
Mind the Gap: An Experimental Evaluation of Imputation of
Missing Values Techniques in Time Series [E & A]

Mourad Khayati, Alberto Lerner, Zakhar Tymchenko, and Philippe Cudré-Mauroux
University of Fribourg

Switzerland
{firstname.lastname}@unifr.ch

ABSTRACT
Recording sensor data is seldom a perfect process. Fail-
ures in power, communication or storage can leave occa-
sional blocks of data missing, affecting not only real-time
monitoring but also compromising the quality of near- and
on-line data analysis. To handle missing values, several re-
covery (imputation) algorithms have been proposed. Unfor-
tunately, little is known about their relative performance, as
existing comparisons are limited to either a small subset of
relevant algorithms or to synthetic datasets, making it hard
to draw general conclusions.
In this paper, we empirically compare twelve recovery al-

gorithms, most of which were re-implemented on a uniform
test environment. We run each algorithm over ten different
datasets that collectively represent a broad range of appli-
cations. Our methodology allows us to fairly evaluate the
relative strengths and weaknesses of each approach and to
give recommendations for selecting the best technique on a
use-case basis. Furthermore, we pinpoint opportunities not
covered by any algorithm, suggesting that future research
directions in this area still exist.
PVLDB Reference Format:
Mourad Khayati, Alberto Lerner, Zakhar Tymchencko, and
Philippe Cudré-Mauroux. Mind the Gap: An Experimental Eval-
uation of Imputation of Missing Values Techniques in Time Series.
PVLDB, 12(xxx): xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
With the emergence of the Internet of Things (IoT), time

series data became ubiquitous in a range of domains such as
Astronomy [17, 55], Climate [24, 34], Energy [17], Environ-
ment [48], Finance [28, 52], Medicine [46], Neuroscience [59,
61], and Traffic [41, 65]. When sensors’ time series are
recorded, missing values very often occur. For instance, the
Intel-Berkeley Research Lab dataset is missing about 50% of
the expected measurements [6]; the University of California
Irvine’s repository of time series, 20% [11]. Missing values
often occur consecutively, forming a block in a time series.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

These blocks can be rather large, as it can take arbitrarily
long to fix a faulty sensor.
Usually, data management and analysis systems assume

no such gaps exist in the data. Even if a system can work
with incomplete data (e.g., NULLs in Relational Databases),
leaving missing values untreated can cause incorrect or ill-
defined results [8]. Recently, some systems started to incor-
porate missing-values imputation as a native feature [2, 8,
37, 49]. We expect other systems to follow – but the number
of alternative algorithms available complicates this choice.
The main source of variation among recovery techniques

comes from different ways to achieve accuracy. Some algo-
rithms assume that the time series present temporal conti-
nuity, as the nature of the phenomena they measure is not
discrete (e.g., quantity of rainfall). They recover missing
blocks by looking at an entire set of series at once and ap-
plying on them dimensionality reduction-based techniques
– matrix completion being the common one. Other algo-
rithms consider that sensors which are at close proximity
can present trend similarity (e.g., movement sensors in a
same body). They apply pattern matching techniques to
search for replaceable values. Unsurprisingly, different algo-
rithms’ accuracy will be sensitive to different peculiarities.
Naturally, the efficiency of these algorithms varies as well.

Matrix completion and pattern matching techniques involve
expensive computations, but many techniques are known to
mitigate this. For instance, one can speed-up matrix com-
pletion algorithms by using a large dimensionality reduction
step – and compensate for it by repeating the same step un-
til a chosen error metric reaches a threshold. While this
process brings efficiency, it creates the need to set the pa-
rameters for the algorithm properly, i.e., the dimensionality
to use. If the dimensionality reduction is poorly chosen, all
performance benefits are lost.
In this paper, we aim to provide a guide to the state-of-

the-art algorithms for the recovery of missing values. To the
best of our knowledge, this is the first comparative study to
provide in-depth analysis of accuracy, efficiency, and param-
eterization across these algorithms under a representative
body of datasets. The chosen algorithms, summarized in
Table 1, cover the full gamut of techniques currently avail-
able to recover large missing blocks. As these algorithms
were suggested across a wide period of time and range of
domains, we re-implement a large number of them using a
single programming language (C++) and a common, modern
underlying library for data manipulation.1

1Source code and datasets available: https://github.com/
eXascaleInfolab/bench-vldb19.git

1

https://github.com/eXascaleInfolab/bench-vldb19.git
https://github.com/eXascaleInfolab/bench-vldb19.git

Table 1: Recovery Techniques, described in Section 3.

Recovery Technique Implementation
Initialization Multiple TS Type Matrix D/F Termination Original LoC Speedup

M
at
ri
x
co
m
p.

CDRec [25, 24] interpolation batch CD dynamic JAVA 196 27
GROUSE [3, 66] N/A batch PCA static Python 94 10

ROSL [53] interpolation batch PCA dynamic C++ 330 -
SoftImp. [38] zero batch SVD dynamic Python 92 5
SVDImp. [58] zero batch SVD dynamic Python 91 9
TeNMF [39] zero batch NMF dynamic Python 78 2
TRMF [64] random batch MF static Matlab/C++ - -

SPIRIT [44, 45] N/A online PCA static Matlab 214 110
SVT [7] zero batch SVD dynamic dynamic 158 21

P
at
te
rn DynaMMo [29] interpolation batch dynamic Matlab 208 3

STMVL [62] N/A batch static C# 768 2
TKCM [60] N/A online static C - -

Results. By re-implementing the algorithms in a uniform
way and running a comprehensive benchmark, we not only
reproduced results from original papers but also uncovered
new findings. Some of the most salient are:
There is no single-best accurate algorithm. Five distinct

algorithms stand out. SoftImpute and TRMF are the most
accurate on datasets with repeating trends; CDRec, on time
series exhibiting high variations in correlation; STMVL, in
highly correlated time series; and, lastly, DynaMMo is par-
ticularly adapted to datasets with irregular fluctuations.
Larger missing blocks may sometimes yield higher recov-

ery accuracy. This is due to the iterative nature of some
algorithms. Large missing blocks require a larger number of
iterations which, in turn, yield better recovered values.
Blackouts pose an accuracy challenge. Blackouts refer to

episodes where all sensors go quiet at the same time caus-
ing widespread and aligned missing blocks. All the evalu-
ated techniques’ accuracy suffer when blackouts are present.
Only CDRec and DynaMMo show reasonable recovery, as
they estimate missing values with an approximation of lin-
ear interpolation.
There is a wide runtime difference across solutions. The

most efficient algorithms, SVDImpute and CDRec, are three
orders of magnitude faster than the slowest, DynaMMo.
Small dimensionality yields best results. Techniques rely-

ing on truncation (i.e., dimensionality reduction) achieve the
best performance with a relatively small truncation value.

Contributions. We summarize the contributions as fol-
lows:

• We curate a comprehensive set of large-block recovery
algorithms for time series data. Some algorithms were
chosen after we adopted improvements to their original
definitions;
• We re-implement nine recovery algorithms in C++ that
were originally implemented in different programming
languages and provide the resulting source code, along
with the datasets and the scripts necessary to repro-
duce our results. This creates, for the first time, a
unified comparison test-bed for the field;
• We evaluate and discuss the accuracy, efficiency, and
the proper parameterization of these recovery tech-
niques under a large variety of scenarios;
• We provide a comprehensive guide to navigating the
choice of available algorithms, identifying the scenarios
in which they perform well. We also discuss scenarios
where no acceptable results exist, which points to po-
tential future research areas.

Related Work. The closest work to compare large missing
blocks recovery techniques for time series data is Balzano,
et al. [3]. The authors evaluate the efficiency and accuracy
of subspace-tracking techniques, but focus exclusively on al-
gorithms based on Principal Component Analysis (PCA).
Xiaoping Zhu [68] evaluates four different techniques to han-
dle missing data. Only basic statistical methods to recover
missing values are compared, i.e., Mean Imputation, kNN
Imputation, Deletion and Multiple Imputation. Moritz, et
al. [43] compare different recovery techniques for time se-
ries in R language. The authors discuss statistical methods
solely, but adding a recovery technique that uses Kalman
Filters [18]. In contrast to these surveys, ours includes a
more extensive set of recovery techniques and real-world
time series covering a wider range of characteristics.
In [35, 36, 40], missing values recovery techniques are also

compared. However, the focus of those studies is in clas-
sification/clustering tasks rather than in the quality of the
recovery.
There are a number of relevant works designed specifically

for very small missing blocks (i.e., single missing values or
only a handful of consecutive missing values) such as kN-
NImpute [67] or Mean Impute [15]. Similarly, some tech-
niques aim at recovering only a (test) subset of the dataset,
e.g., [1, 63]. These algorithms form a body of work of their
own, different than our focus here.
Similarly to time series data, other types of data provide

unique opportunities for recovery techniques. For instance,
there are works that focus on graph recovery techniques [9,
12, 20, 30, 42, 51], image reconstruction [16, 21, 57], and
recovery of categorical data [4, 5], to mention a few. None of
these algorithms made it into our study, as they are highly
dependent on the specific type of data for which they are
originally designed – and thus not applicable for time series.

Outline. The rest of this paper is organized as follows.
Section 2 provides background information on the families
of algorithms we study here. Section 3 surveys all algorithms
in our test-bed, analyzes their properties, and discusses our
implementation choices. Section 4 reports on the experi-
mental results. Section 5 discusses our findings and makes
suggestions for future work. Lastly, Section 6 concludes this
paper.

2. BACKGROUND
Missing-values recovery algorithms can be divided into

matrix-based and pattern-based ones, according to the un-
derlying method they employ.

2

1 3 5 7 9 11 13 15 17 19 21

−4

−2

0

2

4

time (t)

X1 X2 X3 MB

(a) Input time series.





X1X2X3

X

Original

=





U1 U2 U3

×
σ1

σ2

σ3




σ3 = 0

×



V T1

=V T2
=

V T3

=





X̃1 X̃2 X̃3

X̃

Approximation

SVD(X)

(b) Matrix completion recovery. (c) Pattern-matching recovery.

Figure 1: Recovery Illustration of the Missing Block (MB) in X3.

Matrix-based recovery techniques use data analysis meth-
ods to infer the missing block. To illustrate this process, as-
sume a set of m time series, each having n points, and that
one of these time series has a missing block of values. We
show such scenario in Figure 1a, without loss of generality,
for m = 3 and n = 20. These time series can be represented
as an n×m matrix where each time series occupies a single
column, shown as the left-most matrix in Figure 1b.
A matrix-based algorithm finds an equivalent representa-

tion of the data in such a way that simplifies dimensionality
reduction, or truncation. We depict such process using the
Singular Value Decomposition (SVD) [54]. SVD decomposes
the input matrix X into three matrices U, Σ and V, such
that X = U·Σ·VT . The Σ matrix exposes not only the
rank of the original matrix, i.e., number of linearly indepen-
dent dimensions, but also the relative importance of each of
the dimensions, as σ1 > σ2 > σ3. Truncating the original
matrix can be done by nullifying some dimensions (cells in
the diagonal) in Σ, σ3 in our example. An approximation of
the original dataset is recalculated by multiplying back the
component matrices – filling the missing block in the pro-
cess. The algorithm would further plug those values to the
original matrix and would iterate over this process, trying
to minimize a given error metric.
SVD is one among many applicable matrix decomposi-

tion techniques. We will introduce algorithms that rely on
Principal Components Analysis (PCA) [19], Centroid De-
composition (CD) [10], Matrix Factorization (MF) [27], and
Non-Negative Matrix Factorization (NMF) [26]. We will also
see that the error metric and the stopping conditions vary
among algorithms. The error metric can be based on the
distance between the input and the approximated series and
can be computed in different ways, e.g., Frobenius norm [25],
nuclear norm [7], rank minimization [53], root mean square
error minimization [22, 23], etc. The decision to terminate
the iterations could be dynamic, via a threshold error, or
static, through a certain number of steps.
In turn, pattern-based recovery techniques aim at identi-

fying patterns in the historical data that often repeat, and
apply the knowledge derived from them to recover missing
values. We depict a pattern-based imputation in Figure 1c.
These techniques assume that some degree of correlation
exists between the base time series that contains the miss-
ing block and the reference time series used to detect the
patterns. For instance, in Figure 1c, X3 is a base series
whereas X1 and X2 are reference ones. When a block of

values is missing, one can look back into the reference series
for the pattern that occurred on the missing site. Each of
the matches will represent a candidate block for recovery.
Similarly to matrix-based algorithms, pattern-based ones

also require calibration (i.e., their similar mechanism to
truncation). The size of the pattern to look for has a big
impact on the accuracy/efficiency trade-off. If the pattern is
too small, the technique loses accuracy, especially if the time
series are not cyclic. If too big, the computational time in-
volved in pattern manipulation primitives (e.g., comparison)
becomes too costly. Moreover, pattern-based algorithms are
also iterative. They go over the candidate recovery blocks
until they reach a given error metric threshold.

Notations. In the following, bold upper-case letters re-
fer to matrices, regular font upper-case letters refer to vec-
tors (rows and columns of matrices) and lower-case let-
ters refer to elements of vectors/matrices. The symbol ‖‖F
refers to the Frobenius norm of a matrix, while ‖‖ refers
to the l-2 norm of a vector. Assume X is an n × m ma-
trix where each column is X = [x1, . . . , xn], then ‖X‖F =√∑n

i=1

∑m
j=1(xij)

2 and ‖X‖ =
√∑n

i=1(xi)
2.

A time series X = {(t1, v1), . . . , (tn, vn)} is an ordered
set of n temporal values vi that are ordered according to
their timestamps ti. We write X = [X1|. . . |Xm] (or Xn×m)
to denote an n × m matrix having m time series Xj as
columns and n values for each time series as rows. Time
series can be univariate (also called 2-dimensional) or multi-
variate (multi-dimensional). In univariate series, each tem-
poral value represents a scalar that refers to one specific
phenomenon, e.g., temperature. In multivariate series, each
value is a vector that represents multiple phenomena, e.g.,
temperature, precipitation, humidity, etc.
To measure the recovery accuracy, we use the two most

commonly used measures in this field: Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) between
the original block and the recovered one, i.e.,

RMSE =

√
1

|T |
∑
t∈T

(xt − x̃t)2, MAE =

∑
t∈T |xt − x̃t|
|T |

where T is the set of missing values, xt is the original value
and x̃t is the recovered value. Unlike MAE, RMSE is com-
puted using the square root of the average squared errors
and thus, penalizes more large errors even if they are few.

3

3. SELECTED ALGORITHMS
Collectively, the algorithms presented in this study cover

a wide area of the design space. The “Recovery” and “Tech-
nique” portions in Table 1 summarize the main features of
these algorithms (type of initialization, support of multiple
recoveries, type of the recovery, the underlying method they
employ and the type of termination). Some of the algo-
rithms can be quite sophisticated. Due to space constraints,
we have omitted details that are not immediately relevant
to our analysis.

3.1 Matrix Completion Algorithms
SVDImpute [58] is a recovery algorithm similar to the one
depicted in Figure 1b. This algorithm was originally intro-
duced to recover missing genes in DNA micro-arrays where
missing blocks are usually small. SVDImpute first initial-
izes the missing values as zeroes. Then, it selects the k most
significant columns of V (obtained through SVD) and uses
a linear combination of these columns to estimate the miss-
ing values. We adopted a common improvement that allows
SVDImpute to scale better: we calculate the SVD in a ran-
domized [14] and a faster [13] way. This change required
only a marginal sacrifice in precision, as compared to the
full SVD.

SoftImpute [38] is an extension of the SVDImpute tech-
nique with an Expectation Maximization (EM) algorithm.
This extension results in improvements to the recovery pre-
cision while only slightly sacrificing the efficiency, when com-
pared to SVDImpute. The EM method alternates between
recovering the missing values and updating the SVD using
the observed values. This technique uses a soft-thresholded
version of SVD and, unlike SVDImpute, it uses the product
of all three matrices produced by the decomposition.

SVT [7] is another SVD-based algorithm designed with one
notable feature: it automatically finds the degree at which
rank truncation should occur, avoiding the parameteriza-
tion that any other SVD-based algorithm requires. It does
so by applying a thresholding technique to reduce the num-
ber of the singular values obtained from the decomposition.
The preserved singular values are rescaled using only the
observed values, and the recovery is obtained by iteratively
multiplying back the three matrices of the decomposition.

CDRec [24, 25] is a technique aimed at recovering time se-
ries with mixed correlation. It is based on a matrix decom-
position technique called Centroid Decomposition (CD) [10].
Similarly to the SVD technique, CD decomposes an n ×m
input matrix X into an n × m loading matrix L and an
m × m relevance matrix R, such that X = L · RT . CD
performs the decomposition by finding a maximizing sign
vector, Z, that contains 1s or -1s and that maximizes the
centroid value, i.e., ‖XT ·Z‖. CDRec performs recovery by
first using interpolation/extrapolation to initialize the miss-
ing values. It then computes and truncates CD by keeping
only the first k columns of L and R to produce Lk and Rk

respectively. Finally, it replaces the interpolated values by
the corresponding elements in X̃ = Lk ·RT . This process is
performed iteratively until the normalized Frobenius norm
between the matrix before and the one after the update
reaches a small threshold.

GROUSE [3, 66] is a technique that is agnostic to the ini-
tialization of missing values. It gets this property from a

decomposition technique we mentioned before, PCA [19].
PCA takes an n×m input matrix X and finds n eigenvec-
tors (vectors of U from SVD) each of sizem that correspond
to the loadings of the principal components. In other words,
U is a new subspace that approximates the dimensions of
the initial data. The approximation is performed by apply-
ing an incremental gradient descent procedure to minimize
an objective function, and subsequently derive the missing
values. We experimented with two different objective func-
tions: one with a distance-based step-size and one with a
greedy step-size. We kept the distance-based implementa-
tion as it yielded more stable results. The gradient-descent
approach best accounts for the variance in a data set, as
compared to other decomposition techniques.

SPIRIT [44, 45] is also a PCA-based algorithm but one de-
signed to perform streaming recovery (i.e., the missing block
is at the tip of the series). As streaming algorithms require,
SPIRIT presents low runtime because it operates only on the
observed values. This technique uses PCA to reduce a set
of m co-evolving and correlated streams to a small number
of k hidden variables. These variables summarize the most
important features of the original data. For each variable,
SPIRIT fits one auto-regressive (AR) model on historical
values, which is incrementally updated as new data arrives.
Then, these models are used to predict the value of each vari-
able, from which an estimate of the missing value is derived.
The recovered value, along with the non-missing values, are
then used to update the AR coefficients and subsequently
recover the missing values.

ROSL [53] is also a PCA-based algorithm, but one that
specializes in denoising corrupted data. It assumes the input
matrix contains corrupted data and uses its orthonormal
subspace to find a better estimation. This subspace uses a
rank measure to identify the rank representation of the data.
We slightly modified the original algorithm to consider only
(the initialized) missing values as corrupted values and thus,
to better estimate them.

TRMF [64] is an algorithm that learns from different types
of data dependencies, making it suitable to time series ex-
hibiting varied characteristics. It is based on temporal Ma-
trix Factorization (MF) [27] which takes an n × m input
matrix X and seeks to approximate it using two factor ma-
trices, W and H, respectively of size n× r and r×m (with
r ≤ min(n,m)) such that X ≈WH. The input time series
are factorized into a so called latent temporal embeddings
and an auto-regressive (AR) model is applied to derive the
temporal structure of the embeddings.

TeNMF [39] is a particularly suited algorithm for recover-
ing correlated time series. It does so by combining tempo-
ral aggregation techniques with yet another matrix decom-
position technique, the Non Negative Matrix Factorization
(NMF) [26]. NMF is similar to the MF technique described
above, but it constrains W and H to contain only non-
negative elements. More specifically, TeNMF first applies
NMF to obtain temporal aggregates and uses them to de-
fine a loss function. The latter is then modified by adding a
so called penalization parameter to capture the correlation
across time series. The original implementation uses mul-
tiplicative divergence-based update to compute NMF [56],
which makes the recovery unstable (varies from one run to

4

1 2 3 4 50
0.2
0.4
0.6
0.8
1

Truncation (k)

N
or

m
al

iz
ed

va
l.

RMSE CPU

(a) CDRec

1 2 3 4 50
0.2
0.4
0.6
0.8
1

Truncation (k)

N
or

m
al

iz
ed

va
l.

(b) GROUSE

1 2 3 4 50
0.2
0.4
0.6
0.8
1

Truncation (k)

N
or

m
al

iz
ed

va
l.

(c) ROSL

1 2 3 4 50
0.2
0.4
0.6
0.8
1

Truncation (k)

N
or

m
al

iz
ed

va
l.

(d) SoftImpute

1 2 3 4 50
0.2
0.4
0.6
0.8
1

Truncation (k)

N
or

m
al

iz
ed

va
l.

(e) SPIRIT

1 2 3 4 50
0.2
0.4
0.6
0.8
1

Truncation (k)

N
or

m
al

iz
ed

va
l.

(f) SVDImpute

1 2 3 4 50
0.2
0.4
0.6
0.8
1

Truncation (k)

N
or

m
al

iz
ed

va
l.

(g) TeNMF

1 2 3 4 50
0.2
0.4
0.6
0.8
1

Truncation (k)

N
or

m
al

iz
ed

va
l.

(h) TRMF

0.2 0.4 0.6 0.8 10
0.2
0.4
0.6
0.8
1

Scaling of τ

N
or

m
al

iz
ed

va
l.

(i) SVT

1 2 3 4 50
0.2
0.4
0.6
0.8
1

Latent var.

N
or

m
al

iz
ed

va
l.

(j) DynaMMo

4 8 12 16 200
0.2
0.4
0.6
0.8
1

Pattern size (l)

N
or

m
al

iz
ed

va
l.

(k) TKCM

1 2 3 4 50
0.2
0.4
0.6
0.8
1

Decay rate (α)

N
or

m
al

iz
ed

va
l.

(l) STMVL

Figure 2: Parameterization of the techniques.

another). We improved its stability by using instead alter-
nating least squares update (ALS) to compute NMF [32].

3.2 Pattern-based Recovery Algorithms
TKCM [60] is similar to the algorithm we depicted in Fig-
ure 1c in that it leverages the dependency across time series
to identify repeating patterns (seasonality) in the time series
history. In TKCM’s case, the pattern search is performed
in a dynamic warping fashion allowing time lags and thus,
recovering time-shifted time series. Similarly to SPIRIT,
TKCM is a streaming technique that operates on batches of
the input data, rendering the technique efficient.

DynaMMo [29] is an algorithm that can leverage the sim-
ilarities across few time series only. The underlying as-
sumption used by this technique is that some time series
present co-evolving patterns. Internally, the algorithm relies
on Kalman Filters and iterates using an Expectation Max-
imization (EM) process. The Kalman Filter uses the data
that contains missing blocks together with a reference time
series to estimate the current state of the missing blocks.
This estimation is performed as a multi-step process that
uses two different estimators. For every step in the pro-
cess, the EM method predicts the value of the current state
and then the two estimators are used to refine the predicted
values of the current state and to maximize their likelihood.

STMVL [62] is yet another algorithm that can recover miss-
ing values in highly correlated time series. STMVL focuses
on two types of correlation between time series: the spatial
correlation (geographical distance between sensors) and the
temporal correlation (closeness of the values in time). Inter-
nally, STMVL combines a data smoothing technique with
collaborative filtering to derive models out of the historical
data. These models are then used to estimate the missing
values based on the closeness of the sensors represented us-
ing a decay rate (α).

3.3 Algorithms Implementation
In order to provide a fair comparison, we rewrote all the

algorithms described in the previous section in C++ , except
for TRMF (inextricable from Matlab) and TKCM (efficient
original implementation). As expected, the implementations
sizes varied according to the sophistication of the algorithms,
as we show in the “Implementation” portion of Table 1.

The latter describes the original programming language, the
number of lines of code (LoC) and the speedup.
We use the same advanced linear algebra operations

across the techniques, thanks to a modern library called Ar-
madillo [50]. Thus, we eliminate any sources of disparities
that would otherwise exist if each algorithm re-implemented
common primitives.
All of the algorithms’ runtimes showed improvements

when compared to their original implementations – in one
case becoming 110x faster. Table 1 shows each speedup. The
re-implementation brought insights that allowed us to re-
engineer the original implementations, as opposed to simply
translate them from one language to the other. We selected
some notable examples of these re-engineering techniques
and discuss them in more detail in Appendix A. We also
repeat core experiments from previous work. We describe
the reproducibility of the results in Appendix B.

4. EXPERIMENTAL EVALUATION
In this section, we submit the algorithms to different

benchmarks, each designed to exercise a specific aspect.
We conduct our experiments on a 32GB RAM machine

with an Intel i7-4770 that consists of 8 cores with an 8MB
L3 cache, running at 3.4 GHz. The code was compiled with
g++ 7.3.0. We use eight real-world datasets from different
domains and exhibiting different characteristics, and two
synthetic datasets. We will describe each of the datasets
shortly, as they appear in our experiments.

4.1 Parameterization
We begin our evaluation by fine tuning each algorithm.

Parameterization is the process of calibrating a technique
to work with the best accuracy/efficiency trade-off. We will
show that this step is not straightforward, as accuracy and
efficiency do not interact as one would expect.
The most critical parameter for all the matrix-completion

techniques is the truncation factor (or rank). It affects both
the accuracy and the scalability of an algorithm. SVT is a
special case, as the threshold parameter (τ) is more criti-
cal than the truncation factor. For the pattern-based tech-
niques, i.e., DynaMMo, STMVL and TCKM, we vary re-
spectively the number of latent dimensions, the decay rate

5

Table 2: Description of time series and accuracy of each technique.

Name Length # TS CD
Rec
Dy

naM
Mo

GR
OU

SE

TeN
MF
RO

SL
Sof

tIm
put

e

SP
IRI

T
ST

MVL
SV

DIm
put

e

SV
T

TK
CM
TR

MF

Air 1k 10 norm. RMSE
Chlorine 1k 50 ≥ 2.0
Climate 5k 10 < 2.0
Gas 1k 100 < 1.5
Electricity 5k 20 < 1.0
Meteo. 10k 10 < 0.5
Temp. 5k 50 < 0
BAFU 50k 10 < −0.5

(α) and the pattern size (l). Figure 2 reports the recov-
ery RMSE and the execution time each normalized by the
largest value of each technique (the lower the better).
We use the Chlorine dataset for this process as it is the

most commonly used by the techniques we evaluate (e.g., in
DynaMMo, GROUSE, SPIRIT, and TKCM). This dataset
simulates a drinking water distribution system and describes
the concentration of chlorine at multiple junctions.
For matrix completion techniques, we found out that the

runtime of all techniques increases along with the trunca-
tion value (k), except for TRMF. This result is expected,
since the higher k is, the higher the number of dimensions
used to produce the recovery (yielding more time- and space-
intensive computations). For TRMF, since its runtime is
dominated by computation of (expensive) auto-regressive
coefficients, varying k has little impact on the efficiency.
Surprisingly, increasing k did not always improve accu-

racy. We observe that for all the matrix-based techniques,
the optimal truncation value showed to be k ∈ {2, 3} as it
presents the best compromise between runtime and accu-
racy. Note that some of the matrix-completion techniques
use two additional parameters, i.e., the maximum number
of iterations and the convergence threshold. We ran experi-
ments varying these parameters but found that certain fixed
values provided the best performance. Therefore, we kept
them constant for the rest of the experiments. We describe
these parameters’ calibration in detail in Appendix C.
For the pattern-based techniques, different parameters im-

pact the performance of the recovery. For DynaMMo, the
critical parameter is the number of latent variables. The
optimal number of variables was found to be 3. TKCM is
dependent on the length of the pattern. We vary it from 4
and 70 and set the value to 4 for the subsequent experiments
as it produces the best result. Lastly, we found that STMVL
depends on many parameters. The decay rate is the parame-
ter that impacts the performance of the technique the most.
The optimal value of the decay rate is 2.

4.2 Accuracy
After having properly calibrated the algorithms, we eval-

uate the accuracy of all techniques under varying sizes of
missing blocks (from 20% to 80%). We set the size as the
percentage missing in a single time series. We then compute
the average RMSE which we normalize using the z-score
technique (the lower the better). Table 2 reports on these
results. As the table shows, we use several other datasets
we describe below:
Air brings air quality measures collected from 36 monitoring
stations in China from 2014 to 2015 (appeared in STMVL).

Gas shows gas concentration collected between 2007 and
2011 from a gas delivery platform situated at the ChemoSig-
nals Laboratory at University of California in San Diego
(appeared in [47]).
Climate presents monthly aggregated data for climate col-
lected from 18 climate agents over 125 locations in North
America between 1990 and 2002 (appeared in [34, 33]).
Electricity has data on household energy consumption col-
lected every minute between 2006 and 2010 in France (ob-
tained from the UCI repository and used by TRMF and
TeNMF).
Temperature contains temperature time series collected
from climate stations in China from 1960 to 20122 (appeared
in STMVL and CDRec).
MeteoSwiss is a weather time series provided by the Swiss
Federal Office of Meteorology and Climatology3 collected
from different Swiss cities from 1980 to 2018 (appeared in
CDRec).
BAFU consists of water discharge time series provided by
the BundesAmt Für Umwelt (BAFU)4, the Swiss Federal
Office for the Environment, collected from different Swiss
rivers from 1974 to 2015 (appeared in [2]).
Chlorine (introduced earlier) simulates a drinking water
distribution system and describes the concentration of chlo-
rine in 166 junctions over a time frame of 15 days with a
sample rate of 5 minutes.
As Table 2 shows, TeNMF and TKCM have a low recovery

accuracy on most of the datasets, while GROUSE performs
similarly on half of them. We also observe that, on large
datasets (with either long or many time series), SPIRIT,
SVT and ROSL fail to achieve a good recovery. Hence, we
keep our focus on the most accurate algorithms: CDRec,
DynaMMo, SoftImpute, SVDImpute, STMVL, and TRMF.

4.2.1 Impact of Missing Block Size
In this set of experiments, we evaluate the recovery ac-

curacy when increasing the percentage of missing values in
one time series (This is a breakdown of the values we see in
Table 2). We show the accuracy results using RMSE only,
as we obtained similar results with MAE. When varying the
percentage of missing values, the length and the number of
time series are kept to their maximum per dataset. We set
the missing block to appear arbitrarily in the middle of the
chosen time series. Figure 3 shows the results.

2http://www.cma.gov.cn/en2014/
3meteoswiss.admin.ch
4https://www.hydrodaten.admin.ch/en

6

10 20 30 40 50 60 70 80
0.3

0.35

0.4

0.45

0.5

missing rate (%)

R
M

SE

CDRec DynaMMo STMVL SoftImp. SVDImp. TRMF

(a) Air dataset

10 20 30 40 50 60 70 80
0.15

0.2

0.25

0.3

0.35

missing rate (%)

R
M

SE

(b) Chlorine dataset

10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

missing rate (%)

R
M

SE

(c) Gas dataset. STMVL is
off the scale.

10 20 30 40 50 60 70 80
0.7

0.8

0.9

missing rate (%)

R
M

SE

(d) Climate dataset

10 20 30 40 50 60 70 80
0.45

0.5

0.55

0.6

missing rate (%)

R
M

SE

(e) Electricity dataset.
STMVL is off the scale.

10 20 30 40 50 60 70 80
0.19

0.2

0.21

0.22

missing rate (%)

R
M

SE

(f) Temperature dataset.

10 20 30 40 50 60 70 80
0.22
0.24
0.26
0.28
0.3
0.32

missing rate (%)

R
M

SE

(g) Meteo dataset.

10 20 30 40 50 60 70 80
0.2

0.3

0.4

0.5

0.6

missing rate (%)

R
M

SE

(h) BAFU dataset.

Figure 3: Accuracy comparison with increasing missing block size.

We can separate the datasets/results into two types.
There are those where a same group of algorithms perform
equivalently well. In the Air, Meteo, and BAFU datasets (cf.
Figures 3a, 3g, 3h, resp.), all of CDRec, DynaMMo, SoftIm-
pute, and TRMF present somewhat indistinguishable low
RMSE. These datasets contain similar features (weather-
related time series), which pose no significant challenge.
In contrast, the other datasets have each a prominent

feature that exposes the differences among the algorithms.
The Chlorine dataset (cf. Figure 3b) has repeating trends,
to which TRMF and SoftImpute respond particularly well.
The AR and EM models used respectively by the two tech-
niques serve the purpose of capturing the regularity inside
the data and thus, accurately detect the trend repetition.
The Gas dataset (cf. Figure 3c) presents mixed correla-
tion (positive/negative and high/low), better handled by
CDRec’s use of a weight vector capable of capturing such
varied correlation. The Climate (cf. Figure 3d) and the
Electricity datasets (cf. Figure 3e) both present irregular-
ities – fluctuations and shifted time series, respectively –
which DynaMMo and SoftImpute handle well because of
their attention to co-evolution of time series. The Tempera-
ture dataset (cf. Figure 3f) stands out by its very high corre-
lation. This is why STMVL, which captures such models by
design, performs so well. Note though that the advantage
that STMVL has is localized to this scenario.
We conclude from this experiment that the absolute best

accuracy can only be currently achieved by specialization
(the careful pairing of data features with the algorithm de-
sign). We also observe that specialization can very well have
the opposite effect, if chosen wrongly. For instance, in the
case of STMVL, the accuracy is particularly poor in large
datasets that contain either a high number of time series,
such as Gas (m = 100), or long time series, such as BAFU
(n = 50k) –Figure 3c and 3h, respectively. STMVL is not
the only such example; SoftImpute and CDRec, which did
well in other scenarios, also become among the least accu-
rate techniques in these datasets.

We also conclude from this experiment that, counter-
intuitively, the error does not always increase along with
the size of the missing block. In three datasets, Chlorine
(cf. Figure 3b), Gas (cf. Figure 3c) and Meteo (cf. Fig-
ure 3g) the trend is the opposite. As we stated earlier, using
larger blocks of missing values avoids early termination –
recall, these algorithms are iterative – and thus, increasing
iterations further improves the refinement of the initial val-
ues.

1000 5000 10000
0

0.2

0.4

0.6

0.8

Length of TS (n)

R
M

SE

CDRec DynaMMo STMVL
SoftImp. SVDImp. TRMF

(a) Avg. RMSE with varying
length of TS.

1000 5000 10000
0

0.2

0.4

0.6

0.8

Length of TS (n)

M
A

E

(b) Avg. MAE with varying
length of TS.

10 20 50
0

0.2

0.4

0.6

0.8

of TS (m)

R
M

SE

(c) Avg. RMSE with varying
of TS.

10 20 50
0

0.2

0.4

0.6

0.8

of TS (m)

M
A

E

(d) Avg. MAE with varying
of TS.

Figure 4: Accuracy comparison with increasing time series
length and number.

4.2.2 Impact of Sequence Length and Number

7

0 2 4 6 8 10

0.2

0.4

0.6

incomp. TS

R
M

SE
CDRec DynaMMo STMVL
SoftImp. SVDImp. TRMF

(a) BAFU dataset
(m=10).

0 10 20 30 40 50
0

0.1

0.2

incomp. TS
R

M
SE

(b) Chlorine dataset
(m=50).

0 20 40 60 80 100
0.2

0.3

0.4

incomp. TS

R
M

SE

(c) Gas dataset
(m=100). STMVL is
off the scale.

Figure 5: Accuracy comparison with increasing number of
incomplete TS (overlapping).

2 4 6 8 10

0.2
0.4
0.6
0.8

incomp. TS

R
M

SE

CDRec DynaMMo STMVL
SoftImp. SVDImp. TRMF

(a) BAFU dataset
(m=10).

0 10 20 30 40 50
0

0.1

0.2

incomp. TS

R
M

SE

(b) Chlorine dataset
(m=50).

0 20 40 60 80 100
0.2

0.3

0.4

incomp. TS

R
M

SE

(c) Gas dataset
(m=100). STMVL is
off the scale.

Figure 6: Accuracy comparison with increasing number of
incomplete TS (disjoint).

Figure 4 depicts the recovery accuracy on different
datasets when increasing the sequence length and number.
We use the RMSE and MAE values as geometric means
across different datasets, with the confidence bands repre-
senting the standard deviation. Both metrics appear here
as they highlight different aspects in some cases. When the
sequence length varies, the number of time series is set to 10,
whereas the sequence length is set to 1k when the number
of time series varies. We set the size of the missing block to
10% of one time series.
This experiment shows that, in general, the algorithms

take advantage of having longer time series to produce better
accuracy (cf. Figures 4a and 4b). The improvement is more
noticeable when we vary the length from 5k to 10k. This is
an expected result, because using more data should help to
better capture the main features of the time series and thus,
yields a better estimate the missing blocks. We also observe
that STMVL presents higher errors compared to the rest
of the algorithms as it performs poorly in several datasets
(Gas, Electricity and BAFU).
When it comes to varying the number of time series, the

RMSE accuracy of the algorithms remained largely unaf-
fected (cf. Figures 4c). This was an unexpected result, as
using more time series from the same dataset should help
the techniques to better compute the dimensionality reduc-
tion (for matrix completion), the spatio-temporal model (for
STMVL) and the Kalman Filer (for DynaMMo). The MAE
results (cf. Figure 4d), however, show the expected trend
where the accuracy increases with the number of the used
time series, i.e, the curve goes down. The reason behind
this discrepancy is that all the techniques perform on aver-
age a better recovery, but some outliers are introduced by
the addition of the new time series. Since MAE reflects the
average recovery by giving less weight to the outliers, then
it is more indicative of the expected behavior.

4.2.3 Impact of Number of Affected Series
We compare the recovery RMSE of the best methods

when varying the number of incomplete time series. We
use datasets with different numbers of time series and we
consider two scenarios: overlapping missing blocks (as mul-
tiple sensors can break during the same time interval) and
disjoint missing blocks.
Figure 5 shows the recovery accuracy for multiple incom-

plete time series where each of them has 10% of missing
values. The missing blocks are partially overlapping, i.e.,
the first half of the block is overlapping with the previous

time series while the second half is overlapping with the next
time series. We keep the length and number of time series
to their maximum per dataset and we increase the number
of affected time series.
We observe two trends in the results. For the datasets

with a small number of time series (cf. Figure 5a) and high
number of time series (cf. Figure 5c), the error generated
by all techniques, except STMVL, first increases with the
number of affected series, then it decreases. The increase in
the RMSE occurs as expected, since adding more incomplete
time series increases the number of missing values and subse-
quently the RMSE. However, the decrease is unexpected and
is explained by the fact that having more incomplete time
series avoids early termination, thus improving the recovery.
For the datasets with medium number of time series(cf. Fig-
ure 5b), we observe a decrease in the RMSE caused by the
same reason previously explained. Interestingly, there is not
much differentiation among algorithms for those expect for
STMVL. The accuracy of the latter is barely affected, as the
spatio-temporal produces similar recovery for all incomplete
time series.
Figure 6 shows the recovery accuracy when the incom-

plete time series have disjoint missing blocks. Similarly to
the overlapping case, the important factor differentiating the
algorithms in this experiment is the number of time series
per dataset. For the dataset with a large number of time
series (cf. Figure 6c) we observe that the recovery TRMF,
SVDImpute and DynaMMo outperforms the rest of the tech-
niques.

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

of missing ts

R
M

SE

CDRec DynaMMo STMVL
SoftImp. SVDImp. TRMF

(a) Air dataset.

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8
1

of missing ts

R
M

SE

(b) BAFU dataset.

Figure 7: Accuracy comparison in case of blackout by vary-
ing the number of timestamps (ts) lost. STMVL and TRMF
are off the scale. SVDImpute and SoftImpute achieve the
same recovery accuracy.

8

2 3 4 5 6 7 8 9 10
104
105
106
107
108

Sequence Length [k]

ru
nt

im
e

(m
s)

CDRec DynaMMo STMVL SoftImp. SVDImp. TRMF

(a) Meteo dataset (n = 10k)

1 2 3 4 5

104
105
106
107
108

Sequence Length [k]

ru
nt

im
e

(m
s)

(b) Electr. dataset (n = 5k)

2 3 4 5 6 7 8 9 10
104

105

106

107

Sequence Length [×100]

ru
nt

im
e

(m
s)

(c) Gas dataset (n = 1k)

1 2 3 4 5

105
106
107
108
109

Sequence Length [10k]

ru
nt

im
e

(m
s)

(d) BAFU dataset (n = 50k)

Figure 8: Efficiency with increasing sequence length.

10 20 30 40 50
103
104
105
106
107

TS number

ru
nt

im
e

(m
s)

(a) Chlor. dataset (m = 50)

4 6 8 10 12 14 16 18 20

104
105
106
107
108

TS number

ru
nt

im
e

(m
s)

(b) Electr. dataset (m = 20)

20 40 60 80 100

104
105
106
107

TS number

ru
nt

im
e

(m
s)

(c) Gas dataset (m = 100)

4 5 6 7 8 9 10

105
106
107
108
109

TS number

ru
nt

im
e

(m
s)

(d) BAFU dataset (m = 10)

Figure 9: Efficiency with increasing sequence number.

We also evaluate the techniques in the case of a blackout,
i.e, an event in which all time series lose data at the same
time period. In the experiment in Figure 7, we compare
the recovery RMSE of the best techniques when varying
the size of the missing block. We choose the Air dataset
which has the highest number of time series and the BAFU
dataset which has the longest time series. We observe that
all techniques incur a very high RMSE compared to the size
of the missing portion (less than %10 per time series). On
the dataset with long time series (cf. Figure 7b), CDRec
and DynaMMo achieve the lowest error as both techniques
return an approximation of the initialized interpolated val-
ues. On the Air dataset (cf. Figure 7a), using more time
series helps CDRec to iterate more, thus achieving a better
recovery compared to DynaMMo.

4.3 Efficiency
We now evaluate the efficiency of the recovery process by

measuring the elapsed runtime while varying the time series
length and number, and the percentage of missing values per
time series. Elapsed times are shown using a log scale as the
runtime difference between the algorithms is extremely high
(up to three orders of magnitude).

4.3.1 Impact of Sequence Length and Number
In the experiments in Figure 8 we increase the sequence

length while keeping the number to its maximum per
dataset. We set the size of the missing block to 10% of the
maximum length of one time series. The results show that
the efficiency is clearly an aspect that divides the accurate
algorithms chosen before in two groups, fast and slow. The
algorithms from the first class, i.e., CDRec, SoftImpute and
SVDImpute are matrix decomposition-based. They rely on
truncation to operate on few dimensions only, thus achieving
a near-linear time complexity.
The algorithms from the second group, on the other hand,

rely on building expensive models to capture the specific fea-
tures of the data. Take the example of DynaMMo which is
able to capture the co-evolution in the data and uses it to
estimate missing values. This technique relies mainly on
building Kalman Filters which are very expensive to com-

pute. In the case of TRMF, we observe a high runtime
even though it is a matrix decomposition-based technique.
This is explained by the fact that this technique relies on the
computation of AR coefficients from all time series, which re-
quires quadratic time complexity. The algorithms from the
second class are more than two orders of magnitude slower
than the ones from the first class, and this difference grows
with the sequence length.
In the experiments in Figure 9, we increase the number of

time series while keeping the length to their maximum per
dataset. We observe similar results as in the experiments
in Figure 8. We also observe that CDRec is faster than
the rest of the algorithms from the first class on datasets
with a smaller number of time series. However, the runtime
difference becomes indistinguishable as the number of time
series per dataset increases.

4.3.2 Impact of Missing Block Size
In the experiments in Figure 10, we compare the efficiency

by increasing the size of the missing block while keeping the
dataset length and size to their respective maximum per
dataset. We choose the Gas and the BAFU datasets for the
same reason as before.
The results show the same trends as the ones obtained

when increasing the time series length and number: they
confirm that the efficiency is still a differentiator among the
algorithms. We can observe that the runtime of the fastest
algorithms increases with the percentage of missing values,
while it remains almost constant for the slowest algorithms.
This is because the computation of the models used by the
pattern-bases techniques depends only on the size of the
input matrix. Thus, the efficiency of these techniques is
independent from the size of the missing block.

4.3.3 Synthetic Data
In this section, we evaluate the efficiency of the fastest

techniques on large datasets where thousands of sensors
could be used to record millions of observations. We evalu-
ate the algorithms able to perform the recovery in less than 1
minute. We use synthetic time series, as the real-world time

9

10 20 30 40 50 60 70 80
104

105

106

107

missing rate (%)

ru
nt

im
e

(m
s)

CDRec DynaMMo STMVL
SoftImp. SVDImp. TRMF

(a) Gas dataset

10 20 30 40 50 60 70 80
105
106
107
108
109

missing rate (%)

ru
nt

im
e

(m
s)

(b) BAFU dataset

Figure 10: Efficiency comparison with increasing block size.

series we have chosen are limited in length and in number
of time series.
We generate synthetic time series through a random walk.

The steps are given by triangular distribution to obtain a
flexible bias towards zero. Unlike normal distributions, our
generation method guarantees that the values have upper
and lower limits. We generate two datasets: the first dataset
has n = 1M and m = 100 while the second has n = 10k and
m = 1k. We set the size of the missing block to 10% of the
maximum length of one time series.
The results show that SPIRIT outperforms the rest of

the algorithms when varying the sequence length (cf. Fig-
ure 11a). The reason for this is that SPIRIT learns the AR
coefficients and applies them only to a small window of the
time series, rendering the technique very efficient. However,
the performance of SPIRIT deteriorates as the number of
time series grows (cf. Figure 11b). This is explained by the
fact that this technique needs to orthogonalize the principal
components – recall, SPIRIT is PCA-based – using Gram
Schmidt process. This process has a quadratic complexity
with the number of time series.

2 3 4 5 6 7 8 9 10
0

20

40

Sequence Length [100k]

ru
nt

im
e

(s
ec

)

GROUSE CDRec SoftImp. SVDImp. SPIRIT

(a) Runtime with sequence
length variation.

1 2 3 4 54 5 6 7 8 9 10
0

10

20

30

Sequence Number [×100]

ru
nt

im
e

(s
ec

)

(b) Runtime with sequence
number variation.

Figure 11: Efficiency on Synthetic Datasets.

5. RECOMMENDATIONS
In the previous section, we have shown hints that point to

specialization – knowing the properties of the data series and
finding a match in terms of recovery algorithm – as the key to
accuracy and efficiency. In this section, we propose a number
of dimensions that are useful to quantify specialization. We
note that we will continue to consider only the algorithms
that presented acceptable accuracy.
However, we have just seen that previously discarded algo-

rithms can perform well in certain cases. SPIRIT shows very
good efficiency compared to the rest of the techniques if the

scenario in question had less than a hundred very long time
series. TKCM is another example. It is an online algorithm
and thus assumes that the series end at the missing block.
(Incidentally, so does SPIRIT.) A missing block at the mid-
dle of the series has the effect of shortening that series for
those algorithms. This explains their poor performance in
Table 2 – and strengthens the argument for specialization.
Back to our high-accuracy algorithms, the main discrimi-

nant feature among them is efficiency. It clearly divides the
algorithms in two classes, as we show in Figure 12. The al-
gorithms also respond differently to certain features of the
data. For instance, certain algorithms perform well if the se-
ries present irregularities, such as those in household power
consumption. Other algorithms react well to high degrees
of correlation, as those in temperature series. Yet other al-
gorithms can handle mixed features better, such as those
appearing in greenhouse gas series. Therefore, certain char-
acteristics of the data end up being discriminant features
themselves. Two further discriminants are the size of the
time series and whether the missing blocks we see are the
effect of a blackout.
The comparison shows that none of the studied algorithms

outperforms the rest in all dimensions. Although, in cer-
tain dimensions, there are clearly better algorithms. For
instance, STMVL outperforms the rest in highly correlated
time series, CDRec is the best contender in time series with
mixed correlation (high and low), while DynaMMo stands
out in irregular time series (fluctuations, spikes, outliers,
etc.).
The blackout dimension stands out as none of the algo-

rithms is able to properly handle them. Blackout remains
an open dimension for the future imputation techniques –
but that is not the only aspect that deserves more attention.
We believe the at least the following topics can produce new
algorithms.

Missing-block Initialization. Neither linear interpola-
tion nor zero-initialization are ideal for matrix completion
algorithms. Interpolation and zero-init introduce changes
to the real rank of the matrix, which can penalize the con-
vergence of these techniques. The initialization can be im-
proved by “masking-away” the missing values which can
be achieved by sampling from the observed values using
Stochastic Gradient Descent.

Automatic Parameterization. The parameters intro-
duced in the original paper of the respective techniques are
tuned for datasets with specific properties. These parame-
ters were updated in our implementation to produce the best
results on most of the datasets. We observed that changing
the parameters has a noticeable impact on the quality of
the recovery. Utilizing an algorithm to automatically pick
reasonable parameters based on the size of the time series
(similarly to the rank auto-detection performed by SVT)
could mitigate this impact.

Scalable Recovery. The studied algorithms are not scal-
able enough in a massive time series collection. These time
series appear in applications where sensors with very high
frequency are used, generating billions or even trillions of
time series. The SENTINEL-2 mission conducted by the
European Space Agency (ESA) represents such an exam-
ple [31]. In such applications, GPU-based implementation
could speed-up the matrix operations and thus, the scalabil-
ity of these techniques. Alternatively, distributed recovery

10

Blackout

High cor-
relation

Mixed
correlation

Irregular TS

Large TS

CDRec
SoftImpute
SVDImpute

(a) Most time-efficient techniques.

Blackout

High cor-
relation

Mixed
correlation

Irregular TS

Large TS

DynaMMo
STMVL
TRMF

(b) Most time-consuming techniques.

Figure 12: Recommendation graph.

techniques, based on the MapReduce paradigm, for exam-
ple, could also improve the scalability.

Implementation Techniques. Because the algorithms in
this area are so computationally intensive, the difference be-
tween an efficiently designed implementation and one that is
not can result in runtime differences of orders of magnitude.
We describe a number of techniques which greatly affected
performance in Appendix A. Yet we believe that there are
still a number of areas that can be improved. For instance,
some algorithms use a training model to learn the spatial
and temporal correlations of the time series used for the re-
covery. In such cases, caching parts of the training values in
main memory can largely improve the runtime.

6. CONCLUSIONS
In this paper, we conducted an experimental study that

investigates the relative strengths and weaknesses of twelve
algorithms for the recovery of large missing blocks in time
series. In order to provide a test-bed for accurate compar-
isons, we re-implemented all but two of them. We then
subjected the algorithms to an extensive benchmark con-
taining a mix of real-world and synthetic time series. Not
only were we capable of reproducing the results published
in the algorithms’ original papers, but we also documented
behavior previously unknown.
The results of this benchmark helped us to uncover new

findings, some of which are quite counter-intuitive. For in-
stance, there are cases where the larger the missing block,
the better the accuracy in recovering them. We substanti-
ate all these findings and provided a method to systemati-
cally select the most suitable algorithms on a use-case basis.
Lastly, we have also identified and described areas that can
use further improvement, laying ground for further research
topics. In terms of future work, it would be interesting to
extend our framework to evaluate windowing techniques for
the recovery of missing values.

ACKNOWLEDGMENTS
The first and third authors received funding from the Eu-

ropean Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 732328 (FashionBrain).
The second and fourth authors received funding from the
European Research Council (ERC) under the European

Union Horizon 2020 Research and Innovation Programme
(grant agreement 683253/Graphint).

APPENDIX

A. High-Impact Implementation Techniques
As we re-implemented a large number of algorithms, we

noticed that some improvements applied to several of them.
As described below, these improvements fostered a signifi-
cant gain in runtime.

Improved memory management. In certain algo-
rithms such as DynaMMo, SPIRIT and SVT, the origi-
nal implementation fully materialized a number of interme-
diate results/matrices before the main matrix decomposi-
tion/factorization was done. We avoided such full material-
ization by adopting an on-demand approach to computing
intermediate results, where we would produce the cells of
those matrices as needed. Besides the space savings, this
also brought better use of CPU caches, as the data in hot
loops could be placed close together in memory.

Support for sparse matrices. These kinds of matri-
ces can use a hybrid representation that switches between
different storage formats depending on the executed opera-
tion [50]. Such representation not only takes less space but
also improves speed as the initialized zero values do not need
to be processed. Support for sparse matrices had a signifi-
cant impact because such matrices appear in the truncation
step of every single matrix decomposition technique. As
such, every one of the algorithms in that class benefited.

Efficient computation of algebraic operations. Some
algorithms such as SPIRIT, DynaMMo, and TRMF per-
form very specific algebraic operations that are not readily
available in many linear algebra libraries. In the original al-
gorithms, Matlab provides high-level abstraction with which
these operations could be easily expressed. In some cases,
Matlab abstractions are also fast. In the case of DynaMMo
and SPIRIT, though, we ported the Matlab operations to
work with the (efficient) data structures and primitives pro-
vided by Armadillo. For example, we can vastly speed up
algorithms that solve linear equations because we can par-
allelize their underlying matrix operations (e.g., multiplica-
tion, transpose, and QR decomposition).

11

20 40 60 80 100
0

1

2

·10−2

λ

M
SE

DynaMMo SVDImp. Interpolation

(a) Original plot [29].

20 40 60 80 100
0

0.5

1

1.5

·10−2

λ

M
SE

(b) Our result.

Figure 14: Reproducing results of DynaMMo [29].

10 50 100

0.8

1

1.2 ·10
−2

rank

R
el

.
er

ro
r

0

100

200

runtim
e

(sec)

RMSE runtime

(a) Original plot [7].

10 50 100

0.8

1

1.2 ·10
−2

rank

R
el

.
er

ro
r

0

100

200

runtim
e

(sec)

(b) Our result.

Figure 13: Reproducing results of SVT [7].

B. Reproducibility of Original Results
We repeat core experiments of two major works on miss-

ing values recovery: Cai et al. [7] (SVT) and Li et al. [29]
(DynaMMo). We reproduce the runtime and accuracy ex-
periments when varying the size of the missing blocks. For
most of the remaining techniques, it was not possible to re-
produce both the runtime and accuracy experiments as the
respective papers do not study both dimensions together.
The overall outcome is the following: i) we are able to re-
produce the results of the experiments, ii) our implementa-
tion yields the same accuracy but better runtime results and
iii) we identify the truncation value as the main factor that
impacts the runtime and accuracy.

SVT. Cai et al. [7] introduced SVT. We repeat two core
experiments on a synthetic dataset of size 1000 × 1000,
which evaluate the runtime and accuracy of SVT by vary-
ing the rank factor and the missing rate. Figure 13a shows
the results from the original paper while our results are
shown in 13b. The recovery error is identical which con-
firms the correctness of our new implementation. However,
the absolute runtimes differ, which is expected as unlike
our C++ implementation, the original Matlab implementa-
tion does not support parallelization.

DynaMMo. Li et al. [29] introduced DynaMMo and com-
pared it against SVDImpute [58] and linear interpolation.
We repeat two core experiments on Mocap and Chlorine
datasets, which evaluate the accuracy and runtime of Dy-
naMMo by varying the average missing rate (λ) and the
sequence length, respectively. Figure 14a shows the accu-
racy results from the original paper while our results are
shown in 14b.
The results show that the difference between DynaMMo

and the two competitors is smaller compared to what is re-
ported in the paper. This is because we apply the interpola-
tion within each time series containing missing values while
the authors apply it across different time series. However,
by adopting the latter interpolation setting, we achieve the

same results. We also note that the runtime results reported
in the paper are around 2× higher than the ones we obtain
by running the Matlab code provided by the authors. This
result is expected as we use in our experiments a faster pro-
cessor.

C. Complete Parameterization of Selected Al-
gorithms
Some of the matrix completion techniques use two addi-

tional parameters, i.e., the max number of iterations and
the convergence threshold. We ran experiments varying the
max number of iterations from 50 to 500 and the conver-
gence from 10 2 to 10 8. The results show that tuning these
two parameters generally only affects whether or not the
algorithm returns a value; it doesn’t however affect their ac-
curacy or their efficiency. Thus, we set the max_iter and
the conv_thre to 100 and 10 6 respectively for all algorithms
except for ROSL whose optimal max_iter is equal to 500.
For SVT, the optimal value of the scaling factor is 2. TRMF
takes two other parameters: lag index set (L) and the learn-
ing rates (λ). The default values provided by the authors,
i.e., L = [1, . . . , 10] and λ = [0.75, 0.75, 0.75], give the best
performance and thus, were kept for the rest of experiments.

REFERENCES
[1] A. Agarwal, M. J. Amjad, D. Shah, and D. Shen.

Time series analysis via matrix estimation. CoRR,
abs/1802.09064, 2018.

[2] I. Arous, M. Khayati, P. Cudré-Mauroux, Y. Zhang,
M. L. Kersten, and S. Stalinlov. Recovdb: Accurate
and efficient missing blocks recovery for large time
series. In 35th IEEE International Conference on Data
Engineering, ICDE 2019, Macao, China, April 8-11,
2019, pages 1976–1979, 2019.

[3] L. Balzano, Y. Chi, and Y. M. Lu. Streaming PCA
and subspace tracking: The missing data case.
Proceedings of the IEEE, 106(8):1293–1310, 2018.

[4] D. Bertsimas, C. Pawlowski, and Y. D. Zhuo. From
predictive methods to missing data imputation: An
optimization approach. Journal of Machine Learning
Research, 18:196:1–196:39, 2017.

[5] F. Biessmann, D. Salinas, S. Schelter, P. Schmidt, and
D. Lange. "deep" learning for missing value
imputationin tables with non-numerical data. In
Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, CIKM
’18, pages 2017–2025, New York, NY, USA, 2018.
ACM.

[6] P. Bodik, W. Hong, C. Guestrin, S. Madden,
M. Paskin, and R. Thibaux. Intel berkeley research
lab dataset, homepage:
http://db.csail.mit.edu/labdata/labdata.html,
2004.

[7] J. Cai, E. J. Candès, and Z. Shen. A singular value
thresholding algorithm for matrix completion. SIAM
Journal on Optimization, 20(4):1956–1982, 2010.

[8] J. Cambronero, J. K. Feser, M. J. Smith, and
S. Madden. Query optimization for dynamic
imputation. PVLDB, 10(11):1310–1321, 2017.

[9] S. Chouvardas, M. A. Abdullah, L. Claude, and
M. Draief. Robust online matrix completion on
graphs. In 2017 IEEE International Conference on

12

http://db.csail.mit.edu/labdata/labdata.html

Acoustics, Speech and Signal Processing, ICASSP
2017, New Orleans, LA, USA, March 5-9, 2017, pages
4019–4023, 2017.

[10] M. T. Chu and R. Funderlic. The centroid
decomposition: Relationships between discrete
variational decompositions and svds. SIAM J. Matrix
Analysis Applications, 23(4):1025–1044, 2002.

[11] D. Dheeru and E. Karra Taniskidou. UCI machine
learning repository, 2017.

[12] U. Dick, P. Haider, and T. Scheffer. Learning from
incomplete data with infinite imputations. In
Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 232–239, New
York, NY, USA, 2008. ACM.

[13] X. Feng, W. Yu, and Y. Li. Faster matrix completion
using randomized SVD. In IEEE 30th International
Conference on Tools with Artificial Intelligence,
ICTAI 2018, 5-7 November 2018, Volos, Greece.,
pages 608–615, 2018.

[14] N. Halko, P. Martinsson, and J. A. Tropp. Finding
structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions.
SIAM Review, 53(2):217–288, 2011.

[15] D. Hening and D. A. Koonce. Missing data
imputation method comparison in ohio university
student retention database. In Proceedings of the 2014
International Conference on Industrial Engineering
and Operations Management, Bali, Indonesia,
January 7 – 9, 2014, 2014.

[16] Y. Hu, D. Zhang, J. Ye, X. Li, and X. He. Fast and
accurate matrix completion via truncated nuclear
norm regularization. IEEE Trans. Pattern Anal.
Mach. Intell., 35(9):2117–2130, 2013.

[17] P. Huijse, P. A. Estévez, P. Protopapas, J. C.
Príncipe, and P. Zegers. Computational intelligence
challenges and applications on large-scale astronomical
time series databases. IEEE Comp. Int. Mag.,
9(3):27–39, 2014.

[18] A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive
stream resource management using kalman filters. In
Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’04,
pages 11–22, New York, NY, USA, 2004. ACM.

[19] I. Jolliffe. Principal component analysis. Springer
Verlag, New York, 2002.

[20] V. Kalofolias, X. Bresson, M. M. Bronstein, and
P. Vandergheynst. Matrix completion on graphs.
CoRR, abs/1408.1717, 2014.

[21] R. Kennedy, L. Balzano, S. J. Wright, and C. J.
Taylor. Online algorithms for factorization-based
structure from motion. Computer Vision and Image
Understanding, 150:139–152, 2016.

[22] R. H. Keshavan, A. Montanari, and S. Oh. Matrix
completion from a few entries. IEEE Trans.
Information Theory, 56(6):2980–2998, 2010.

[23] R. H. Keshavan, A. Montanari, and S. Oh. Matrix
completion from noisy entries. Journal of Machine
Learning Research, 11:2057–2078, 2010.

[24] M. Khayati, M. H. Böhlen, and P. Cudré-Mauroux.
Using lowly correlated time series to recover missing
values in time series: A comparison between SVD and
CD. In Advances in Spatial and Temporal Databases -

14th International Symposium, SSTD 2015, Hong
Kong, China, August 26-28, 2015. Proceedings, pages
237–254, 2015.

[25] M. Khayati, M. H. Böhlen, and J. Gamper.
Memory-efficient centroid decomposition for long time
series. In IEEE 30th International Conference on Data
Engineering, Chicago, ICDE 2014, IL, USA, March
31 - April 4, pages 100–111, 2014.

[26] H. Kim, J. Choo, J. Kim, C. K. Reddy, and H. Park.
Simultaneous discovery of common and discriminative
topics via joint nonnegative matrix factorization. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Sydney, NSW, Australia, August 10-13, 2015, pages
567–576, 2015.

[27] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, Aug. 2009.

[28] A. Lerner, D. E. Shasha, Z. Wang, X. Zhao, and
Y. Zhu. Fast algorithms for time series with
applications to finance, physics, music, biology, and
other suspects. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Paris, France, June 13-18, 2004, pages 965–968, 2004.

[29] L. Li, J. McCann, N. S. Pollard, and C. Faloutsos.
Dynammo: mining and summarization of coevolving
sequences with missing values. In Proceedings of the
15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, France,
June 28 - July 1, 2009, pages 507–516, 2009.

[30] Y. Li, T. Yang, J. Zhou, and J. Ye. Multi-task
learning based survival analysis for predicting
alzheimer’s disease progression with multi-source
block-wise missing data. In Proceedings of the 2018
SIAM International Conference on Data Mining, SDM
2018, May 3-5, 2018, San Diego Marriott Mission
Valley, San Diego, CA, USA., pages 288–296, 2018.

[31] M. Linardi and T. Palpanas. Scalable, variable-length
similarity search in data series: The ULISSE
approach. PVLDB, 11(13):2236–2248, 2018.

[32] H. Liu, X. Li, and X. Zheng. Solving non-negative
matrix factorization by alternating least squares with
a modified strategy. Data Min. Knowl. Discov.,
26(3):435–451, 2013.

[33] Y. Liu, A. Niculescu-Mizil, A. C. Lozano, and Y. Lu.
Learning temporal causal graphs for relational
time-series analysis. In Proceedings of the 27th
International Conference on Machine Learning
(ICML-10), June 21-24, 2010, Haifa, Israel, pages
687–694, 2010.

[34] A. C. Lozano, H. Li, A. Niculescu-Mizil, Y. Liu,
C. Perlich, J. Hosking, and N. Abe. Spatial-temporal
causal modeling for climate change attribution. In
Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’09, pages 587–596, New York, NY, USA, 2009.
ACM.

[35] J. Luengo, S. García, and F. Herrera. On the choice of
the best imputation methods for missing values
considering three groups of classification methods.
Knowl. Inf. Syst., 32(1):77–108, 2012.

[36] Q. Ma, Y. Gu, W. Lee, and G. Yu. Order-sensitive

13

imputation for clustered missing values (extended
abstract). In 35th IEEE International Conference on
Data Engineering, ICDE 2019, Macao, China, April
8-11, 2019, pages 2147–2148, 2019.

[37] C. Mayfield, J. Neville, and S. Prabhakar. Eracer: A
database approach for statistical inference and data
cleaning. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’10, pages 75–86, New York, NY, USA,
2010. ACM.

[38] R. Mazumder, T. Hastie, and R. Tibshirani. Spectral
regularization algorithms for learning large incomplete
matrices. Journal of Machine Learning Research,
11:2287–2322, 2010.

[39] J. Mei, Y. de Castro, Y. Goude, and G. Hébrail.
Nonnegative matrix factorization for time series
recovery from a few temporal aggregates. In
Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, pages 2382–2390, 2017.

[40] P. Merlin, A. Sorjamaa, B. Maillet, and A. Lendasse.
X-som and l-som: A double classification approach for
missing value imputation. Neurocomputing, 73(7):1103
– 1108, 2010. Advances in Computational Intelligence
and Learning.

[41] K. Mirylenka, V. Christophides, T. Palpanas,
I. Pefkianakis, and M. May. Characterizing home
device usage from wireless traffic time series. In
Proceedings of the 19th International Conference on
Extending Database Technology, EDBT 2016,
Bordeaux, France, March 15-16, 2016, Bordeaux,
France, March 15-16, 2016., pages 539–550, 2016.

[42] F. Monti, M. Bronstein, and X. Bresson. Geometric
matrix completion with recurrent multi-graph neural
networks. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 3697–3707. Curran
Associates, Inc., 2017.

[43] S. Moritz, A. Sardá, T. Bartz-Beielstein, M. Zaefferer,
and J. Stork. Comparison of different methods for
univariate time series imputation in R. CoRR,
abs/1510.03924, 2015.

[44] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming
pattern discovery in multiple time-series. In
Proceedings of the 31st International Conference on
Very Large Data Bases, Trondheim, Norway, August
30 - September 2, 2005, pages 697–708, 2005.

[45] S. Papadimitriou, J. Sun, C. Faloutsos, and P. S. Yu.
Dimensionality reduction and filtering on time series
sensor streams. In Managing and Mining Sensor Data,
pages 103–141. 2013.

[46] N. Radhakrishnan and B. Gangadhar. Estimating
regularity in epileptic seizure time-series data. IEEE
engineering in medicine and biology magazine,
17(3):89–94, 1998.

[47] I. Rodriguez-Lujan, J. Fonollosa, A. Vergara,
M. Homer, and R. Huerta. On the calibration of
sensor arrays for pattern recognition using the
minimal number of experiments. Chemometrics and
Intelligent Laboratory Systems, 130:123 – 134, 2014.

[48] K. Rong, C. E. Yoon, K. J. Bergen, H. Elezabi,

P. Bailis, P. Levis, and G. C. Beroza. Locality-sensitive
hashing for earthquake detection: A case study scaling
data-driven science. PVLDB, 11(11):1674–1687, 2018.

[49] F. Saad and V. K. Mansinghka. A probabilistic
programming approach to probabilistic data analysis.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 2011–2019.
Curran Associates, Inc., 2016.

[50] C. Sanderson and R. R. Curtin. A user-friendly hybrid
sparse matrix class in C++. In Mathematical Software
- ICMS 2018 - 6th International Conference, South
Bend, IN, USA, July 24-27, 2018, Proceedings, pages
422–430, 2018.

[51] N. Shahid, V. Kalofolias, X. Bresson, M. Bronstein,
and P. Vandergheynst. Robust principal component
analysis on graphs. In The IEEE International
Conference on Computer Vision (ICCV), December
2015.

[52] D. E. Shasha. Tuning time series queries in finance:
Case studies and recommendations. IEEE Data Eng.
Bull., 22(2):40–46, 1999.

[53] X. Shu, F. Porikli, and N. Ahuja. Robust orthonormal
subspace learning: Efficient recovery of corrupted
low-rank matrices. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
2014, Columbus, OH, USA, June 23-28, 2014, pages
3874–3881, 2014.

[54] D. Skillicorn. Understanding Complex Datasets: Data
Mining with Matrix Decompositions (Chapman &
Hall/Crc Data Mining and Knowledge Discovery
Series). Chapman & Hall/CRC, 2007.

[55] Soldi, S., Beckmann, V., Baumgartner, W. H., Ponti,
G., Shrader, C. R., Lubi´nski, P., Krimm, H. A.,
Mattana, F., and Tueller, J. Long-term variability of
agn at hard x-rays. Astronomy & Astrophysics,
563:A57, 2014.

[56] D. L. Sun and C. Févotte. Alternating direction
method of multipliers for non-negative matrix
factorization with the beta-divergence. In IEEE
International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2014, Florence, Italy, May
4-9, 2014, pages 6201–6205, 2014.

[57] Q. Tan, G. Yu, C. Domeniconi, J. Wang, and
Z. Zhang. Multi-view weak-label learning based on
matrix completion. In Proceedings of the 2018 SIAM
International Conference on Data Mining, SDM 2018,
May 3-5, 2018, San Diego Marriott Mission Valley,
San Diego, CA, USA., pages 450–458, 2018.

[58] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown,
T. Hastie, R. Tibshirani, David, D. Botstein, and
R. B. Altman. Missing value estimation methods for
DNA microarrays . Bioinformatics, 17(6):520–525, 06
2001.

[59] X. Wang, Y. Chen, S. L. Bressler, and M. Ding.
Granger causality between multiple interdependent
neurobiological time series: Blockwise versus pairwise
methods. Int. J. Neural Syst., 17(2):71–78, 2007.

[60] K. Wellenzohn, M. H. Böhlen, A. Dignös, J. Gamper,
and H. Mitterer. Continuous imputation of missing
values in streams of pattern-determining time series.
In Proceedings of the 20th International Conference on

14

Extending Database Technology, EDBT 2017, Venice,
Italy, March 21-24, 2017., pages 330–341, 2017.

[61] C. M. Yeh, N. Kavantzas, and E. J. Keogh. Matrix
profile IV: using weakly labeled time series to predict
outcomes. PVLDB, 10(12):1802–1812, 2017.

[62] X. Yi, Y. Zheng, J. Zhang, and T. Li. ST-MVL: filling
missing values in geo-sensory time series data. In
Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, pages
2704–2710, 2016.

[63] J. Yoon, W. R. Zame, and M. van der Schaar.
Estimating missing data in temporal data streams
using multi-directional recurrent neural networks.
IEEE Trans. Biomed. Engineering, 66(5):1477–1490,
2019.

[64] H. Yu, N. Rao, and I. S. Dhillon. Temporal regularized
matrix factorization for high-dimensional time series
prediction. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10,

2016, Barcelona, Spain, pages 847–855, 2016.
[65] M. Yue, L. Fan, and C. Shahabi. Inferring traffic

incident start time with loop sensor data. In
Proceedings of the 25th ACM International Conference
on Information and Knowledge Management, CIKM
2016, Indianapolis, IN, USA, October 24-28, 2016,
pages 2481–2484, 2016.

[66] D. Zhang and L. Balzano. Global convergence of a
grassmannian gradient descent algorithm for subspace
estimation. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics,
AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pages
1460–1468, 2016.

[67] S. Zhang. Nearest neighbor selection for iteratively
knn imputation. J. Syst. Softw., 85(11):2541–2552,
Nov. 2012.

[68] X. Zhu. Comparison of four methods for handing
missing data in longitudinal data analysis through a
simulation study. Open Journal of Statistics,
4:933–944, 2014.

15

	Introduction
	Background
	Selected Algorithms
	Matrix Completion Algorithms
	Pattern-based Recovery Algorithms
	Algorithms Implementation

	Experimental Evaluation
	Parameterization
	Accuracy
	Impact of Missing Block Size
	Impact of Sequence Length and Number
	Impact of Number of Affected Series

	Efficiency
	Impact of Sequence Length and Number
	Impact of Missing Block Size
	Synthetic Data

	Recommendations
	Conclusions
	Acknowledgments
	Appendix
	A. High-Impact Implementation Techniques
	B. Reproducibility of Original Results
	C. Complete Parameterization of Selected Algorithms

	References

