
Combinatorial Designs to Explore Large

Experimental Search Spaces ∗

Gary L. Mullen †Dennis Shasha ‡Joseph L. Yucas §

April 4, 2005

Abstract

Genomic and proteomic studies take advantage of omic level techniques

such as microarrays to achieve species-wide scale. Obtaining an operational

model (e.g., a virtual animal) however requires a search in a space consisting

of many factors and many values of each factor, all of which may interact.

This suggests the need to perform a disciplined search in that space. We

explain the use of and some new results in covering arrays, a technique from

the theory of combinatorial designs, and explain how to use covering arrays

at various stages of experiment and analysis.

1 Introduction:

Your favorite organism can be grown under several conditions by varying light, food,

water, and various nutrients. Several natural questions suggest themselves:

∗Work supported in part by U.S. NSF grants IIS-9988345, N2010-0115586 and MCB-0209754.
†Department of Mathematics, The Pennsylvania State University, University Park, PA 16802,

USA, Email: mullen@math.psu.edu
‡Department of Computer Science, Courant Institute of Mathematical Sciences, New York

University, 251 Mercer Street, New York, NY 10012, Email: shasha@cs.nyu.edu
§Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, Email: jyu-

cas@math.siu.edu

1

• Which conditions give rise to the best growth, either of the organism as a

whole or of some protein of interest?

• Which factors are the most critical?

• Which genes or proteins react most strongly to some factor or collection of

factors?

Given unlimited resources and time, you would want to test all possible condi-

tions by testing all values of every factor. Unfortunately, this very soon becomes a

daunting task. For example, 10 inputs each having four possible values generates

somewhat more than one million experiments. This may be more than most labs

can or want to do. Further many of these conditions may yield very similar results

to one another because they may differ only in unimportant factors.

Covering arrays, a technique from the theory of combinatorial designs, constitute

a disciplined sampling method that give certain coverage guarantees on the search

space of conditions while generating few experiments. Before defining the concept

formally, let us give an example.

Suppose that we have six factors A,B,C,D,E, F that we can manipulate, each

having three values 0, 1, 2. Covering the entire search space requires 36 = 729 tests.

In that case, each of the possible 6-tuples based upon these three values would

appear exactly once in the array.

What would a disciplined sampling approach require? First every possible value

of every input factor should be present in some experiment. If this were the only

condition, then it could be satisfied with the following three experiments:

Exp A B C D E F

1 0 0 0 0 0 0
2 1 1 1 1 1 1
3 2 2 2 2 2 2

.

2

Intuitively, this is unsatisfactory, because it tests no interactions at all. So, let

us raise the bar a little. We want to cover every value of every factor as above,

but also for every pair of factors, we want to test each possible pair of values. In

this way, if two values of two factors entirely dominate the situation, an experiment

will discover that condition. Because every pair of factors has 9 possible pairs of

values, this gives a lower bound of 9 experiments altogether, but it might seem to

be difficult to come close to this few.

Remarkably, one can. A mere 13 experiments is enough:

Exp A B C D E F

1 0 0 0 0 0 0
2 0 1 1 1 1 2
3 0 2 2 2 2 0
4 0 0 1 2 0 1
5 1 0 0 1 1 1
6 1 1 2 2 0 1
7 1 2 1 0 2 1
8 1 1 2 0 1 0
9 2 0 2 1 2 2
10 2 1 0 0 2 1
11 2 2 1 1 0 0
12 2 2 0 2 1 2
13 1 0 0 0 0 2

In what sense does this cover every pair of values for each pair of factors? Con-

sider B and E for example. Let us project onto their two columns:

3

B E

0 0
1 1
2 2
0 0
0 1
1 0
2 2
1 1
0 2
1 2
2 0
2 1
0 0

The first three rows cover the pairs (0, 0), (1, 1) and (2, 2). The fourth row repeats

(0, 0) for that pair, but then we get, in succession, (0, 1), (1, 0). After more repeats,

we get the rest: (0, 2), (1, 2), (2, 0), and (2, 1). What is clever about this construction

is that while taking care of factors B and E we are also taking care of all other pairs

of factors.

Let’s review what this 13 experiment design accomplishes. Every value of every

factor is tested. Every pair of values of every pair of factors is also tested. Of course,

most three and four way interactions are not tested. There is no free lunch. But if

you have limited resources, such coverage reveals a lot in few experiments [9]. If you

have more resources, then you can do more experiments and cover more interactions.

We sketch some of the technicalities below.

Before continuing with the mathematical development, we discuss the variety of

ways in which this might apply to biology. First, the working biologist may want

to know which factors are likely to be most important in their regulation of some

target such as organism growth. Analyzing the results of an experimental set like

the one above may uncover strong correlations with one factor or another. Those

4

correlations are not definitive (there are many confounding factors), but they suggest

factors which may have a strong effect. The next step is to test the importance of

those factors.

Second, suppose you have discovered some factor that seems important. Or

alternatively, suppose that you want to focus on that factor in an undirected mode,

e.g., to discover which genes or proteins were sensitive to that factor. In either case

you could take each value of that factor (or factors) and append a covering array of

the other factors. In this example, suppose that we wanted to check whether factor

A has a consistent effect in every context. The following 36 element array tests each

value of A against a widely varying backgroound of the other inputs:

5

Exp A B C D E F

1 0 0 0 0 0 0
2 0 0 1 1 1 1
3 0 0 2 2 2 2
4 0 0 0 1 2 0
5 0 1 0 0 1 1
6 0 1 1 2 2 0
7 0 1 2 1 0 2
8 0 1 1 2 0 1
9 0 2 0 2 1 2
10 0 2 1 0 0 2
11 0 2 2 1 1 0
12 0 2 2 0 2 1
13 1 0 0 0 0 0
14 1 0 1 1 1 1
15 1 0 2 2 2 2
16 1 0 0 1 2 0
17 1 1 0 0 1 1
18 1 1 1 2 2 0
19 1 1 2 1 0 2
20 1 1 1 2 0 1
21 1 2 0 2 1 2
22 1 2 1 0 0 2
23 1 2 2 1 1 0
24 1 2 2 0 2 1
25 2 0 0 0 0 0
26 2 0 1 1 1 1
27 2 0 2 2 2 2
28 2 0 0 1 2 0
29 2 1 0 0 1 1
30 2 1 1 2 2 0
31 2 1 2 1 0 2
32 2 1 1 2 0 1
33 2 2 0 2 1 2
34 2 2 1 0 0 2
35 2 2 2 1 1 0
36 2 2 2 0 2 1

6

You will notice that the three groups 1-12, 13-24, and 25-36 are the same except

in their A value. Thus for example 3, 15 (3+12), and 27 (3+24) have the same

values of B,C,D,E, F but differ in their A values. So for each A value, all pairwise

interactions among B,C,D,E, F are tested (by 12 tests for these five factors rather

than the 13 tests required for six factors). Therefore, all three-way interactions

involving A are tested overall. If for each experiment triple i, i + 12, i + 24, the

value of some target increases, then it is likely that A is inductive for that target.

Admittedly, this notion of likelihood is difficult to quantify, because we don’t know

the underlying distribution of data, but the construction gives such a large variety

of values of B,C,D,E, and F that this statement is still an excellent hypothesis.

But what if A has no such consistent pattern. This brings us to a third use of

combinatorial design. Suppose for example that in this last array, experiment 28

gave a strong inductive effect relative to 16 (28-12) and 4 (28-24), whereas 25 did

not have a strong inductive effect relative to 13 and 1. Presumably the interaction

with B,C,D,E, F is responsible. If we look at those values in the two cases, we

see that 25 and 28 (and therefore pairs (1, 3) and (13, 16)) share the same value for

B,C, and F . On the other hand, they differ in D and E. So one could establish a

context that mixes the two, e.g. D = 0 and E = 2, and pose the three experiments:

Exp A B C D E F

1′ 0 0 0 0 2 0
2′ 1 0 0 0 2 0
3′ 2 0 0 0 2 0

If the effect is strongly inductive, then factor E is critically important in the

influence of A. This ability to identify “intermediate” experiments and to zero in

on critical factors can make experimental practice far more efficient. We have used

this successfully in the study of nitrogen pathways in Arabidopsis [12, 9].

7

2 Mathematical Definitions and Results

The purpose of this section is to help you understand basic definitions and the

number of experiments you would need depending on the number of factors you

have and the number of values per factor. In most of the development, we assume

the same number of values per factor, but if you have fewer than the maximum for

some factor, the software [14] may be able to take advantage of that to reduce the

number of needed experiments.

2.1 Covering Arrays

Let us say there are c factors, v values and we want to cover all possible t-way

interactions. In the 13 experiment example above, there were c = 6 factors, each

having v = 3 values, and we were interested in t = 2 way interactions. Here is the

general definition.

A t-covering array with alphabet size v, length c, and size r consists of r vectors of

length c with entries from {0, 1, . . . , v−1} with the property that in any t columns of

the array each of the vt ordered t-tuples occurs at least once [13]. In this terminology,

our earlier examples are 2-covering arrays.

The main problem in designing these covering arrays is to minimize r (the number

of rows or experiments) for given values of v, c, t, or equivalently, to maximize c (the

number of factors) for given values of v, r, t.

In the case when v = t = 2 (two values per factor and two-way interactions), the

problem has been completely solved [13]. In particular, for any fixed value of r, the

maximal number c of factors is determined by

c =

(

r − 1

⌈ r

2
⌉

)

.

At first glance, this may not seem helpful. Working biologists will often be given

8

a number of factors and want to find out how many experiments are needed, rather

than being given a number of experiments and finding out how many factors can be

tested. The formula lets us figure out the number of experiments from the number

of factors however. The following table shows how many experiments are needed for

each number of conditions for this (two value, two-way interaction) case:1

c 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
r 4 4 5 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8

For large c, using logs base 2, the number of rows is r = logc + 1

2
loglogc

For t = 2, v = 3 (two-way interactions but three values per factor), a small table

of the best known values taken from [13] follows:

c 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
r 9 9 9 11 12 15 15 15 15 15 15 18 18 18 18 21 21

For t = 2, v > 2, it is known that for large c the minimal number of rows satisfies

r = v

2
log(c(1 + o(1))). Thus it rises as the log of the number of conditions rather

than exponentially (which would be the case for a complete search of the entire

space).

In [11] the authors study covering arrays and their constructions in more detail.

In particular, using sets of mutually orthogonal latin squares, they provide con-

structions of covering arrays which improve a number of the currently best known

parameters for covering arrays; including three cases (c = 13, r = 15; c = 14, r = 15;

and c = 15, r = 15) in the above table for v = 3. See [3], [4], or [8] for a discussion

of latin squares and sets of mutually orthogonal latin squares.

1Such a covering array can be constructed by assuming the first row consists of all zeros, and
the remaining r − 1 rows are taken to be the characteristic vectors of all subsets of weight ⌈ r

2
⌉ of

a set containing r − 1 elements.

9

Using our software [14], for example, computing 2-way interactions for 10 factors

each with 3 values requires 15 experiments (as opposed to 310 = 59, 049 to explore

the complete space), and computing 2-way interactions for 10 factors each with 4

values requires 52 experiments (as compared with 410 = 1, 065, 024 to explore the

complete space).

What follows is an optimal covering array for two-way interactions (t = 2) on six

factors (c = 6), with three values (v = 3) per factor. Recall from our earlier example

that we had 13 experiments, now we have r = 12 experiments, and as indicated from

the v = 3 table, this value of r cannot be decreased.

A B C D E F

0 0 1 2 2 1
0 1 0 1 2 2
0 2 1 0 1 2
0 2 2 1 0 1
0 1 2 2 1 0
1 1 1 0 0 0
1 0 0 1 1 0
1 2 0 2 0 1
1 0 2 0 2 2
2 0 2 2 0 2
2 1 0 0 1 1
2 2 1 1 2 0

2.2 Orthogonal Arrays

Whereas we think that covering arrays provide the most parsimonious approach to

testing interactions, reasonable scientists might desire a property known as balance.

For this we need orthogonal arrays.

An orthogonal array [7] has, like a covering array, r rows (experiments) and c

(factors) columns. Again, assuming that each factor has v values, the array has

“strength” t (number of interacting factors) and index λ if every r × t subarray

10

(projection of every t columns) of A contains each t-tuple in exactly λ rows. (Thus

an orthogonal array is a covering array, but not every covering array is an orthogonal

array since the pairs may not all occur the same number of times in the covering

array.)

For example, for an orthogonal array of strength t = 2, each of the v elements

occur the same number of times in each column, but each of the v2 possible ordered

pairs also occurs the same number of times in any two columns. We also note

that an orthogonal array is optimal (with a minimal number r of rows) and can be

constructed for all prime power values of v provided c ≤ v + 1, see for example [3]

or [8].

The following is an example of an orthogonal array based upon v = 3 symbols

with r = 9 rows, c = 4 columns, and of strength t = 2 with index λ = 1.

0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 2 0
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0

This array arises from the following pair of orthogonal latin squares of order 3,

which form the last two columns of the array:

0 1 2 0 1 2
1 2 0 2 0 1
2 0 1 1 2 0

Chapter 12 of [7] provides an excellent summary of orthogonal arrays and how to

construct them when they are possible to construct. When they aren’t, main-effects

11

plans may be used. A main-effects plan is intermediate between a covering array

which guarantees nothing about balance and an orthogonal array. In a main-effects

plan, the number of occurrences of each ordered is proportional to the number of

times that each element appears in each column. For a discussion of main-effect

plans, see Section 11.7 of [7]. The website www.research.att.com/ njas/ contains

recent updates on orthogonal arrays and their constructions.

3 Summary:

Combinatorial designs in general and covering arrays in particular can vastly reduce

the number of experiments needed to explore a search space. While they don’t cover

every possible combination of the input factors, they sample the search space in a

well-separated manner and guarantee that every combination of values in every t

factors are tested. If a researcher prefers certain balance properties, then he or she

can use orthogonal arrays or main-effects orthogonal arrays.

Combinatorial designs can be used in an iterative and adaptive fashion.

1. One can start by using it to find those factors that might be important.

2. Given a possibly important factor, one can use combinatorial design to test

the consistency of its importance.

3. Given one set of conditions where a factor is important and another set where

the factor isn’t, one can create intermediates that will isolate what it is about

a context that determines the importance of the factor.

Of course, t-way covering arrays don’t test (t + 1)-way interactions. Thus, to

extend one’s interactivity coverage, one must do more work. But given a certain

desired coverage, covering arrays give an inexpensive way to uncover them.

12

Acknowledgments: The second author acknowledges his excellent collabora-

tion with Gloria Coruzzi and her excellent research group whose needs drove the

development of adaptive combinatorial designs [9]. The second author first saw

combinatorial designs in use at Telcordia where it was used for software testing and

which provides excellent software [1] Terry Dwyer started this collaboration.

References

[1] Cohen D.M., Dalal S.R., Fredman M. L., Patton G.C., The AETG

System: An Approach to Testing Based on Combinatorial Design. IEEE Trans-

actions On Software Engineering, 1997. 23, 437-444.

[2] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes,

North-Holland Mathematical Library, Elsevier, Amsterdam, 1997.

[3] J. Dénes and A.D. Keedwell, Latin Squares and Their Applications, Aca-

demic Press, New York, 1974.

[4] J. Dénes and A.D. Keedwell, Latin Squares, Annals of Disc. Math., Vol.

46(1991).

[5] R.H. Hardin and N.J.A. Sloane, Operating Manual for Gosset: A General-

Purpose Program for Constructing Experimental Designs, Sec. ed., 1992,

Statist. Dept. Report 106, AT&T Labs, Murray Hill, NJ.

[6] R.H. Hardin and N.J.A. Sloane, A new approach to the construction of

optimal designs, J. Statist. Plann. Infer. 37(1993), 339-369.

[7] A.S. Hedayat, N.J.A. Sloane, and J. Stufken, Orthogonal Arrays:

Theory and Applications, Springer Verlag, New York, 1999.

13

[8] C.F. Laywine and G.L. Mullen, Discrete Mathematics using Latin Squares,

Wiley, New York, 1998.

[9] L.V. Lejay, D.E. Shasha, A.Y. Kouranov, P.M. Palenchar, A.A.

Cruikshank, M.F. Chou, and G.M. Coruzzi, Adaptive Combinatorial

Design: A Tool for Systems Biology, PNAS, 2003. under review.

[10] G.L. Mullen, Polynomial representation of complete sets of mutually orthog-

onal frequency squares of prime power order, Disc. Math. 69(1988), 79-84.

[11] G.L. Mullen, D. Shasha, and J.L. Yucas, Covering arrays, preprint.

[12] D.E. Shasha, A.Y. Kouranov, L.V. Lejay, M.F. Chou, and G.M.

Coruzzi, Using combinatorial design to study regulation by multiple input sig-

nals. A tool for parsimony in the post-genomics era, Plant Physiology 127(2001),

1590-1594.

[13] N.J.A. Sloane, Covering arrays and intersectiong codes, J. Combin. Designs

1(1993), 51-63.

[14] Dennis Shasha’s covering array software:

http://cs.nyu.edu/cs/faculty/shasha/papers

14

