition B1, B2, D, and O. Form an array as in Figure 4. In the
products of the form Ai⊗Bj , the first N −v rows arise from Ai while the next M −v arise from Bj

(see Figure 2. Here k1X is obtained by repeating the array X k1 times. D and O are the matrix
of identity permutations and of all ones, of appropriate dimension.

We claim that the result R is an PCA(N + M − v; 2, ((k1`1, k1`2 + k2`1), v). Among the first
k1`1 columns, two columns arising from different columns of A1 have all pairs covered in the first
N − v and last v rows of R, since these form columns of the PCA. When they arise from the same
column of A1, they arise from different columns of B1 and hence all pairs are covered in the last
M rows of R, since these form columns of the SCA.

5



A1 ⊗B1 A2 ⊗B1 A1 ⊗B2

D k1X O

Figure 4: The product of a PCA and an SCA

If both columns arise from the next k2`1 columns of R, the same argument assures that all pairs
are covered when they arise from different columns of A2. If they arise from the same column of
A2 (and therefore different columns of B1), all pairs are covered in the M − v rows except those of
the form (i, i) for 1 ≤ i ≤ v. Since both columns arise from the same column of A2 (and therefore
repeat the same column of X in the latter v rows as well), every pair of the form (i, i) is covered
among the first N − v and last v rows.

If both columns arise from the last k1`2 columns of R, when the columns arise from different
columns of B2 all pairs are covered in the last M rows since these form columns of the SCA. If they
arise from the same column of B2, all pairs are covered except those of the form (i, i) for 1 ≤ i ≤ v;
these are covered in the M − v rows.

If one column arises from the first k1`1 columns and another from the next k2`1 columns, the
first N − v and last v rows form distinct columns of the PCA.

If one column arises from the first k1`1 columns and another from the last k1`2 columns, the
last M rows form distinct columns of the SCA.

If one column arises from the second group of k2`1 columns and another from the last k1`2

columns, the M − v rows cover all pairs except possibly those of the form (x, 1) for 1 ≤ x ≤ v, and
these are covered in the first N − v and last v rows.

This treats all six cases for the choice of two columns, and hence R is a covering array. That R
is a PCA(N + M − v; 2, (k1`1, k1`2 + k2`1), v) follows from the fact that R has a v× k1`1 subarray
consisting of (column) identity permutations, occurring in the last v rows. �

When the PCA in this construction is in fact an SCA, the result is also an SCA.
A substantial further improvement is possible. One can, on occasion, find a larger submatrix

in the result R that contains column identity permutations, and hence provide a better ingredient
for the next iteration of the recursion. We explore this next. Consider the SCA used. Were it to
contain within B1 an v× η subarray in which every column is a permutation of {1, . . . , v}, then let
us examine the impact on the covering array R constructed in Theorem 3.2. Each column of B1 is
replicated k1 + k2 times in total, and hence R contains a v × η(k1 + k2) subarray in which every
column is a permutation. If η(k1 + k2) > k1`1, we can permute symbols within each column, and
permute rows:

Theorem 3.3 When the SCA in Theorem 3.2 contains within B1 a v×η subarray whose columns
are permutations, the result is a PCA(N + M − v; 2, (η(k1 + k2), (`1 − η)(k1 + k2) + k1`2), v).

A similar observation applies to subarrays consisting of column permutations in the PCA.

6



We illustrate the product constructions by establishing some applications leading to new cov-
ering array numbers. We focus on the case when every factor has the same number of levels, since
tables are available in the literature [14, 23].

Lemma 3.4 When q is a prime power, and r ≥ 0 is any integer, there is an SCA((r + 1)q2 −
rq; 2, (qr+1, (r + 1)qr), q) and hence a CA((r + 1)q2 − rq; 2, qr+1 + (r + 1)qr, q).

Proof. Apply Theorem 3.2 inductively r times using an SCA(q2; 2, (q, 1), q). �

Some small examples are

CA(15; 2, 15, 3) CA(21; 2, 54, 3) CA(27; 2, 189, 3)
CA(28; 2, 24, 4) CA(40; 2, 112, 4) CA(52; 2, 516, 4)
CA(45; 2, 35, 5) CA(65; 2, 200, 5) CA(85; 2, 1125, 5)
CA(91; 2, 63, 7) CA(133; 2, 490, 7) CA(175; 2, 3673, 7)

These improve upon the construction in [23]. However, further improvements result from The-
orem 3.3. For a non-negative integer r we define Dr,t by

Dr,t =
s∑

i=1

(
r − i
i− 1

)
tr−i,

where s = b r+1
2 c.

The numbers Dr,t satisfy the recurrence

D0,t = 0;

D1,t = 1;

Dr+1,t = tDr,t + tDr−1,t.

Lemma 3.5 When q is a prime power, and r ≥ 0 is any integer, there is an SCA((r + 1)q2 −
rq; 2, ((q + 1)Dr+1,q, qDr,q), q) and hence a CA((r + 1)q2 − rq; 2, (q + 1)Dr+1,q + qDr,q, q).

Proof. The SCA(q2; 2, (q, 1), q) has η = q column permutations within B1. Apply Theorem 3.3 to
obtain an SCA(2q2 − q; 2, ((q + 1)q, q), q). This has (q + 1)D2,q + qD1,q columns. Apply Theorem
3.3 using the SCA(q2; 2, (q, 1), q) at each iteration. �

Some small examples are

CA(15; 2, 15, 3) CA(21; 2, 57, 3) CA(27; 2, 216, 3) CA(33; 2, 819, 3)
CA(28; 2, 24, 4) CA(40; 2, 116, 4) CA(52; 2, 560, 4) CA(64; 2, 2704, 4)
CA(45; 2, 35, 5) CA(65; 2, 205, 5) CA(85; 2, 1200, 5) CA(105; 2, 7025, 5)
CA(91; 2, 63, 7) CA(133; 2, 497, 7) CA(175; 2, 3920, 7) CA(217; 2, 30919, 7)

.

Using tabu search, Nurmela [17] provides better results for some of the small cases, and explicitly
presents a CA(15; 2, 20, 3). We examined his solution, and found that three rows can be chosen
so that 14 (and no more) columns form permutations. We can therefore rewrite his solution as a

7



0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1
0 0 1 1 0 1 2 2 2 2 2 2 2 2 0 0 0 2 2 2
0 2 2 2 0 1 0 0 0 1 2 0 1 1 2 2 2 0 2 1
1 1 1 0 1 0 1 1 0 0 2 2 2 1 2 2 2 2 1 0
1 2 0 2 1 0 0 2 2 1 0 1 0 2 0 1 2 2 2 1
1 2 2 1 2 0 2 1 1 0 1 0 2 0 1 0 2 1 2 1
2 0 0 1 2 2 2 2 0 2 2 1 0 1 2 2 2 1 0 2
2 1 2 0 2 2 1 2 2 0 1 0 1 2 0 2 1 2 2 0
2 1 1 2 0 2 0 1 1 2 1 2 0 2 2 0 1 1 0 1
2 1 1 2 2 1 2 0 2 1 0 1 2 0 2 1 0 1 0 0
1 2 2 1 1 2 1 0 1 2 0 2 1 0 1 2 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 0 1 0 2 2 1 2 2 0 1 0 1 1 1 0 1 2
1 0 2 2 0 1 1 1 2 0 0 1 0 1 1 1 1 0 1 2
0 1 0 1 2 2 0 0 0 1 1 2 2 2 1 1 1 0 1 2

Figure 5: A PCA(15; 2, (14, 6), 3)

PCA(15; 2, (14, 6), 3), as shown in Figure 5. One can verify that none of the entries can be changed
to a “don’t care” position ? and obtain a covering array.

Theorem 3.2 using an SCA(9; 2, (3, 1), 3) then gives a CA(21; 2, 74, 3), and indeed Theorem 3.3
gives a PCA(21; 2, (60, 14), 3). This provides the sequence

CA(15; 2, 20, 3) CA(21; 2, 74, 3) CA(27; 2, 282, 3) CA(33; 2, 1002, 3) .

Instead since the PCA(15; 2, (14, 6), 3) can be written as an SCA by suitable permutations of
the symbols in each column, by Theorem 3.2 we can produce an SCA(27; 2, (196, 168), 3) and hence
a CA(27; 2, 364, 3). The PCA in Figure 5 has the property that the upper left contains within the
last three rows eleven columns that are permutations, and hence by Theorem 3.3 we can rewrite
the solution as an SCA(27; 2, (220, 144), 3). Applying Theorem 3.3 with an SCA(9; 2, (3, 1), 3) then
yields an SCA(33; 2, (1092, 220), 3) and hence a CA(33; 2, 1312, 3). In summary, we have found:

CA(15; 2, 20, 3) CA(21; 2, 74, 3) CA(27; 2, 364, 3) CA(33; 2, 1312, 3) .

By contrast, using in his words “a few months of CPU time”, Nurmela [17] produces by tabu
search

CA(15; 2, 20, 3) CA(21; 2, 60, 3) CA(27; 2, 191, 3) CA(33; 2, 462, 3) .

Evidently heuristic search is a valuable tool. However, these few results demonstrate that em-
ploying the CA(15; 2, 20, 3) (found by tabu search) in recursions outperforms the direct application
of tabu search for larger orders. We explore this further next. In Figure 6, we present PCAs found
by the simulated annealing method from [6]; the sizes of the covering arrays match those found
(also by simulated annealing) in [22].

These improvements are not restricted to q = 3. We provide some useful small ingredients for
q = 4 in Figure 7. These match bounds from simulated annealing from [22], and reported in [17]

8



1 2 1 0 0
0 1 2 0 2
1 1 0 1 2
2 1 1 1 0
1 0 2 2 0
0 2 0 2 0
0 0 1 1 2
2 2 2 2 2
0 1 1 2 1
2 0 0 0 1
1 2 2 1 1

0 2 1 0 1 1 1
0 1 2 1 1 2 2
1 1 1 2 0 1 2
1 0 0 1 1 1 0
0 2 0 2 2 0 2
2 0 1 2 1 0 1
1 2 2 1 0 0 1
2 0 2 0 2 1 2
2 1 0 0 0 0 0
1 1 0 0 2 2 1
0 0 2 2 0 2 0
2 2 1 1 2 2 0

1 0 2 2 1 0 1 1 1
1 2 0 0 0 1 1 2 0
2 2 0 1 1 1 2 1 2
2 2 2 0 2 2 1 0 2
0 1 1 1 0 2 1 1 1
2 0 1 0 2 1 2 2 1
0 0 2 1 0 0 2 0 0
1 1 1 2 1 2 2 0 0
2 1 0 0 2 0 0 1 0
0 2 0 2 2 1 0 0 1
1 0 0 1 2 2 0 2 2
0 1 2 0 1 1 0 2 2
2 2 1 2 0 0 0 2 2

Figure 6: PCA(11; 2, (4, 1), 3), PCA(12; 2, (4, 3), 3), PCA(13; 2, (6, 3), 3)

as the best current bounds. In this presentation, however, they are shown as PCAs, and indeed
have “don’t care” positions. We leave to the interested reader relevant application of the product
constructions.

4 A direct construction

We develop a direct construction along the lines of Theorem 3.2, that leads to a different improve-
ment. Sherwood [20] earlier gave a direct construction, upon which the one presented improves.

Let A = {ai,j} be a SCA(N ; 2, (k1, k2), v) where j = 1, · · · , (k1 +k2), and i = 1, · · · , N . Denote
by B = {bi,j} the (N − v) × k1 array where bi,j = ai,j for j = 1, · · · , k1, and i = 1, · · · , N − v.
Denote by C = {ci,j} the (N − v)× k2 array where ci,j−k1 = ai,j for j = k1 + 1, · · · , (k1 + k2), and
i = 1, · · · , N − v. Denote by bj the jth column of B and by cj the jth column of C. Let v be the
v-tuple (1, 2, · · · , v)T and I be the v-tuple (1, 1, · · · , 1)T .

Further, define D to be a binary code having M codewords each with length r; every two
codewords (columns) have a position where the first one is 0 and the second one is 1 and a position
where the first one is 1 and the second one is 0. Denote such a code by D(r, M).

First construct a r × kr
1 array Er whose columns are all different r-tuples of the columns

{b1, b2, · · · , bk1}. Next, suppose that the jth column of D(r, M) has xj zeroes and yj = r − xj

ones. Construct an array Lr
j with k1

xjk2
yj columns and r rows. Suppose the positions where the

jth column of D(r, M) has the symbol 0 are {z1, z2 · · · zxj}. Then in the rows {z1, z2 · · · zxj} of Lr
j

the columns are all possible xj-tuples of the columns {b1, b2, · · · , bk1}. Each of these xj-tuples is
repeated k2

yj times. For each repetition, in the remaining rows of Lr
j the columns are all possible

yj-tuples of columns {c1, c2, · · · , ck2}. Thus the set of k2
yj yj-tuples is repeated k1

xj times in total.
The array Fr is constructed as follows:

Er Lr
1 Lr

2 · · · Lr
M

v I I · · · I

9



0 2 2 2 3 2
0 0 0 3 1 1
3 0 2 1 2 2
0 3 1 1 0 3
1 1 2 3 0 3
2 0 3 2 3 3
2 1 1 2 1 2
1 3 0 0 3 2
3 1 0 1 3 1
2 0 2 0 0 1
1 3 1 2 2 1
1 2 3 1 1 1
3 3 3 3 0 2
3 2 1 0 1 3
2 2 0 3 2 3
3 2 0 2 0 0
0 1 3 0 2 0
2 3 2 1 1 0
1 0 1 3 3 0

2 3 2 3 3 0 3
3 0 0 3 0 0 2
1 2 1 0 3 2 2
0 3 0 1 1 2 0
1 3 3 0 2 0 0
3 3 3 1 3 3 2
3 2 3 3 1 1 0
2 1 3 1 0 2 3
3 1 2 0 1 1 2
0 2 0 0 0 3 3
2 1 1 2 1 0 0
3 0 2 2 2 2 3
0 0 3 2 3 1 0
1 0 1 1 1 1 3
0 1 1 3 2 3 2
1 ? 2 2 0 3 0
2 2 0 2 2 1 2
1 1 0 3 3 2 1
0 2 2 1 2 0 1
2 0 3 0 1 3 1
3 3 1 2 0 1 1

2 0 1 1 0 0 1 1
1 2 2 1 3 3 0 1
2 3 0 0 2 1 2 1
2 1 1 2 1 3 3 2
3 2 1 0 1 1 0 3
3 0 2 2 0 1 2 2
0 3 0 1 1 2 0 2
2 1 3 3 0 2 0 1
1 1 2 0 2 2 1 3
3 3 3 2 1 3 1 1
0 0 3 2 2 0 0 0
0 1 3 1 3 1 2 3
1 3 1 3 3 1 1 0
2 3 2 3 1 0 2 3
0 2 1 3 2 3 1 2
3 0 0 3 3 2 3 3
1 2 0 2 0 3 1 3
0 3 2 0 0 1 3 1
1 2 3 0 3 0 3 2
2 2 1 2 3 2 2 0
1 0 2 0 1 3 2 0
3 1 0 1 2 0 3 0
? ? ? ? 0 ? ? 0

Figure 7: PCA(19; 2, (5, 1), 4), PCA(21; 2, (6, 1), 4), PCA(23; 2, (6, 2), 4)

Theorem 4.1 For any r ≥ 0, Fr is a CA(r(N−v)+v; 2, k, v) where k = k1
r+(k1

x1k2
y1+k1

x2k2
y2+

· · ·+ k1
xM k2

yM ).

Proof. Fr consists of M + 1 blocks. The first block, with array Er in the first r rows, is denoted
by F0

r . The ith block is denoted by Fi
r for i = 1, 2, · · · ,M . Consider any two columns f1 and f2

of Fr .

1. f1, f2 ∈ F0
r . All pairs are covered since two different columns of B appear in the same row of

Er. Together with the vector v they cover all pairs.

2. f1, f2 ∈ Fi
r for i = 1, 2, · · · ,M . Suppose that, for two columns of Lr

j , there exists a row
(ch, cj) where h 6= j. Then all pairs are covered except possibly the pair (1, 1). This pair
is also covered, since both f1 and f2 end with vector I. Otherwise, it follows from the
construction of Lr

j that f1, f2 have at least one row (bh, bj) where h 6= j and another row
(ct, ct) for some t. Hence all pairs are covered.

3. f1 ∈ F0
r and f2 ∈ Fi

r where 1 ≤ i ≤ M . All pairs are covered since there exist two rows that
contain (

bh cj

v I

)
10



for some 1 ≤ h ≤ k1 and 1 ≤ j ≤ k2.

4. f1 ∈ Fj
r and f2 ∈ Fi

r where 1 ≤ i, j ≤ M and i 6= j. All pairs are covered since there exist
two rows that contain (

bh cj

ct bs

)
for some 1 ≤ h, s ≤ k1 and 1 ≤ t, s ≤ k2. This is assured from the structure of D(r, M). All
pairs are covered but (1, 1) in these rows. The pair (1, 1) is also covered as f1 and f2 have
the vector I in the last v positions.

�

This construction generalizes Theorem 3.2. Using a SCA(q2; 2, (q, 1), q) and a D(r, r), where
codewords have weight one, from Theorem 4.1 we obtain covering array CA((r+1)q2−rq; 2, qr+1 +
(r + 1)qr, q), but this construction is direct. Further, taking a different D(r, M) the result can be
improved for some parameters. For example, taking D(r, r(r−1)

2 ) where the codewords have weight
two, we get a CA((r + 1)q2 − rq; 2, qr+1 + (r+1)r

2 qr−1, q). In general, we have:

Theorem 4.2 For r ≥ s ≥ 1 and q a prime power, an SCA((r+1)q2−rq; 2, (qr+1,
(
r+1

s

)
qr+1−s), q)

exists.

A direct analog of Theorem 3.3 can also be written, but does not appear to form any simplifi-
cation of the recursive method provided.

5 A Construction for SCAs

In order to exploit the power of Theorems 3.2 and 3.3 more fully, further ingredients are needed.
As a first step, we adapt an approach of Meagher and Stevens [14]. Choose two parameters, `
and g. We form a vector (v0, . . . , v`−1) with entries from Zg−1 ∪ {∞}. The set Ds = {(vj − vi)
(mod g − 1) : j − i ≡ s (mod `), vi 6= ∞, vj 6= ∞} consists of the s-apart differences. Consider
vectors in which v0 = ∞ and vi ∈ Zg−1 for 1 ≤ i < `. When Ds = Zg−1 for 1 ≤ s < `, such a vector
is a (g, `)-cover starter. When Zg−1 \ {0} ⊆ Ds for each 1 ≤ s < `, and {v1, . . . , v`−1} = Zg−1, such
a vector is a (g, `)-distinct cover starter.

When a (g, `)-cover starter exists, Meagher and Stevens [14] note that a CA(`(g−1)+1; 2, `, g)
exists, as follows. Form all ` cyclic shifts of the cover starter. For each, form g − 1 vectors by
developing each modulo g − 1 (keeping ∞ fixed). The resulting `(g − 1) vectors form the rows of
an array, so that for any two columns all pairs are covered except for (∞,∞). Adding one constant
row consisting only of ∞ completes the covering array. Meagher and Stevens [14] give numerous
examples of cover starters, proving

Lemma 5.1 A (g, `)-cover starter exists when

1. g = 3 and ` ∈ {5, 8};

11



2. g = 4 and ` ∈ {5, 6, 7, 8, 9, 10};

3. g = 5 and ` ∈ {7, 8, 9, 10, 11, 12};

4. g = 6 and ` ∈ {9, 10, 11, 12, 13, 14};

5. g = 7 and ` ∈ {10, 11, 12, 13, 14, 15, 16};

6. g = 8 and ` ∈ {9, 11, 12, 13, 14, 15, 16, 17, 18};

7. g = 9 and ` ∈ {13, 14, 15, 16, 17, 18, 19, 20}.

We instead employ distinct cover starters. Start with a (g, `)-distinct cover starter. Treat
this as a row, and form the ` cyclic shifts of this, obtaining an ` × ` array. Then add a new
column with all entries equal to 0. Develop this ` × (` + 1) array modulo g − 1 to form an
`(g − 1) × (` + 1) array. Adding the g constant rows, we obtain a SCA(`(g − 1) + g; 2, (`, 1), g),
and hence a CA((` + 1)(g − 1) + 1; 2, ` + 1, g). For example, a (5,6)-distinct cover starter yields a
CA(29; 2, 7, 5).

However, distinct cover starters have many more effective applications, via Theorem 3.2. For
purposes of illustration, consider the case when g = 5. Here are some distinct cover starters:

(5,5) (∞,0,1,3,2) (5,6) (∞,0,0,1,3,2)
(5,7) (∞,0,0,0,1,3,2) (5,8) (∞,0,0,0,0,1,3,2)
(5,9) (∞,0,0,0,0,0,1,3,2) (5,10) (∞,0,0,0,0,0,0,1,3,2)

Each (5, `)-distinct cover starter gives an SCA(4`+5; 2, (`, 1), 5). Apply Theorem 3.2 to obtain
SCA(4(`1 + `2) + 5; 2, (`1`2, `1 + `2), 5) for 5 ≤ `1, `2 ≤ 10. Choosing `1 and `2 as nearly equal as
possible, we obtain the following covering arrays: CA(45; 2, 35, 5), CA(49; 2, 41, 5), CA(53; 2, 48, 5),
CA(57; 2, 55, 5), CA(61; 2, 63, 5), CA(65; 2, 71, 5), CA(69; 2, 80, 5), and so on. Comparing with the
bounds in [23], these produce improvements whenever the number of factors exceeds 30. Further,
since an SCA is produced as an intermediate step, the construction can be applied recursively.
Indeed, as we have seen before, with 65 tests we can treat 200 factors with five values each, obtaining
a substantial improvement by applying Theorem 3.2 twice rather than once. With Theorem 3.3 we
improve this to 205 factors.

Next we give further examples of distinct cover starters. When g = 3 and ` ≥ 3, setting v0 = ∞,
v`−1 = 1 and vi = 0 for 1 ≤ i < ` − 1 gives a (3, `)-distinct cover starter. When g = 4 and ` ≥ 6,
setting v0 = ∞, v`−3 = v`−1 = 1, v`−2 = 2, and vi = 0 for 1 ≤ i < `− 3 gives a (4, `)-distinct cover
starter. Other examples follow:

(6,8) (∞,0,1,3,0,2,1,4) (6,9) (∞,0,0,1,0,0,3,2,4)
(6,10) (∞,0,0,0,1,1,4,3,0,2) (6,11) (∞,0,0,0,0,1,0,4,2,3,0)
(6,12) (∞,0,0,0,0,0,1,0,4,2,3,0) (7,7) (∞,0,2,1,4,5,3)
(7,9) (∞,0,0,2,1,4,5,3,3) (7,10) (∞,0,0,0,1,0,3,5,4,2)
(7,11) (∞,0,0,0,0,1,0,3,5,4,2) (7,12) (∞,0,0,0,0,0,1,0,3,5,4,2)
(7,13) (∞,0,0,0,0,0,0,1,0,3,5,4,2) (8,11) (∞,0,1,0,0,0,3,5,4,2,6)
(8,12) (∞,0,0,0,1,0,6,4,6,3,2,5) (8,13) (∞,0,0,0,0,1,2,6,5,3,6,2,4)
(8,14) (∞,0,0,0,0,0,1,0,4,6,4,3,2,5) (9,12) (∞,0,1,6,4,5,0,7,6,2,1,3)
(9,13) (∞,0,0,0,0,2,6,1,7,6,3,4,5) (9,14) (∞,0,0,0,0,0,2,6,1,7,6,3,4,5)
(9,15) (∞,0,0,0,0,0,0,2,6,1,7,6,3,4,5)

12



In general, using the log function sequence [16] we establish:

Lemma 5.2 For p ≥ 3 a prime, there exists a (p, p) distinct cover starter.

Proof. Let ω be a primitive element of Zp. Define a0 = ∞ and aωj = j for 0 ≤ j < p − 1. Then
(a0, a1, . . . , ap−1) is a (p, p) distinct cover starter. �

We do not explore the applications of these in detail here. Rather they illustrate that the direct
product construction can avail itself of ingredients far beyond the SCA(q2; 2, (q, 1), q)s arising from
the finite field.

6 Mixed Covering Arrays

We now combine the ideas of Theorem 3.1 and Theorem 3.2 to obtain an improved product con-
struction for mixed level covering arrays. In Theorem 3.2, the repeated use of a single array
B is used to ensure that certain pairs are covered in the product C. In order to generalize,
our task is to specify the relationship required among the ingredients {Bi}. We first define an
SMCA(N ; 2, (k1, k2), (v1, . . . , vk1+k2)) to be an N × (k1 + k2) array in which the ith column has
entries from a vi-set (which we take to be {1, . . . , vi}), and for which selecting any two columns,
we find all pairs covered except possibly

• those of the form (x, x) if both columns are among the first k1;

• those of the form (x, 1) if the first column is among the first k1, the second among the latter
k2; and

• (1,1) if both columns are among the latter k2.

Theorem 6.1 Suppose that there exist

1. an SMCA(N ; 2, (k1, k2), (v1, . . . , vk1+k2)), A, with profile (d1, . . . , dk1+k2);

2. for each 1 ≤ i ≤ k1, an SMCA(Mi; 2, (`i1, `i2), (wi1, . . . , w1,`i1+`i2
)), Bi, for which wij ≤ vi

for 1 ≤ j ≤ `i1 + `i2; and

3. for each k1 < i ≤ k1 + k2, an SMCA(Mi; 2, (`i1, 0), (wi1, . . . , w1,`i1
)), Bi, for which wij ≤ vi

for 1 ≤ j ≤ `i1.

Write T = N + maxk1+k2
i=1 (Mi − di). Suppose further that

1. For 1 ≤ i1 < i2 ≤ k1, for each `i1,1 < j1 ≤ `i1,1 + `i1,2, and each `i2,1 < j2 ≤ `i2,1 + `i2,2, the
(T −N)× 2 matrix whose first column contains the entries in the first T −N rows of column
j1 of Bi1, and whose second column contains the entries in the first T −N rows of column j2

of Bi2, contains every pair of the form (x, x) with 1 ≤ x ≤ min(wi1,j1 , wi2,j2); and

2. For 1 ≤ i1 ≤ k1 and k1 < i2 ≤ k1+k2, for each `i1,1 < j1 ≤ `i1,1+`i1,2, and each 1 ≤ j2 ≤ `i2,1,
the (T − N) × 2 matrix whose first column contains the entries in the first T − N rows of
column j1 of Bi1, and whose second column contains the entries in the first T − N rows of
column j2 of Bi2, contains every pair of the form (x, 1), for 1 ≤ x ≤ wi1,j1.

13



Then there exists an

SMCA(T ; 2, (
k1∑
i=1

`i1,

k1+k2∑
i=k1+1

`i1 +
k1∑
i=1

`i2),

(w11, . . . , w1,`11 , · · · , wk1,1, . . . , wk1,`k1,1
,

· · · , wk1+1,1, . . . , wk1+1,`k1+1,1
, · · · , wk1+k2,1, . . . , wk1+k2,`k1+k2,1

,

· · · , w1,`11+1, . . . , w1,`12 , · · · , wk1,`k1,1+1, . . . , wk1,`k1,2
)).

Proof. The construction parallels that of Theorem 3.1. When placing the rows of Bi, the first
T −N rows of Bi are always placed on the last T −N rows, in the same order, in C. Columns are
then permuted so that those indexed by (i, j) with 1 ≤ i ≤ k1 and 1 ≤ j ≤ `i1 are placed in the
first

∑k1
i=1 `i1 positions.

The verification is similar. �

Such an SMCA can be completed to an MCA by the addition of at most m rows, where
m = max{wij : 1 ≤ i ≤ k1, 1 ≤ j ≤ `i1}. This is done by placing, in the ith additional row, the
symbol “1” in columns indexed by (i, j) with i > k1 or j > `i,1. In the remaining columns, we place
the symbol i if i ≤ wij , and ? otherwise.

We expect the most effective applications of Theorems 3.3 and 6.1 to arise when heuristic search
techniques are tailored to find suitable ingredients; this appears to be a challenging problem.

Acknowledgments

Research of the first two authors (CJC,SSM) is supported by the Consortium for Embedded and
Inter-Networking Technologies. Research of the fourth author (DES) is supported by NSF grants
IIS-9988636, 0115586, and MCB-0209754.

References

[1] M.A. Chateauneuf, C.J. Colbourn, and D.L. Kreher, Covering arrays of strength three, De-
signs, Codes and Cryptography 16 (1999), 235-242.

[2] M. A. Chateauneuf and D. L. Kreher. On the state of strength-three covering arrays. Journal
of Combinatorial Designs, 10(4):217–238, 2002

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system: an ap-
proach to testing based on combinatorial design. IEEE Transactions on Software Engineering,
23(7):437–44, 1997.

[4] D. M. Cohen and M. L. Fredman. New techniques for designing qualitatively independent
systems. Journal of Combinatorial Designs, 6(6):411–16, 1998.

[5] M. B. Cohen, C. J. Colbourn, J.S. Collofello, P. B. Gibbons and W. B. Mugridge. Vari-
able Strength Interaction Testing of Components. Proc. 27th Intl. Computer Software and
Applications Conference (COMPSAC 2003), Dallas TX, November 2003, pp. 413–418.

14



[6] M. B. Cohen, C. J. Colbourn, P. B. Gibbons and W. B. Mugridge. Constructing test suites
for interaction testing. In Proc. Intl. Conf. on Software Engineering (ICSE 2003), Portland,
Oregon, May 2003, pp 38-49.

[7] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, Augmented simulated annealing to build
interaction test suites, Proc. IEEE Int Symp Software Reliability Eng (ISSRE 2003), Denver
CO, November 2003, pp. 394-405.

[8] C.J. Colbourn. Combinatorial Aspects of Covering Arrays. Le Matematiche (Catania), to
appear.

[9] C. J. Colbourn and J. H. Dinitz (editors), The CRC Handbook of Combinatorial Designs, CRC
Press, Boca Raton, 1996.

[10] S. R. Dalal, A. J. N. Karunanithi, J. M. Leaton, G. C. Patton, and B. M. Horowitz. Model-
based testing in practice. In Proc. Intl. Conf. on Software Engineering,(ICSE ’99), 1999, pp.
285-94, New York.

[11] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and A. Iannino. Applying design
of experiments to software testing. In Proc. Intl. Conf. on Software Engineering, (ICSE ’97),
1997, pp. 205-215, New York.

[12] A. S. Hedayat, N. J. A. Sloane, and J. Stufken. Orthogonal Arrays. Springer-Verlag, New
York, 1999.

[13] S. Martirosyan and Tran Van Trung. On t-covering arrays. Designs, Codes and Cryptography
32 (2004), 323–339..

[14] K. Meagher and B. Stevens. Group construction of covering arrays. Journal of Combinatorial
Designs, to appear.

[15] L. Moura, J. Stardom, B. Stevens, and A. Williams. Covering arrays with mixed alphabet
sizes. Journal of Combinatorial Designs, 11(6):113-132, 2003.

[16] G.L. Mullen and D. White. A polynomial representation for logarithms in GF(q). Acta Arith-
metica 47 (1986), 255-261.

[17] K. Nurmela. Upper bounds for covering arrays by tabu search. Discrete Applied Math., 138
(2004), 143-152.

[18] S. Poljak and Z. Tuza, On the maximum number of qualitatively independent partitions,
Journal of Combinatorial Theory (A) 51 (1989), 111-116.

[19] D.E. Shasha, A.Y. Kouranov, L.V. Lejay, M.F. Chou, and G.M. Coruzzi, Using combinatorial
design to study regulation by multiple input signals. A tool for parsimony in the post-genomics
era, Plant Physiology 127(2001), 1590-1594.

[20] G. Sherwood. On the Construction of Orthogonal Arrays and Covering Arrays Using Permu-
tation Groups. Online at http://home.att.net/ gsherwood/cover.htm

15



[21] N. J. A. Sloane. Covering arrays and intersecting codes. Journal of Combinatorial Designs,
1(1):51–63, 1993.

[22] B. Stevens, Transversal Covers and Packings, Ph.D. Thesis, Mathematics, University of
Toronto, 1998.

[23] B. Stevens and E. Mendelsohn. New recursive methods for transversal covers. Journal of
Combinatorial Designs, 7(3):185–203, 1999.

[24] B. Stevens, L. Moura, and E. Mendelsohn. Lower bounds for transversal covers. Designs Codes
and Cryptography, 15(3):279–299, 1998.

[25] K. C. Tai and L. Yu. A test generation strategy for pairwise testing. IEEE Transactions on
Software Engineering, 28(1):109-111, 2002.

[26] Y.-W. Tung and W. S. Aldiwan. Automating test case generation for the new generation
mission software system. In Proc. IEEE Aerospace Conf., 2000, pp. 431-437.

[27] A. W. Williams and R. L. Probert. A practical strategy for testing pair-wise coverage of
network interfaces. In Proc. Seventh Intl. Symp. on Software Reliability Engineering, 1996,
pp. 246-54.

[28] A. W. Williams and R. L. Probert. A measure for component interaction test coverage. In
Proc. ACS/IEEE Intl. Conf. on Computer Systems and Applications, 2001, pp. 301-311.

16


