Table of Contents

glLabTrie: a data structure for motif discovery with constraints 2
M. Mongiovi*, G. Micale*, A. Ferro, R. Giugno, A. Pulvirenti and D.
Shasha

Author Index 26

SubjectIndex 26

glabTrie: a data structure for motif discovery with
constraints

M. Mongiovi'*, G. Micale?*, A. Ferro®, R. Giugno?®, A. Pulvirenti® and D. Shasha*

1 Semantic Technology Lab, ISTC-CNR, Catania, Italy,
misael.mongiovi@istc.cnr.it
2 Department of Maths and Computer Science, Catania, Italy,
micale@di.unipi.it
3 Department of Clinical and Experimental Medicine, Catania, Italy,
ferro@dmi.unict.it, giugno@dmi.unict.it,
apulvirenti@dmi.unict.it
4 Courant Institute of Mathematical Science NYU, New York, USA
shasha@courant .nyu.edu

Abstract. Motif discovery is the problem of finding subgraphs of a network that
appear surprisingly often. Each such subgraph may indicate a small scale interac-
tion feature in applications ranging from a genomic interaction network, a signif-
icant relationship involving rock musicians, or any other application that can be
represented as a network. We look at the problem of constrained search for motifs
based on labels (e.g. gene ontology, musician type to continue our example from
above). This chapter presents a brief review of the state of the art in motif find-
ing and then extends the gTrie data structure from Ribeiro et al [23] to support
labels. Experiments validate the usefulness of our structure for small subgraphs,
showing that we recoup the cost of the index after only a handful of queries.

Keywords: graphs, motif finding, constraints

1 The Problem and its Motivation

A motif in a graph is a subgraph that appears statistically significantly often. Frequently
occurring motifs may have practical significance. One familiar example is the ubiquity
of feedback networks underlying homeostasis in biological, natural, and even economic
systems. Motifs can also be useful in engineering disciplines such as synthetic biology.
Kurata et al [1] use the frequent motifs found in biological networks as a library for
synthetic biology. In fact Kurata et al pointed out that there are often motifs that behave
as a single node in a larger network motif, just as an AND gate in an electronic circuit
built out of transistors and resistors acts as a single node in a logic diagram. So, there
may be motifs at different levels of abstraction. For the purposes of our chapter, we will
take the usefulness of motifs for granted and talk about how to discover such motifs
efficiently.

* These authors contributed equally to this work

Further, we will be particularly concerned with graphs whose vertices have labels.
A constrained labeled motif query is to find a statistically significant motif satisfying
some constraint on the labels.

In the sequel we will define our notion of statistical significance, but informally, this
will entail a simulation of the following process: 1. find many random variations of the
input graph G where each random variation preserves the degree counts of each node
in G and preserves the number of edges linking nodes having each pair of labels. 2. See
how often a labeled topological structure of interest is found in those random graphs. If
infrequently, then the labeled topological structure is significant in G and constitutes a
motif.

The computational challenge in motif finding is that the number of possible sub-
graphs could, depending on the graph, grow exponentially with the size of the subgraph.
For sparser graphs, the growth may be less dramatic, but still rapid.

For that reason, we use data structures to make this fast. Our work builds directly
on the gTrie data structure developed by Ribeiro [2] which is why we call our structure
gLabTrie.

This chapter begins with a discussion of the data structure and algorithm we will
use. We then follow with a discussion of how to find rare structures. Finally, we give an
experimental evaluation of our structure and algorithms.

2 glabTrie structure

2.1 Preliminaries

For simplicity, our discussion will center on undirected graphs, although our method
works with directed graphs as well. Given a graph GG, we denote by V(; its set of vertices,
by E¢ its set of edges, by L its alphabet of labels and by [a function that assigns a
label to each vertex. We also write G = (Vg, Eg, La, lg). A subgraph G’ of a graph
G (denoted by G’ C G) is a graph that contain a subset of vertices Vv C Vg of G and
all edges of G whose endpoints are both in V.

An isomorphism between two graphs G; and G is a one-to-one mapping ¢ :
Ve, — Ve, between vertices, which preserves the structure, i.e. (u,v) € G <
(p(u), (v)) € G, and the labels, i.e. lg(u) = lg(p(u)). If there is at least an iso-
morphism between (G; and G5, we say that they are isomorphic and write G; ~ Gs.
An automorphism in G is an isomorphism between G and itself. Every graph admits
at least one automorphism (where each vertex corresponds to itself). Typically, a graph
can have many automorphisms. We abuse the notation and write p(G), with G C Gy
to denote the subgraph of G5 that corresponds to G according to ¢ (i.e. the subgraph
composed of vertices p(v) with v € G and edges (¢(v1), @(v2)) with (v1, v2) € G).

In what follows we use the terms input network (denoted by G), topologies (denoted
by (3), i.e. unlabeled graphs that represent motif structures and topology instances (de-
noted by g), i.e. subgraphs of G that accommodate certain topologies. A labeled topol-
ogy is an undirected (vertex-) labeled connected graph G. An unlabeled topology is a
labeled topology stripped of its labels. A labeled topology that occurs frequently in G
is also called motif. An occurrence g of a topology G is a connected subgraph of G that

is isomorphic to G. So, a given topology may have zero, one, or more occurrences in a
graph.

Checking whether two (labeled or unlabeled) topologies are isomorphic is an ex-
pensive task that requires finding an isomorphism between the topologies or proving
that no isomorphism exists. In motif discovery this operation has to be performed fre-
quently to map a topology to the network subgraphs that conform to that topology. To
simplify this operation, we map a graph to its canonical form, i.e. a string that uniquely
identifies a topology and is invariant with respect to isomorphism. In other words two
isomorphic graphs should have the same canonical form, while two graphs that are not
isomorphic should have different canonical forms. Computing the canonical form of a
graph may be expensive, but once it is computed, the isomorphism check entails simple
string comparison.

An easy way to find a canonical form for an unlabeled subgraph is to consider
all possible adjacency matrices of that subgraph (by reordering vertices in all pos-
sible ways), linearize them into strings (by putting all rows of an adjacency matrix
contiguously in a unique line) and considering the smallest string (with respect to a
lexicographic order). This simple approach guarantees invariance with respect to iso-
morphism since two isomorphic graphs have the same adjacency matrix except for their
rows/columns order. The approach can be generalized to labeled topologies by includ-
ing the sequence of labels in the string. Since enumerating all possible vertex orders is
impractical, more efficient methods have been defined. A widely used method is nauty
[22].

The canonical form of a graph is associated to a canonical order of vertices, i.e. the
order of vertices that produces it. Note that a canonical form may be associated with
more than one canonical order since a graph may have several automorphisms.

2.2 Problem definition

We aim to support label-based queries in which the user specifies a set of constraints
and the system returns all topologies that satisfy the constraints. In our framework, a
user specifies a frequency threshold, a p-value threshold and a bag (multiset) of labels
that the motifs must contain. An example query would be: “Give me all labeled topolo-
gies of size k that have at least two A labels and one B label, occur at least f times and
have a p-value smaller than p.” We also want the query processing to be fast, so when a
user is not satisfied with the response, he or she can change the constraints and quickly
get a new response. We accept a slow (but still reasonable) off-line preprocessing step
in exchange for fast query processing.

Formally, we define a label-based query (more simply a query) as a quadruple) =
(C,k, f,p), where C is a bag of labels (a bag, also called a multiset, is similar to a set,
but an element may occur more than once), k is the requested size of motifs, f is a
frequency threshold and p is a p-value threshold.

Definition 1. Label-based query processing. Given a network G and a query Q =
(C,k, f,p), find all labeled topologies T with number of vertices (size) k, whose num-
ber of occurrences in G is at least f and whose p-value is no more than p.

We solve the defined problem in two steps. During an offline preprocessing phase
we census the input network to find all labeled motifs up to a certain size K, and or-
ganize them in a suitable data structure (that we call the Topolndex). Later, during the
online query processing phase, we probe the Topolndex to efficiently retrieve motifs
that satisfy the query constraints.

In the remaining part of this section we describe how we extend existing approaches
to support labeled motifs and the data structure used for quickly processing queries.
Since our approach has been implemented on top of G-Trie, we first give an overview of
G-Trie and our subsequent description will refer to it. However, our approach is general
in that it can be applied on other network centric algorithms for motif discovery.

2.3 G-Trie method for unlabeled motif discovery

The main data structure of a network-centric method for motif discovery is a key-value
map (hash table or search tree) that associates each unlabeled topology (up to a certain
size) to a counter. Unlabeled topologies may be represented by their canonical form, so
that the isomorphic check is efficient. G-Trie [23] generalizes tries to graphs. A gTrie
organizes a set of unlabeled topologies in a multiway tree in such a way that subgraphs
correspond to ancestors. An example of gTrie that stores all unlabeled topologies of
size up to four vertices is given in Fig. 1.

@)

)

g
W—I—V
o o

23] |&o) (58] (2] (2] (528

Fig. 1. Example of a gTrie with K = 4. The data structure stores all unlabeled topologies with
up to 4 vertices. A similar, more detailed example can be found in [23]

Each node’ of the gTrie stores information associated to the corresponding topol-
ogy, typically a counter (not shown in the figure). A gTrie can be seen as a map that
associates topologies to counters (similar in principle to a hash table or a binary tree).

To compute p-values, the GTrie system counts the number of occurrences of all
unlabeled topologies in the input network and compares them with the corresponding
number of occurrences in random networks with similar properties. The overall algo-
rithm is in the figure marked Alg. 1.

5 We use the term node to refer to parts of our data structures and vertex to talk about the graphs
in which we find patterns.

Require: network, size K, frequency threshold f, p-value threshold p, number of
randomizations r {returns the set of motifs with frequency > f and p-value < p}
initialize g7'rie with depth K
call census(network, gT'rie)
initialize map_count
fori=0...rdo

rand_net = randomize(network)
initialize gT'rie_rand with depth K
call census(rand-net, gT'rie_rand)
for all ¢ € topologies(gTrie_rand) do
if gTrie_rand[t] > gT'rie[t] then
map_count[t] = map_count[t] + 1
end if
end for
end for
for all ¢ € keys(map_count) do
pval = map_count|t]/r
if gTrie[t] > f and pval < p then
output ¢, gT'rie[t], pval
end if
end for

Algorithm 1: Network-centric algorithm for unlabeled motif discovery: first find
topologies in the input network that meet the frequency threshold, then compare
the number of occurrences with the number of occurrences in each of a set of
random graphs to evaluate the p-value of each such topology.

First a gTrie with all unlabeled topologies up to size K is built in the input network.
Then the core procedure, census(), which takes as input a network and fills the gTrie®
with the correct counting, is called. This procedure enumerates all subgraphs of the
network one by one and increases the counter of the corresponding topology. Then, a
map of counters (map_count) is initialized. This map is a hash table that associates
topologies (more precisely canonical forms of topologies) to counters and is used to
store the number of random networks in which a given topology occurs more than in
the input network. Next, a number of randomizations of the input network are computed
and census() is executed on each of them. For every topology found, if its number of
occurrence is greater than the one in the input network, its counter is increased. Function
topologies(gTrie) returns all topologies stored in g7'rie while gTrie[t] refers to the
counter associated with topology ¢ in g7 rie. At the end, frequencies and p-values are
computed and all topologies that satisfy the input constraints are returned. In the next
paragraphs we give more details about the core procedure, census(). Further details on
the other parts can be found in [23].

The algorithm for graph census (procedure census()) is detailed in Alg. 2. The al-
gorithm is based on the recursive procedure M atch that matches paths of the gTrie with
all possible subgraph of the input network. At the beginning, the procedure M atch is
called on the root of the gTrie and with an empty subgraph (V,,s.q = 0). The proce-
dure picks one vertex at a time and starts to grow a subgraph from that vertex. Every
time a new child of a gTrie node is explored, all neighbors of previously taken ver-
tices (N (Vyseq)) are considered and, if matchable, associated with the current node and
added to the current subgraph (V,s.4). When a leaf node is considered, the node counter
is increased. This means that a new subgraph isomorphic to the topology associated to
that node was found.

To perform a correct counting, every subgraph should be counted exactly once.
Without symmetry breaking conditions, the Match procedure would find some sub-
graphs multiple times. Indeed, if a subgraph has more than one automorphism (isomor-
phism between it and itself) there are multiple ways to obtain it. For instance, consider
a network that contains a triangle with vertex ids 1, 2 and 3. The enumeration would
produce the same triangle six times with the following sequences: (1,2,3), (1,3,2),
(2,1,3),(2,3,1),(3,1,2) and (3, 2, 1). Although multiple copies may be discarded by
a post-processing step, this would require storing all subgraphs, which would be expen-
sive for large subgraphs. Instead, the census algorithm considers a carefully designed
set of symmetry breaking conditions that guarantees that each subgraph is enumerated
exactly once. In the specific example the breaking conditions impose that the first ver-
tex’s identifier must be smaller than the second one’s, and the second vertex’s id must
be smaller than the third one’s. Thus only (1, 2, 3) would be a valid sequence of vertices
for the triangle. Details on how symmetry breaking conditions are computed are given
in [23].

® In general the overall algorithm can work with any data structure that associates keys to values
(e.g. hash tables) in place of gTrie. Keys are canonical forms of topologies, while values are
counters.

Require: network, gTrie {returns the gTrie filled with the number of occurrences of each
topology. }
Match(gTrie.root, D)
return g7'rie

Procedure Match(node, Vysed)
if Visea = () then
Veand < V (network)
else
Veand — {v € N(Vysea) : v satisfies symmetry breaking conditions }
end if
Ve
for all v € V.41q do
if v is connected with V4.4 as defined in node then
V —Vu{v}
end if
end for
for allv € V do
if isLeaf(node) then
node.counter+ = 1
end if
for all children c of node do
Match(c, Vysea U {v})
end for
end for
End Procedure

Algorithm 2: Census algorithm for unlabeled motif discovery

2.4 glabTrie data structure for labeled motif discovery

A naive extension for handling labeled networks would consist in incorporating labels
into the gTrie nodes. A node would represent a labeled topology as opposed to an un-
labeled topology. However, this approach would cause an explosion of the number of
gTrie nodes as the number of labels grows. Each node has to maintain both connectiv-
ity and label information and hence the same connectivity information would be stored
multiple times.

To optimize memory, we resort to a different approach that consists in combining
the canonical form of the unlabeled topology with the sequence of labels. This approach
introduces the problem of determining the order of labels because the canonical order
of unlabeled topologies is not sufficient. To clarify this point let us consider the two
subgraphs in Fig. 2. Numbers represent the canonical order of vertices, while letters
represent labels. Note that the order between 2 and 3 is ambiguous (1-3-2 would be a
valid order as well) since by exchanging them we obtain the same unlabeled canonical
form. The two labeled topologies are clearly isomorphic. However, the label sequences
in the canonical orders are different (ABC vs. ACB).

(8)?2 (0?2
1(a) 1(a)
©3 (8) 3

Fig. 2. Example of two unlabeled canonical orders that produce different sequence of labels on
isomorphic graphs. The order is given by numbers. The two corresponding sequences of labels
are ABC and ACB.

To guarantee that isomorphic labeled topologies have the same label sequence, we
solve the ambiguity in the canonical ordering by ordering labels (e.g. in alphabetic
order) and using this order to break ties. This is equivalent to choosing, among all
possible canonical orders (of the single canonical form) of an unlabeled topology, the
one that corresponds to the lexicographically minimum sequence of labels. We refer to a
canonical order that satisfies this condition as a lexically ordered canonical order. Note
that network-centric tools (e.g. gTrie) solve the ambiguity by considering the order of
vertex ids to break the ties. Therefore, we just need to ensure that the order of vertex
ids is consistent with the order of labels. This can be done by reassigning vertex ids of
the input network so that vertices with smaller labels are assigned with smaller vertex
ids (i.e. v < wif lg(v) < lg(u)). We call a graph that satisfies this condition a lexically
numbered graph.

The procedure described above solves the problem in Fig. 2. The order of the second
topology is forced to be as in Fig. 3 and hence both label sequences would be ABC. Now
we prove that this procedure always gives the correct result. Specifically, we prove that:

— if two labeled topologies are isomorphic then their associated labeled canonical
forms (topology + label sequence) are equal;

10

2 (©)3
1(a) 1(a))
(©) 3 2

Fig.3. By considering lexically ordered canonical orders we can guarantee that isomorphic
graphs are associated with the same sequence of labels. In this example both sequences of la-
bels are ABC.

— given two labeled topologies, if their corresponding labeled canonical forms are
equal, then they are isomorphic (including their labels).

The second condition is trivial. Indeed the canonical order of two topologies defines
an association between vertices that preserves both the structure and the label sequence.

In order to prove the first condition, we need to prove that if two labeled topolo-
gies are isomorphic then their corresponding sequence of labels coincide. In fact, the
labeled canonical form is computed by combining the unlabeled canonical form with
the sequence of labels. Since by stripping off the labels two isomorphic topologies re-
main isomorphic, the two unlabeled canonical forms coincide. Therefore we need to be
concerned only about the label sequences.

Lemma 1. Let Gy, G2 be two labeled subgraphs of a lexically numbered graph and
S1, Sa be the sequence of labels given by their lexically ordered canonical order. If G,
and G5 are isomorphic then S1 = Ss.

Proof: by contradiction. Suppose S; # Sa. Without loss of generality consider
S1 < Ss. Since GG7 and G9 are isomorphic, there is at least an isomorphism between
G'1 and (G5 (that is a one-to-one association between vertices of G and vertices of G5).
We can use this isomorphism to construct an order of vertices for G that is equivalent
to the canonical order of . This is a valid canonical order for G5 since it produces the
same unlabeled canonical form. Moreover this order corresponds to the same sequence
of labels as S. That constitutes a valid canonical order for G5 that produces a sequence
of labels smaller than Ss. This contradicts the hypothesis that S; was obtained by a
lexically ordered canonical order. QED

We modify the G-Trie algorithm to support labels. The main change concerns the in-
formation associated with gTrie nodes. Specifically, we substitute the counters of gTrie
nodes with hash tables that associate label sequences to counters. To retrieve the counter
of a labeled topology, we first look up the entry corresponding to its unlabeled topol-
ogy, then we look up the counter associated with the label sequence in the corresponding
hash table.

In summary, we apply the following changes to G-Trie:

1. Introduce a first step that reassigns ids to vertices of the input network so that
vertices with smaller labels are assigned with smaller vertex ids (to create lexically
numbered graphs);

11

2. Substitute the counters of gTrie nodes with hash tables that associate label se-
quences to counters;

3. Change the census procedure to increase the counters of labeled topologies as op-
posed as unlabeled ones.

Since the major changes are in the census algorithm we focus on the census pro-
cedure for labeled motif discovery (the overall algorithm for the labeled case is quite
similar to that of the labeled case, but the labeled case requires the addition of the initial
vertex ids assignment step). The census algorithm is shown in Alg. 3.

Require: labeled network, gTrie {returns the gTrie filled with hash tables with the number
of occurrences of each labeled topology. }
Match(gTrie.root,)
return g7'rie

Procedure Match(node, Vysed)
if Visea = 0 then
Veand — V (network)
else
Veand < {v € N(Visea) : v satisfies symmetry breaking conditions}
end if
V20
for allv € V.4nq do
if v is connected with V54 as defined in node then
V—VuU{v}
end if
end for
forallv € V do
if isLeaf(node) then
label_seq «— labels of V,,s.q in lexically ordered canonical order
node.hash_table[label _seq]+ = 1
{now we have a hash table as opposed as a counter}
end if
for all children c of node do
Match(c, Vysea U {v})
end for
end for
End Procedure

Algorithm 3: Census algorithm for labeled motif discovery

2.5 An index for querying motifs

During the preprocessing phase we find all motifs up to size K (a pre-defined parame-
ter) in the input network as described previously. We set neither a frequency threshold
nor a p-value threshold, so all labeled topologies occurring in the input network are

12

considered. We limit the search to motifs having size K or less. For simplicity of expo-
sition, in the following, we consider only motifs of size exactly K, although our method
handles motifs with size smaller than K, as we explain later. We put all extracted la-
beled topologies in a data structure, which we call the Topolndex, that facilitates later
retrieval. An example of a Topolndex for K = 3 and two labels (A and B) is depicted
in Fig. 4.

Labeled Labeled Labeled Labeled
topologies with | | topologies with | | topologies with || topologies with
frequency and frequency and frequency and frequency and

p-value p-value p-value p-value

Fig. 4. The Topolndex. Our data structure for processing label-based queries

The Topolndex consists of a DAG, which embodies the super-multiset relation be-
tween sets, and a collection of lists of topologies contained in the leaves of the DAG.
Specifically, nodes of the DAG represent bags of labels (label constraints) and an edge
is drawn between two nodes u and v if v is super-multiset of u (i.e. it contains all la-
bels in w with multiplicity below or attained to the one in v), and v has exactly one
label more than u. The edge is associated with the label that is different between u and
v. Each leaf (node that does not have any outgoing edges) contains a list of all labeled
topologies that satisfy the label constraints associated with the leaf, with the topologies’
frequencies and p-values.

The described Topolndex enables fast lookup of a bag of labels and then fast re-
trieval of associated topologies (by exploring the part of the DAG reachable from the
corresponding node). The DAG shown in the example in Fig. 4 is complete, i.e. it con-
tains all possible nodes up to depth 3, but in general it may be not need to be complete.
For instance, if there are no topologies with labels ABB and BBB, the nodes ABB, BBB
and BB are not included in the DAG, thus saving time and space.

Building the TopoIndex The building procedure is given in Alg. 4. First we group
the topologies by their label bags. Then, for each label bag we create a leaf and store it
in a hash table that associates label bags with the corresponding nodes. We create the
other nodes of the DAG by calling create_dag() (Alg. 5), which recursively removes
one label at a time from nodes and creates nodes up to the root.

Query processing Given the TopoIndex described above, and a query @ = (C, k, f, p)
with k& = K, query processing is quite straightforward. To perform a query Q =

Require: set 7" of labeled topologies of size K with associated frequency and p-value
{returns the root of the TopoIndex data structure}
group 1 by label bags
for each label bag [b and its corresponding set of topologies 17, do
initialize node {create a leaf node}
node.label_bag = lb
node.topologies = Ty,
hash_table[lb] = node
call create_dag(node, hash_table)
end for
return hash_table[{0}]

Algorithm 4: Building the Topolndex

Require: a node node and the hash table of nodes hash_table
if node.label _bag == () then
return
end if
for each label [in node.label _bag do
lb_parent = node.label bag — {I}
if Ib_parent € keys(hash_table) then
parent = hash_table[lb_parent]
else
initialize parent {create a new node}
parent.label_bag = lb_parent
hash_table[lb_parent] = parent
call create_dag(parent, hash_table)
end if
parent.children[l] = node
end for

Algorithm 5: Recursive procedure create_dag for building the Topolndex

14

(C,k, f,p) with k = K, first look up the node n of the DAG associated with the set of
labels in C, then explore all nodes of the DAG reachable from n. Finally, retrieve all
topologies associated with reachable leaves and return the ones whose frequencies are
greater than or equal to f and whose p-values are less than or equal to p.

The Topolndex can be changed to support queries of size £k < K by associating
internal nodes at depth k to labeled topologies of size k& (forall k = 1... K — 1).
Answering queries with £ > K is the subject of our current work.

3 Alternative Methods of Calculating Statistical Significance

One might ask why we care about statistical significance (reflected in the p-value cal-
culation in the previous section). Studies have shown that in many biological networks,
small sub-networks of real networks that are much more frequent than random net-
works of the same size [3, 4] often act as functionally important modules. For example,
in [3, 4] the authors identified motifs representing positive and negative autoregulation
(subnetworks of one node and one edge), coherent and incoherent feed forward loops
(subnetworks of 3 nodes and 3 edges), single-input modules (one node connected to
few or many other nodes) and dense overlapping regulons (many nodes connected to
few or many other nodes). One function of a coherent feed forward loop formed by a
target Z and two transcription factors X and Y is the logic operation AND of a circuit:
Z is activated by both X and Y, however Y is also regulated by X . Motif functionality
has also been investigated with respect to evolution [6, 7] showing that motifs with the
same topologies can have important functionality in different conditions.

That explains our interest in finding statistically rare substructures. This section
discusses approaches to establishing statistical significance.

Formally, given a graph G = (V, E) (directed or undirected) with n vertices whose
ids are uniquely labeled with integers from 1 to n. A connected subgraph induced by
a set of vertices of cardinality k (a topology for short) is called a motif when it occurs
statistically significantly more often than the same subgraph in randomized networks
derived from the original network [5].

The general method to find motifs given a real network consists of following steps:
(i) generate a large set of random networks that share the characteristics of the real
network; (ii) find candidate topologies, consisting of subgraphs in the real network; (iii)
count the occurrences of these topologies (iv) assess the significance of each topology
by computing its number of occurrences in each of the random networks.

The first step creates networks that have the same number of nodes and edges of
the real network. Moreover, each node in the generated network maintains its original
number of edges leaving and entering the node [8]. Next, by proceeding in an exhaustive
manner, an algorithm can define all possible topologies of subgraphs with n nodes and
count all the occurrences of such subgraphs in the real and in the random networks [5].

The general method consists of two expensive steps: the generation of a large num-
ber of networks and the application of subgraph isomorphism algorithms to compute
the number of occurrences. Over the last decades, researchers have worked to reduce
the expense of both steps. We list the main results in the following sections.

15

3.1 Quasi-analytical methods to assess the statistical significance of a topology

The general method described above evaluates the significance of the topology through
the computation of a z-score using a Gaussian assumption or a p-value using a resam-
pling approach [4,5,9, 10]. The Gaussian assumption may not apply to a particular
application, but a reliable p-value requires a large number of random graphs whose
analysis turns out to be computational expensive (by far more expensive than analyz-
ing the target network alone). Recently, researchers have investigated the possibility
of analyzing the distribution of the topologies, both non-induced and induced, from a
theoretical and analytical point of view.

Approximation methods, based on the Erdos-Renyi model, have studied the asymp-
totic normality of the distribution of the count of the topologies [11]. Unfortunately, the
Erdos-Renyi random model does not apply to many networks of interest, such as bio-
logical networks [12]. Alternative reference models include the fix degree Distribution
(FDD) [8], a variant of the FDD called Expected Degree Distribution (EDD) [13] and
the Erdos-Renyi Mixture for Graphs ERMG [13].

In the FDD model, the generated random graphs have the same degree distribution
as the nodes of the real network. The EDD model generates random graphs whose de-
grees follow a given distribution. Conditional to the distribution of node degrees, the
probability of edges is modeled as independent and exists with a probability propor-
tional to the product of the degree distributions of the involved nodes. In the ERMG
model, the nodes are spread among (@ hidden classes with respective proportions
a1, -+ ,aq. The edges are independent conditional on the class of the nodes. The con-
nection probability depends on the classes of both nodes.

It has been also shown that the use of the Compound-Poisson distribution [14] in
the Erdos-Renyi random model allows the accurate approximation of the number of
rare topologies [13]. In [13] the authors propose a model for the exact calculation of the
mean and variance under any model of exchangeable random graphs (exchangeability
means that the probability of occurrence of a topology does not dependent on its posi-
tion in the graph, i.e., on the topological structure of the neighborhood of the topology).
Furthermore, the authors have shown that the Polya-Aeppli distribution (also known as
the Poisson Geometric distribution which is a special case of the Poisson-Compound
distribution) is a good model for the distribution of the count of the topologies (both
induced and non-induced) and leads to a more accurate p-value than a Gaussian model
for the graphs of many applications. The reason is that the Geometric-Poisson distribu-
tion is particularly suitable for describing the number of events that occur in clusters,
where a Poisson distribution describes the number of clusters and the counts of events
within a cluster follows a geometric distribution. Here, this fits the case when distinct
topologies can share nodes and edges (i.e. clumps) [13]. In fact, the authors show that
when the number of clumps has a Poisson distribution with mean A and the sizes of the
clumps are independent of each other and have a Geometric distribution G(1 — a), the
number of observed events X (topologies) has a distribution P(\,a) and leads to an
estimate of the number of occurrences of a given topology.

So far, our discussion has concerned label-free (also known as color-free) networks.
Schbath et al. [17] propose an analytical model for the computation of p-values for col-
ored patterns. A colored pattern is a topology having a given multiset of colors (vertex

16

labels). For example, a star of size 5 having 3 Bs and 2 Cs. An occurrence of the pattern
is defined as a connected subgraph whose labels have a match with the multiset. With
respect to our definition of motif the one of Schbath et al has no constraints on both the
topology and the connections of labels.

Schabat et al. define the analytical formulas for the mean and variance of the number
of colored topologies by using the Erdos-Renyi model. Thanks to this, they were able
to derive a reliable z-score for each topology. The authors then model the distribution
of the count of coloured topologies under the Erdos-Renyi model.

3.2 Random Graph Methods

Whereas the previous subsection discussed analytical method, no analytical method (as
of this writing) can discover p-values under our model of query. So we turn to random
graph methods. Improving random graph methods entails intelligent searching through
graphs to enumerate topologies. The basic idea is to start from single nodes and ex-
pand them with their neighbourhoods in a tree like fashion, checking at each step that
each subgraph in the tree appears only once and that it does not violate the color con-
straints of the query. This procedure can be further improved by sampling the network
[3] or the neighbourhoods in the expanding phases [11]. Alternatively, Grochow and
Kellis [18] used subgraph enumeration and symmetry breaking to avoid the search for
automorphisms of the subgraphs occurrences. We now give some examples of the state-
of-the-art algorithms upon which we build our structure.

The ESU algorithm [11] enumerates all subgraphs of size k by starting from a root
vertex v of the graph and computing the occurrences of the topology by extending
it node by node. The algorithm uses the concept of exclusive neighborhood which is
defined as follows. For a subset V' C V, its open neighborhood N (V/) is the set
of vertices in V' \ V' which are adjacent to at least one vertex in V'. For each node
v E V\V', the exclusive neighborhood with respect to V' and denoted by Nezel (v, V'),
consists of all vertices that neighbours of v but are not in V.U N (V).

The key idea of the algorithm is to add into the extension set of v, called Vg tensions
only those vertexes satisfying the two following properties: (i) their vertex ids must be
greater than v; (ii) must be neighbors only to the newly added w and not already in
Vsubgraph (.. they must be in N (w, Vsybgraph))-

Its randomized variant, Rand-ESU, introduces an option that performs a uniform
sampling in the graph, thus avoiding the need to explore it all. The algorithm is essen-
tially the same as the original one with the exception that the recursion is carried out
with a certain probability that decreases with the depth of the enumeration. In practice,
the probability is high in the first steps of the recursion and then decreases as the size
of the subgraphs to be explored increases.

The sampling in RAND-ESU is unbiased and is quite simple to implement. On the
other hand, RAND-ESU gives only an estimate of the number of occurrences.

Graph mining algorithms [19] find frequent subgraphs in a database of graphs or in
a single large graph. A subgraph is frequent if its support (occurrence frequency) in a

e T T

6 3 {13.42,3.4} {213,518 {3101 {{4n0} {5h(F ({610}

{{1.2}, {3 451 {1, 3} 483 {140 {2, 3} {5.61 {{1.5L{}}

{“23”456” }\. }% & A

’ee @e 5

Fig. 5. The ESU tree for generating all subgraphs of k=3 nodes

given dataset (or in a graph) is no less than a minimum support threshold. Computing
the statistical significance of such topologies is done by simulation, as described above.

In this chapter, we consider the problem of searching for topologies of labelled
graphs. However, there are several possible definitions of labeled topology.

In [17], the authors define a potential k-colored motif to be any connected subgraph
of k nodes containing a specified multiset of colors (defined on the nodes). The mo-
tif is “’potential” because its statistical significance may not meet a threshold. In this
case, different topologies with the same labels define the same motif. Adami et al [20]
consider the definition of colored motif as above, and use a measure based on entropy
to determine the significance. In [11] and [21], the authors use the definition of mo-
tifs colored on both nodes and edges having a specific topology. [11] is based on the
ESU algorithm, whereas Ribeiro et al [21] introduce a version of GTrie capable to find
colored motifs.

In this chapter, we adopt the motif definition introduced in [21].

Definition 2. Let G be a labeled graph. Let m(V,,, E,, LV,,, LE,;,) be a subgraph of
G with V,,, nodes and E,, edges, where LV,, and LE,, are two sets of colors repre-
senting the labels of nodes and edges respectively. Let ¢ be the number of isomorphic
occurrences of m in G, and let o be a critical value. Let G g be a random variant of G
obtained by applying the edge shuffling method based on the Fixed Degree Distribution,
and let cr be the number of occurrences of m in the random variant G r. We say that m
is a motif of G if, by applying a permutation test using k random variant of G, Gg; (k
= 500 usually), M < a, where #(cr,; > c) is the number of times the number
of occurrences of m in G ; is greater than in G.

Because there is no analytical way to compute the significance of such a network
motif yet, we will use the simulation on the random generated networks to establish the

18

significance of colored network topologies. Algorithm 6 shows the implementation of
a permutation test.

Require: network GG, candidate topologies m1, mas, - - - , my, ¢; number of occurrences of
m; in G, number of iterations k, critical value « {returns the p-value of topology m; }
S5 = 0

forj=1,...1do
fori=0...kdo
GRr,i = randomize(Q)
cr,j ‘= number of occurrences of m; in Gr.i;
forj=0...ldo
ifCRyj > Cj then
S;++
end if
end for
end for
end for
forj=0...0do
output p-value of topology m; is s; /k
end for
Algorithm 6: Randomized Graph Test to Discover p-values

As a future research direction, we will extend the analytical approach of [17, 13] to
compute the significance of topologies given a multiset of colors.

4 Experiments

glabTrie has been tested on a dataset of social, communication and biological net-
works. All experiments has been performed on the following configuration: Intel Core
17-2670 2.2Ghz CPU with a RAM of 8§ GB. Tab. 1 describes the features of the selected
networks.

Table 1. Networks used for experiments.

Name Type Nodes Edges Reference

FLIGHTS undirected 2,939 15,677 [24]
BLOGS directed 1,224 16,715 [25]
PPI undirected 9,506 37,054 [26]
DBLP directed 12,591 49,728 [27]
FOLDOC directed 13,356 120,239 [28]
INTERNET undirected 20,305 42,568 [29]

19

FLIGHTS is a network extracted from Openflights.org (http://openflights.org), repre-
senting all possible air routes between different airports around the world in 2011 [24].
BLOGS is a directed network of hyperlinks between weblogs on US politics of 2004
[25]. PPI is a protein-protein interaction (PPI) network in human, taken from HPRD
database [26]. DBLP is the citation network of DBLP, a database of scientific publica-
tions, where each node in the network is a publication and edges connect two citations
A and B iff A cites B [27]. FOLDOC is an oriented semantic network taken from the
on-line computing dictionary FOLDOC (http://foldoc.org), where nodes are computer
science terms and edges connect two terms X and Y iff Y is used to explain the mean-
ing of X [28]. INTERNET represents the business relationships between autonomous
systems (ASes) of Internet in 2005 [29].

Nodes of each network have been annotated with the following labels. In FLIGHTS,
airports have been associated to one of the five continents. In BLOGS, nodes have been
classified depending on their political leaning (liberal and conservative). For the la-
beling of nodes in PPI, we used Gene Ontology (GO) [30], a hierarchical dictionary
of terms related to biological processes, components and functions, which have been
extensively used for the analysis of biological networks so far [31,32]. We annotated
proteins with GO processes up to the first level of the hierarchy yielding 11 nodes labels.
Ten of them represent specific kinds of biological processes (whole-organism process,
metabolism, regulation, cellular organization, development, localization, signaling, re-
sponse to stimulus, biological adhesion and reproduction). A special label representing
the generic biological process has been associated to proteins for which we did not
have GO annotations. DBLP nodes has been annotated with different kinds of publica-
tions (articles, inproceedings, proceedings, books, incollections, phd thesis and master
thesis) or "www” if the node refers to a cited website. INTERNET ASes have been
partitioned into seven classes (large ISPs, small ISPs, customers, universities, internet
exchange points, network information centers, not classified) according to the taxon-
omy described in [33]. Computing terms in FOLDOC have been labeled according to
their domains (jargons, computer science, hardware, programming, graphics and mul-
timedia, science, people and organizations, data, networking, documentation, operating
systems, languages, software, various terms).

We compared the no-index version of gl.abTrie with the index-based approach. We
run our algorithm using default randomization parameters (N,q,q = 100, p = 0.01 and
f=2.

The performance of gl.abTrie has been evaluated with respect to three parameters:

a) m: the motif size, i.e. the number of its nodes;

b) c: the number of motif constraints, i.e. the number of specified node labels in the
query;

¢) [: the number of labels in the input networks.

For tests a) and b) we used real labels, while in case ¢) we ran our algorithm with
randomly assigned labels. To measure the influence of these parameters, we varied the
parameter of interest and assigned default values to the other ones (m = 4, ¢ = 4 and
[= 2). For each test, we ran glabTrie on a set of 10 random queries. In the experiments
with real labels, label constraints for random queries were generated according to the
frequency of a node label: the more frequent a label x, the higher the probability that

20

x is added as a label constraint to the query. In the tests with artificial labels, label
constraints were added to the queries according to the uniform distribution of node
labels.

Tab. 2 reports the running times for building indexes for motif of size m up to 4 in
networks annotated with real labels. In all cases, the performance of glLabTrie strongly
depends on the size of the network, its orientation (undirected graphs contain more
instances of a certain topology on average) and the number of labels. Most of the time
is spent in storing all the motif occurrences of a given size into the database. The number
of occurrences increases exponentially with m.

Table 2. Running times (minutes) to build indexes on varying motif size.

Network m=3m =4

FLIGHTS 8.59 245.39
BLOGS 7.78 566.83
PPI 21.72 425.59
DBLP 3091 121191
FOLDOC 46.28 1486.59
INTERNET 87.48 40605.23

Tab. 3 shows the results of the comparison between the no-index and the index-
based approach of glLabTrie on querying motifs of different sizes, up to size 4. For each
network and each motif size, we reported the mean and the standard deviation. In both
cases, the running time includes the time needed to retrieve all the subgraphs matching
a given query.

Table 3. Running times (sec) for querying motifs of different size with no-index and index-based
approach.

Network m No-index Index
FLIGHTS 3 333.02 +4.71 0.01 £0.01
4 364.81 £ 38.70 0.56 £ 0.86
BLOGS 3 155.36 £ 2.27 0.08 £0.15
4 960.07 £ 159.01 1.44 4+ 0.54
PPI 3 872.68 £21.77 0.01 £0.01
4 866.10 = 5.17 0.06 = 0.10
DBLP 3 553.46 £ 4.02 0.11 £0.09
4 882.63 4+ 152.05 6.28 + 5.06
FOLDOC 3 1290.23 + 8.45 0.02 £0.01
4 1308.40 + 12.55 0.75 £ 0.22
INTERNET 3 2116.65 £6.38 0.70 £ 2.04
4 2649.60 £ 1305.87 670.22 £ 200.59

21

The results show (unsurprisingly) that the index-based approach is much faster
(100s of times) than having no index. We define ¢,,;, to be the minimum number of
query operations required to recoup the time cost of building the index. For m = 3,
Qmin = 2, so the time cost of building the index is recouped after two queries on aver-
age, while for m = 4 we have q,,,;, ~ 44.

It is worth noting that the benefit of the index decreases as the size of the network
(measured in terms of the number of its nodes) increases. For instance, in the INTER-
NET network, which is by far the biggest network in our dataset, when m = 4 the
index-based approach is only 4 times faster than the no-index one. In this case, the dis-
appointing performance of the index-based approach is due to the very high number of
query occurrences that the algorithm must retrieve from the dataset, resulting in a large
number of I/O operations. In the INTERNET network with m = 4 the I/O time is 99%
of the total running time, on average.

In Tab. 4, we compare the running times of the no-index and the index-based ap-
proach on querying motifs with a variable number of label constraints in the query.
Again, network nodes have been annotated with real labels. We set m = 4 and we
varied c from 1 to 4.

As the number of query label constraints defined by the user increases, the perfor-
mance of both approaches improves. However, the more selective the query, the greater
the benefit of the index. The gain enjoyed by the index is proportional to the size of
the network and the number of constraints, because of the exponential decrease of the
number of occurrences matching the query. For example, when ¢ goes from 1 to 4, the
no-index approach becomes ~ 28 times faster and the index-based approach ~ 16400
times faster in the INTERNET network, while in the BLOGS network the two algorithms
are only ~ 3 and ~ 15 faster, respectively.

Tab. 5 summarizes the results of the comparison between the performance of the
two approaches when the number of labels vary. To perform these experiments, we
annotated network nodes with artificial labels. Given a set of [labels, each node has
been associated with a random unique label between 1 and [, according to a uniform
distribution. We ran five different series of experiments with ! = 2,6, 10, 14, 18. In each
series, we set m = 4 and ¢ = 4.

The time costs of both approaches decrease when the number of node labels in-
crease. In all networks, the greatest reduction of the running time happens when we
move from [= 2to [= 6.

5 Conclusion

Our structures gl.abTrie and Topolndex contribute to all aspects of motif finding, by giv-
ing a very fast method for finding labeled topological structures in both input networks
and related random networks. As this is work in progress, we plan in the near future to
(1) find analytical methods for computing p-values on labeled topological structures to
avoid the need for random graphs; (2) extend the search algorithms to enable search for
topologies having, say, k vertices, even though the TopoIndex holds topologies of only
a smaller size.

22

Table 4. Running times (sec) for querying motifs with variable number of label constraints with

no-index and index-based approach.

Network ¢ No-index Index

1 685.06 4+ 155.22 13.35+£9.6
FLIGHTS 2 576.76 +116.71 5.70 +£4.93

3 412.65 + 61.02 2.09 £ 3.32

4 343.85 £ 17.17 0.52 £ 1.06

1 2214.74 £ 8.36 48.32 £ 2.75
BLOGS 2 1953.47 £199.11 21.20 +20.42

3 1430.81 £ 336.02 15.83 4 20.09

4 829.10 4 214.59 6.16 + 13.74

1 1228.73 £ 221.05 10.79 +10.18
PP 2 1116.63 +216.56 9.35 £ 11.52

3 897.56 + 34.87 0.51 £0.75

4 861.30 = 9.43 0.04 £ 0.06

1 4041.38 & 316.75 139.08 £ 1.84
DBLP 2 3186.24 £+ 693.96 80.60 + 34.95

3 1867.96 +475.73 40.26 £+ 18.37

4 871.19 +131.45 7.43 +4.14

1 3751.95 £ 686.84 78.29 4+ 50.07
FOLDOC 2 2075.93 £ 334.84 7.24 + 2.42

3 1288.12 +42.41 2.47 +2.15

4 1212.23 4+ 16.79 0.58 +0.46

1 57988.44 + 13722.07 11642.50 &+ 5519.74
INTERNET 2 28082.31 4= 13974.45 8984.35 + 6945.80

3 9165.14 4+ 5849.21 3660.06 + 3297.24

4 2101.29 £ 35.61 0.71 £1.05

23

Table 5. Running times (sec) for querying motifs with variable number of node labels with no-
index and index-based approach.

Network [No-index Index
2 483.08 + 35.09 4.97 £1.29
6 331.79 £ 3.18 0.09 £ 0.03
FLIGHTS 10 327.36 + 0.63 0.03 £0.01
14 326.89 4 0.39 0.04 £0.02
18 327.00 +0.82 0.09 £ 0.02
2 931.77 4 254.88 7.37 £2.32
6 192.27 £29.18 0.29 £0.18
BLOGS 10 160.67 £+ 5.44 0.55 £+ 0.05
14 151.54 £ 2.77 1.16 £0.12
18 149.44 +1.36 2.25 +0.10
2 1066.70 4+ 95.43 2.10 £ 1.66
6 870.64 £ 5.42 0.17£0.12
PPI 10 861.66 + 1.72 0.04 £+ 0.02
14 860.80 £+ 1.55 0.05£0.03
18 851.23 £+ 2.16 0.10 £ 0.07
2 1686.55 £ 496.97 32.66 + 20.59
6 623.22 4 25.33 1.59 +£0.94
DBLP 10 571.75 +11.92 1.23+0.76
14 559.46 4 5.47 0.57 +£0.36
18 555.38 4 2.36 1.32 £ 0.64
2 2749.55 + 539.16 18.67 £ 6.22
6 1266.62 + 43.13 0.81 £0.83
FOLDOC 10 1218.74 +10.16 1.01 +0.80
14 1204.28 4+ 6.85 1.63 +0.88
18 1201.15 + 1.64 3.07£0.98
2 17270.40 + 5731.44 1154.77 + 2030.07
6 2595.38 £382.33 94.18 £106.23
INTERNET 10 2250.07 = 111.54 23.98 4+ 20.00
14 2162.81 4 44.00 5.68 +£4.18
18 2113.16 4 20.06 5.08 +£4.59

24
Acknownledgements

Shasha’s work has been partially supported by an INRIA International Chair and the
U.S. National Science Foundation under grants MCB-1412232, 10S-1339362, MCB-
1355462, MCB-1158273, 10S-0922738, and MCB-0929339. This support is greatly
appreciated.

References

1. Kurata, H., Maeda, K., Onaka, T., Takata, T.: BioFNet: biological functional network database
for analysis and synthesis of biological systems. Briefings in Bioinformatics 15(5), pp. 699—
709 (2014)

2. Ribeiro, P, Silva, F.: Querying Subgraph Sets with G-Tries. Proceedings of the 2nd ACM
SIGMOD Workshop on Databases and Social Networks, pp. 25-30 (2012)

3. Alon, U.: Network motifs: theory and experimental approaches. Nature Reviews Genetics
8(6), pp- 450461 (2007)

4. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs:
Simple Building Blocks of Complex Networks. Science 298(5594), pp. 824-827 (2002)

5. Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J., Alon, U.: On the uniform generation of
random graphs with prescribed degree sequences. Cond. Matter 2, pp. 1-4 (2004)

6. Kashtan, N., Alon, U. Spontaneous evolution of modularity and network motifs. PNAS
102(39), pp. 13773-13778 (2005)

7. Sol, R.V.,, Pastor-Satorras, R., Smith, E., Kepler, T.B. A model of large-scale proteome evolu-
tion. Advances in Complex Systems 5(1), pp. 43-54 (2002)

8. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distribu-
tions and their applications. Physical Review E 64(2), 026118 (2001)

9. Prill, RJ., Iglesias, P.A., Levchenko, A.: Dynamic properties of network motifs contribute to
biological network organization. PLoS Biology 3(11): 343 (2005)

10. Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation
network of Escherichia coli. Nature Genetics 31(1), pp. 64—68 (2002)

11. Wernicke, S.: Efficient detection of network motifs. [IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 3(4), pp. 347-359 (2006)

12. Barabasi, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439),
pp- 509-512 (1999)

13. Picard, F., Daudin, J., Koskas, M., Schbath, S., Robin, S.: Assessing the Exceptionality of
Network Motifs. Journal of Computational Biology 15(1), pp. 1-20 (2008)

14. Adelson, R.M.: Compound poisson distributions. OR 17(1), pp. 73-75 (1966)

15. Barbour, A.D., Holst, L., Janson, S.: Poisson approximation. Oxford Studies in Probability,
Oxford-University Press (1992)

16. Nuel, G.: Cumulative distribution function of a geometric poisson distribution. Journal of
Statistical Computation and Simulation 78(3), pp. 385-394 (2006)

17. Schbath, S., Lacroix, V., Sagot, M.: Assessing the exceptionality of coloured motifs in net-
works. EURASIP Journal on Bioinformatics and Systems Biology 2009:616234 (2009)

18. Grochow, J., Kellis, M.: Network Motif Discovery Using Subgraph Enumeration and
Symmetry-Breaking. Research in Computational Molecular Biology, Lecture Notes in Com-
puter Science 4453, pp.92-106 (2007)

19. Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. Proceedings of the IEEE
International Conference on Data Mining (ICDM), pp. 721-724 (2002)

25

20. Adami, C., Qian, J., Rupp, M., Hintze, A.: Information Content of Colored Motifs in Com-
plex Networks. Artificial Life 17(4), pp. 375-390 (2011)

21. Ribeiro, P, Silva, F.: Discovering Colored Network Motifs. Complex Networks V, Studies in
Computational Intelligence 549, pp. 107-118 (2014)

22. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, pp. 45-87 (1981)

23. Ribeiro, P, Silva, E.: G-Tries: a data structure for storing and finding subgraphs. Data Mining
and Knowledge Discovery 28(2), pp. 337-377 (2014)

24. Opsahl, T.. Why anchorage is not (that) important: Binary ties and sample selection.
http://toreopsahl.com/2011/08/12, (August 2011)

25. Adamic, L.A., Glance, N.: The Political Blogosphere and the 2004 U.S. Election: Divided
They Blog. Proceedings of the 3rd International Workshop on Link Discovery (LinkKDD),
pp. 36—43, ACM, New York (2005)

26. Prasad, T.S.K., Goel, R., Kandasamy, K., Keerthikumar, S. et al.: Human Protein Reference
Database - 2009 Update. Nucleic Acids Research 37(suppl. 1), pp. D767-D772 (2009)

27. Ley, M.: The DBLP Computer Science Bibliography: Evolution, Research Issues, Perspec-
tives. Proc. Int. Symposium on String Processing and Information Retrieval 2476, pp. 1-10
(2002)

28. Batagelj, V., Mrvar, M., Zavesnik, M.: Network analysis of dictionaries. Language Technolo-
gies, pp. 135-142 (2002)

29. Dimitropoulos, X., Krioukov, D., Huffaker, B., Claffy, K.C., Riley, G.: Inferring AS Re-
lationships: Dead End or Lively Beginning?. 4th Workshop on Efficient and Experimental
Algorithms (WEA), Springer Lecture Notes in Computer Science, pp. 113—125 (2005)

30. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., et al.: Gene Ontology: tool
for the unification of biology. Nature Genetics 25(1), pp. 25-29 (2000)

31. Maere, S., Heymans, K., Kuiper, M.: BINGO: a Cytoscape plugin to assess overrepresenta-
tion of Gene Ontology categories in Biological Networks. Bioinformatics 21(16), pp. 3448—
3449

32. Bindea, G., Mlecnik, B., Hackl, H., Charoetong, P., Tosolini, M. et al.: ClueGO: a Cytoscape
plug-in to decipher functionally grouped gene ontology and pathway annotation networks.
Bioinformatics 25(8), pp. 1091-1093

33. Dimitropoulos, X., Krioukov, D., Riley, G., Claffy, K.C.: Revealing the Autonomous System
Taxonomy: The Machine Learning Approach. Passive and Active Measurements Workshop
(PAM), pp. 91-100 (2006)

Subject Index

Absorption 327

Absorption of radiation ~ 289-292, 299, 300
Actinides 244

Aharonov-Bohm effect 142-146

Angular momentum 101-112

— algebraic treatment 391-396

Angular momentum addition 185-193
Angular momentum commutation relations
101

Angular momentum quantization
106

Angular momentum states
396

Antiquark 83

a-rays 101-103

Atomic theory 8-10,219-249, 327

Average value

(see also Expectation value) 15-16, 25, 34, 37,
357

9-10, 104—

107,321, 391-

Baker-Hausdorff formula 23

Balmer formula 8

Balmer series 125

Baryon 220,224

Basis 98

Basis system 164,376

Bell inequality 379-381, 382

Bessel functions 201, 313, 337

— spherical 304-306, 309, 313-314, 322
Bound state 73-74,78-79,116-118, 202,
267,273, 306, 348, 351
Boundary conditions
Bra 159

59,70

Breit-Wigner formula 80, 84, 332
Brillouin-Wigner perturbation theory 203

Cathode rays 8
Causality 357-359

Center-of-mass frame 232,274, 338
Central potential 113-135,303-314
Centrifugal potential 115-116, 323

Characteristic function 33

Clebsch-Gordan coefficients 191-193
Cold emission 88
Combination principle, Ritz’s 124

Commutation relations 27, 44, 353, 391
Commutator 21-22,27, 44,344
Compatibility of measurements 99
Complete orthonormal set 31, 40, 160, 360
Complete orthonormal system, see

Complete orthonormal set

Complete set of observables, see Complete set
of operators

Eigenfunction
— radial 321
—— calculation 322-324
EPR argument 377-378
Exchange term 228, 231, 237,241,268, 272

34, 46, 344-346

f-sum rule 302
Fermi energy 223

HZ molecule 26
Half-life 65
Holzwarth energies 68

