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The overarching goal of my research is to build data systems capable of efficient
processing of graph data at scale . My Ph.D. research focuses on developing novel
query processing, optimization, and storage techniques for querying graph-structured
relations. To that end, I have been designing and implementing the GraphflowDB
in-memory property graph DBMS which allows me to rethink core DBMS compo-
nents. In the future, I aim to research building data systems for machine
learning on graphs in additional to analytical query processing problems. I
have completed two internships at Microsoft Research leading to two on-going collab-
orations, both of which expanded my research interests into transactional processing
and cloud infrastructure for data systems.

CONFERENCE
& JOURNAL
PUBLICATIONS

[9] Optimizing One-time and Continuous Subgraph Queries using Worst-
Case Optimal Joins. A. Mhedhbi, C. Kankanamge, S. Salihoglu. ACM Trans-
actions on Database Systems (TODS) 2021.

[8] A+ Indexes: Tunable and Space-Efficient Adjacency Lists in Graph
Database Management Systems. A. Mhedhbi, P. Gupta, S. Khaliq, S. Sali-
hoglu. IEEE International Conference on Data Engineering (ICDE) 2021.

[7] Columnar Storage and List-Based Processing for Graph Database Man-
agement Systems. P. Gupta, A. Mhedhbi, S. Salihoglu. Proceedings VLDB
Endowment (PVLDB) 2021.

[6] Optimizing Subgraph Queries by Combining Binary and Worst-case
Optimal Joins. A. Mhedbhi, S. Salihoglu. Proceedings VLDB Endowment
(PVLDB) 2019.

[5] The Ubiquity of Large Graphs and Surprising Challenges of Graph
Processing: Extended Survey. S. Sahu, A. Mhedbhi, S. Salihoglu, J. Lin, MT.
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RESEARCH
IMPACT

• 2021: Our query processor and optimizer combining binary and worst-case optimal
joins [6, 9] is integrated in Alibaba’s graph processing engine GraphScope .

• 2021: Huawei’s R&D group exploring the integration of A+ indexes [8] and our
compressed columnar storage [6] for the design of a new graph DBMS.

• 2021: The large-scale subgraph query benchmark (LSQB) [2] is used as part of
the continuous integration performance pipelines for the commercial products
at RelationalAI , MemGraph, and Neo4j .

INVITED
TALKS

• Taming Large Intermediate Results using Factorization: A system perspective.
Factorized Databases Workshop. Zurich, Switzerland. Aug. 2022.

• Taming Large Intermediate Results for Joins over Graph-Structured Relations.
DATA lab at Northeastern University. Boston, MA, USA. Nov. 2022.
Huawei-Edinburgh University Joint Lab. Edinburgh, Scotland. Apr. 2022.
Centrum Wiskunde & Informatica. Amsterdam, Netherlands. May 2022.

GRADUATE
RESEARCH
EXPERIENCE

Microsoft Corporation Jun. 2022 - Sep. 2022
Research Intern, DMX Group (Mentor: Phil Bernstein)

• Researched the architecture and performance characteristics of data-sharing
database management systems such as Azure SQL Hyperscale.

• Implemented a new lock manager and researched various optimizations to lock-
ing protocols under contention.

Microsoft Corporation Jun. 2021 - Sep. 2021
Research Intern, DMX Group (Mentors: Christian Konig & Vivek Narasayya)

• Researched orchestration of database as a service (DBaaS) tenants to minimize
failovers during automatic cluster upgrades.

• Formulated the problem as an optimization problem and produced an approach
that is capable of taking the specific cluster deployment instance into account
when creating a cluster upgrade schedule.

TEACHING
EXPERIENCE
AS TEACHING
ASSISTANT

(F=Fall, W=Winter, S=Spring)

Teaching Assistant at the University of Waterloo:
CS 338 - Computer Applications in Business: Databases. S17, F17, W18, S18 & F19.
CS 330 - Management Information Systems. W19, F19 S20, F20, W21 & F21.
CS 348 - Introduction to Database Management. F18 & W22.
CS 115 - Introduction to Computer Science 1. F16, W17 & F22.
Instructor at Concordia University:
ELEC/COEN 390 - Principles of Design and Development. F15 & W16.

AWARDS Microsoft Research Ph.D. Fellowship, 2020-2022.
Facebook Research Ph.D. Fellowship, 2020-2022. (declined)
VLDB Best Paper Award, 2018.
David R. Cheriton Scholarship, University of Waterloo, 2017-2018.
Cheriton Symposium Poster Presentation - 1st Place, University of Waterloo, 2018.
SIGMOD Travel Award, 2017.
Graduate Entrance Scholarship, University of Waterloo, 2016-2017.
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SERVICE External Reviewer
IEEE Transactions on Knowledge and Data Engineering (TKDE) 2020 - Present.
Semantic Web journal (SWJ) 2021.
The Web Conference (WWW) 2020.

INTERN
EXPERIENCES

Société Générale (Corporate & Investment Banking) May 2016 - Aug. 2016
Technology Analyst Intern

• Rearchitected a hedge fund lending app from monolithic to service-oriented.
• Helped reduce the length of the release cycle from 6 to 4 weeks.

Ericsson Sep. 2015 - Mar. 2016
Software Engineering Intern

• Researched virtualization for physical IP Multimediate Subsystem (IMS) nodes.
• Prepared a fully functional demo for World Mobile Congress 2016.

Concordia University, Montréal, QC May 2015 - Aug. 2015
Undergraduate Research Assistant (Advisor: Jelena Trajkovic)

• Verified empirically the theoretical foundations and guarantees of an existing
Optical Network-on-Chip design.

InterDigital, Inc. Jan. 2015 - Mar. 2015
Software Developer Intern

• Revamped the UX of a smart network access manager mobile application.
• Prepared a demo to showcase the app’s features in a congested network.

Thales Group (Academic Partnership) Nov. 2013 - Nov. 2014
Research Intern (Advisors: Prof. William Lynch & Prof. Glenn Cowan)

• Researched and designed various digital filters and amplitude detection algo-
rithms for aerospace use cases.

Immersion Corporation Sep. 2013 - Dec. 2013, May 2014 - Aug. 2014
Software Engineering Intern

• Implementation of haptic effect lib APIs exposed in C and Java for mobile
developers to abstract hardware details and remove parameterization.

• Upgraded and integrated a haptic effects lib for the AOSP kitkat release.
• Automated manual complex AOSP framework builds with our lib integration.

COMPUTER
SKILLS

Technology: C++, Python, Java, Javascript, SQL, Shell Scripting.
Tools: Git, Numpy, Pandas, Scikit-learn, PyTorch.
Languages: English, French, Arabic.

MISC Member of a research team studying “Fostering Experiential Partnerships with The-
atre and Mental Health: Realistic Family Therapy Training for Psychology and Act-
ing Students”. Work presented at University of Waterloo Teaching and Learning
(UWTL) Conference 2022.

INTERESTS Improvisational theatre, cooking, football freestyle, running, boxing, and lifting weights.



Research Statement
Building Data Systems for Graph Data Management At Scale

Amine Mhedhbi, University of Waterloo

The overarching goal of my research is to build data systems capable of efficient processing of graph data at scale. Graph
data refers to datasets that can be modeled as a set of nodes and edges that represent the entities and their relationships in ap-
plications. My Ph.D. thesis argues that DBMSs that optimize for graph analytical workloads need to integrate a suite of modern
techniques, most important of which are: (i) novel worst-case-optimal join algorithms that adopt column-at-a-time over the tradi-
tional table-at-a-time join paradigm; (ii) factorized query processing, which is a technique to compress the intermediate and final
results of queries; and (iii) a flexible indexing sub-system to cache and reuse subqueries in a workload. I do systems-oriented
research and have integrated each of these techniques into a modern graph DBMS (GDBMS) called GraphflowDB. Such an
integration requires tackling a set of system and algorithmic research questions that necessitate rethinking and introducing
novel techniques to core DBMS components such as the query executor, the query optimizer, and the storage layer.

Graph data is integral to a wide range of analytical applications, such as finding fraud patterns in financial transaction
networks e.g., fraud rings, or recommendation patterns in social networks e.g., clique-like communities. The workloads of
these applications, colloquially referred to as “graph analytical workloads”, often require finding complex and large graph
patterns on data that primarily consists of many-to-many relationships, i.e., where node records can connect to many other
node records through the same relationship. For example, a Twitter recommendation application searches for diamonds in
their who-follows-whom graph, where a user can follow many other users. In database terminology, these workloads involve
relational queries containing complex many-to-many joins that lead to an explosion in the size of intermediate relations. This
poses serious challenges for traditional analytical DBMSs, which were not optimized for complex many-to-many joins.

My work on GraphflowDB have appeared in top data management venues such as the Proceedings of the VLDB Endow-
ment (PVLDB) and the VLDB journal [1, 2], ACM’s SIGMOD conference [3], IEEE’s ICDE conference [4], and ACM’s TODS
journal [5]. I have co-presented a tutorial on modern techniques for querying graph data at VLDB 2022 [6]. I have also co-
authored a survey paper on the users of graph processing software, which won the VLDB 2018 Best Paper award [7]. The
output of my research had industry impact. For instance, some of the techniques I developed for analytical DBMSs within the
query executor and optimizer were adopted by GraphScope [8], the graph processing engine product of Alibaba. A bench-
mark that I co-desgined gained both academic and industrial interest and is used by database vendors such as RelationalAI,
Memgraph, and Neo4j. In the remainder of this statement, I cover my research in the three techniques above and cover some
other work I have done during my Ph.D.

1 Worst-case Optimal Join Algorithms

The de facto join algorithms used in most production DBMSs are known as binary join (BJ) algorithms, which adopt the table-at-
a-time joining paradigm. The theory of worst-case optimal join (WCOJ) algorithms [9,10], demonstrates that BJ algorithms are
provably sub-optimal on cyclic join queries under many-to-many relations in the following sense: the number of intermediate
results they can generate can be polynomially larger than the maximum outputs for a query Q. For example, consider finding
triangles in an input graph, whose edges are modeled as an Edge(from,to) relation. In relational algebra this is equivalent
to the cyclic self-join query Q∆:= Edge(a,b),Edge(b,c),Edge(a,c). If the graph has m edges, then the worst-case
output size of Q∆ is O(m3/2), while there are input graphs on which any BJ algorithm could generate Ω(m2) many tuples
because they compute open triangles as an intermediate step. Surprisingly, even a decade after this theory, many systems
today can be either prohibitively slow on such queries if the input relations are many-to-many since they still rely on BJs. The
WCOJ theory proposes join algorithms that adopt a novel column-at-a-time paradigm to mitigate this sub-optimality. These
algorithms order the columns in the query in some order, e.g., , a, b, c, and iteratively find all prefixes of (a)’s, then (a, b)’s and
(a, b, c)’s etc. using multiway intersections as a core algorithmic primitive.

It is clear that these algorithms would find their best applications on graph workloads, which frequently contain cyclic
join-heavy queries over datasets with many-to-many relations. However, existing implementations when I started to consider
WCOJs for graph workloads were not practical for two reasons: (i) they proposed processors that completely ignored BJs,
which are still very efficient on many queries and benefit from decades-long engineering; or (ii) they ignored core architectural
design principles of modern systems, such as pipelined and vectorized query processors, or dynamic programming-based
(DP) join optimizers, making them impractical to integrate into existing systems. The first research questions I undertook
were: How can WCOJ algorithms be integrated in modern query processors? When do WCOJs outperform BJs and vice versa? How can
queries be optimized to generate efficient plans that mix WCOJ and BJ algorithms?



1.1 End-to-end WCOJ DBMS Integration

I proposed an end-to-end practical system integration approach that can seamlessly use a mix of WCOJ and BJ algorithms in
query plans. My approach enhances many components of the DBMS without deviating from the architectural principles of
modern analytical query processors. Specifically, I designed and implemented a novel query operator called Extend-Intersect
that can do WCOJ-style multiway intersections, a new cost-model called intersection-cost (i-cost) to assign costs to plans with
Extend-Intersect and other BJ operators, a novel cardinality estimator based on summary statistics of small-size cyclic graph
patterns, and an enhanced DP-based join optimizer.

One important observation I made during this project was that although the WCOJ theory advises system designers to
use column-at-a-time joins, it gives no advice as to how to optimize the choice of the column ordering. My work is the first
to: i) show that the choice of the column order could make orders of magnitude difference in query execution time; and ii)
study how to pick a column order in sub-plans that executed WCOJ algorithms. I showed that using my novel i-cost metric,
one can design a DP optimizer that picked efficient column orderings. My work was also the first to systematically study
for which queries WCOJs outperformed BJs based on the structures of queries. I further showed how to seamlessly mix BJ
and WCOJ algorithms in a DP-based optimizer to generate novel hybrid plans that were not considered in prior systems.
I have integrated this solution in the GraphflowDB system and showed that GraphflowDB plans can be up to two orders
of magnitude faster in execution time than others. This work was published in PVLDB and presented at VLDB 2019 [1].
Following my work, parts of my approach, have also been adopted by other commercial and academic systems. For example,
Alibaba uses our hybrid plans, i-cost metric, and cardinality estimator in GraphScope [8], their graph processing engine.

1.2 Multi-query Optimization for Continuous Queries

The follow-up work to this is the study of query evaluation for queries that find patterns over dynamic datasets. I and
colleagues, studied the principles of using WCOJ algorithms for continuous query evaluation at scale. Continuous queries are
those that track the inserted or deleted graph patterns in a dynamic graph that is continuously updated. They are the backbone
of several time-sensitive applications, such as recommendations or fraud detection. These applications register many graph
patterns as queries in a DBMS, e.g., different size cliques or cycles and the challenge for the DBMS is to find joint query plans
that can evaluate a set of queries that together share computation. This problem is known as multi-query optimization (MQO)
in the DBMS literature. Based on a published technique, my colleagues and I showed that the problem of only detecting the
inserted and deleted patterns can be formulated as computing a set of delta queries. We further showed that when evaluating
delta queries using WCOJ algorithms and intersection-cost as an estimated cost metric, finding the optimal plan is NP-hard,
so traditional DP-based approaches would not be suitable. I developed a greedy multi-query optimization algorithm to find
efficient plans and integrated this approach into a new continuous query processor I designed and implemented in the context
of GraphflowDB. We showed that using WCOJ algorithms on delta queries can be up to two orders of magnitude faster than
prior solutions on single cyclic continuous queries. We further showed that the plans generated by my greedy optimizer
can speedup system throughput by up to 4x over running queries independently. This work was published in ACM’s TODS
journal [5].

2 Factorized Query Processing

Acyclic join queries and acyclic components of queries, pose a different challenge for DBMSs under many-to-many relation-
ships. Specifically, their results can be inherently very large, regardless of the algorithms used to compute them. Consider
finding 2-hop paths in a graph with m edges, which in Datalog is expressed as Q2H:= Edges(a,b),Edges(c,b). If the
graph is highly skewed, e.g., there is a single b node b1 that all edges target, there can be Ω(m2) many output regardless of the
algorithm used. The dominant relation representation system in existing DBMSs is to use flat tuples, e.g., using m2 tuples,
{(a1, b1, c1), (a2, b1, c1), ..., (am, b1, cm)}, to represent the output of Q2H . The recent theory of factorized databases [11] has shown
that outputs of (many-to-many) acyclic joins can often be more compactly represented as unions of Cartesian products and
exploit conditional independence of variables in the query. For example, another factorized representation of the same output
is ∪i=1...mai × b1 × ∪j=1...mcj , because given a fixed binding for b in the output, all of the a and c bindings are independent.

My work on factorizations was based on the following observation: the core query processing algorithms described in the
theory of factorization [11] assumed a setting in which algorithms would take as input and output full materialized factorized
relations. Following this, existing systems work on factorization designed fully materialized processors that directly processed
large tries. This deviates significantly from the well understood principle adopted in modern analytical query processors that
every primitive operator in the system should operate on a block of flat tuples (aka vectorized processing) to be efficient on
modern CPUs. Existing approaches further abandon the well established pipelined architectures, making them impractical to
integrate into existing DBMSs. My research questions challenged this assumption and asked: How can modern vectorized and
pipelined query processors adopt factorization without direct processing on factorized representations?



2.1 Factorized Vector Execution

I proposed a novel query processor architecture that extends vectorized and pipelined processors to benefit from factorization.
In this design, instead of passing a single vector of flat tuples between operators, operators pass a set of factorized vectors1. At
any point in time, each vector can be flat and represent a single value, or unflat representing a set of values. The relation
represented is the Cartesian product of the factorized vectors. Performing many-to-many joins inevitably computes Cartesian
products, e.g., the join of tuple (a1, b1) with ∪j=1...m(b1, cj) leads to m tuples ∪j=1...m(a1, b1, cj), with many repetitions of
(a1, b1) values. Instead of performing this Cartesian products as in existing systems, the join operator in my design flattens
the vector (a1, b1) into a single value, and appends a second vector of ∪j=1...m(b1, cj) to the relation, delaying the Cartesian
product. Importantly, every single primitive operator in the system still performs computation on a single vector of tuples.
For example, we can ensure that every binary operation, e.g., comparison of values, either operates on two unflat vectors of the
same size, or one flat and one unflat vector. I implemented my design into GraphflowDB. In our work, which was published
in PVLDB and presented at VLDB 2021 [2], we showed that processing using factorized vectors can lead to speedups of up to
three orders of magnitude over vanilla vectorized processing on acyclic join-heavy workloads.

3 Graph-based Materialized Views and Indexes

In addition to my work on the query processor and optimizer of GDBMSs, I worked on their indexing sub-system. Aside from
their differences in their data models and query languages, the most pronounced difference between RDBMSs and GDBMSs
is in their indexing sub-systems. Virtually all GDBMSs implement join indexes (a.k.a adjacency list indexes) that index the
relationships of nodes to support fast joins of nodes with their neighbours. Such join indices are not common in RDBMSs.
My work here was based on the observation that existing GDBMSs have system-specific and fixed adjacency list structures,
making them efficient only on a fixed set of workloads. For example, some systems supported indexes in which all of the
edges were indexed together, while others partitioned them based on edges types (e.g., Follows relationships would be
indexed separately from LivesIn edges), while others on a combination of node and edge types. This meant each system
was optimized for a specific workload and could not be tuned without remodeling application data. My research questioned
this unflexibility and asked: How should the indexing sub-systems of GDBMSs be designed to be tunable to support a wider range of
workloads?

3.1 A+ Indexes

I proposed a new indexing subsystem for GDBMSs called A+ Indexes that supported indexing edges based on a large set of
neighborhood queries. As such, A+ indexes support a limited form of materialized views, which in RDBMSs refers to relations
that are results of queries over base relations. An important property of adjacency list indices in GDMBSs is that they are
accessible in constant time through positional node ID offsets. An important objective in my design is to identify a set of ma-
terialized views that can be indexed and still be accessible using such positional offsets. I identified two types of materialized
views that satisfy this constraint: (i) node-partitioned “1-hop” indexes that index immediate neighborhoods of vertices and
support predicates and partitioning on arbitrary node properties; and (ii) my design is the first to observe that by using edge
IDs as positional offsets, certain 2-hop paths can also be indexed and partitioned using edge properties. My design further
proposed mechanisms to support nested partitioning criteria, and compression techniques to improve the space-efficiency of
these indices. Along with two Master’s students, I implemented this design in GraphflowDB and described a complete end-
to-end system solution that modified the query processor and optimizer of the system to effectively use A+ indexes as part of
its core join operators, such as its WCOJ Extend-Intersect operator. In our paper, published in the ICDE 2021 Conference [2],
we demonstrated how to optimize GraphflowDB to multiple workloads simply by tuning A+ indexes and that in some cases
this had negligible storage and update overheads with significant performance gains. For example our 1-hop views lead to
up to 20x speedups with an overhead of 1.1x on storage.

4 Other Work and Collaborations

I have worked on a number of other projects during my PhD. Early in my career, I participated in an extensive user survey
on the use of graph processing software. The goal of our survey was to understand use cases, general trends, and primary
challenges of current graph processing software with the goal of gaining insights into important problems that the community
should focus on. The results of this survey and the regular conversations I have had with users of graph software heavily in-
formed the focus of my Ph.D. research. Specifically, this work clarified the set of applications to optimize for when designing
a GDMBS and identified scalability as the top challenge amongst users. The work was awarded the Best Paper Award in the
VLDB 2018 conference [7] and was later extended with further analysis and published by the VLDB journal [12].

1In our original publication [2], this was referred to as list-based processing. We later adopted the terminology of factorized vectors.



I have also designed a new large-scale subgraph query benchmark (LSQB) that focused on queries ignored by prior bench-
marks. LSQB tests the join performance as a choke-point on read-heavy subgraph queries. This work was published in the
GRADES-NDA 2021 workshop co-located with SIGMOD conference [13]. Since its publication, LSQB has gained both aca-
demic and industrial interest and is used internally by vendors such as RelationalAI, Memgraph, and Neo4j.

In the summers of 2021 and 2022, I was a research intern at Microsoft Research which led to two currently on-going collab-
orations. Both of these collaborations expanded my research interests into transactional processing and cloud infrastructure
for data systems. In my first internship, I researched orchestration of Database-as-a-Service systems. The goal is to ensure pre-
dictable performance during planned cluster upgrades by minimizing failovers. I formulated an optimization problem and
produced a general approach that is capable of taking the specific cluster deployment instance into account when creating a
cluster upgrade schedule. Our approach is currently under deployment internally by my collaborators to be tested against
Microsoft’s real workloads. In my second internship, I researched the performance characteristics of transactional processing
in data-sharing systems such as Azure SQL Hyperscale. Specifically, I implemented a new lock manager and researched var-
ious optimizations to locking protocols under contention. My collaborators and I enumerated various scenarios that lead to
contention and focused so far on the worst-case. We are currently making progress towards studying other contention cases
and evaluating our solution on complex workloads, e.g., YCSB and TPC-C.

5 Future Work

I have developed a research style that utilizes theoretical insights to inform the architectural designs of data processing sys-
tems. I further implement and test my designs in real systems to ensure the practicality of my ideas. I aim to continue
adopting this style of research as I believe it gives my research the potential to do large real-world impact. I outline below a
set of short-term and long-term future research projects that I am excited to start in the first few years of my faculty career.

5.1 Short Term Research

I plan to continue working on factorized query processing both in GDBMSs as well as analytical RDBMSs.

Factorized Processing Using Definitions: The factorized representation system I implemented inside GraphflowDB is called
f-representations in the theory of factorization. An even more compressed representation system in the theory is known as d-
representations, which extend f-representations with nested resuable expressions. For example, d-representations can represent
a k-hop path query starting from a single node v in a graph using space commensurate with the number of nodes and edges
in the k-hop subgraph around v, by nesting each j-hop path’s result (for j < k) and reusing it. This can be polynomially
more compact than f-representations, which cannot nest and reuse expressions. There is currently no practical proposal for
integrating d-representations to pipelined vectorized modern processors, which I plan to address in my research.
Factorization to Optimize for Aggregation-Heavy Business Reporting In addition to graph workloads, factorization has
the potential to be used for aggregation-heavy business analytical reporting, which analytical RDBMSs are optimized for, as
long there are some many-to-many joins in these queries. As a simple example, count queries on factorized vectors can be
computed simply by multiplying the sizes of the vectors in the intermediate tuples. What would be the right processor architecture
for performing fast arbitrary aggregations on factorized representations in RDBMSs?

5.2 Long Term Research

I plan to position my future research in the space of data systems for machine learning on graphs. Perhaps the most exciting re-
cent developments in the graph data analytics space is the surge of graph-based learning models. These are machine learning
techniques that embed nodes and edges in a graph-structured data to a vector space to perform predictive tasks in this space,
e..g., predicting if a user, represented as a node, is likely to buy a product, represented as another node. This technology has
led to many highly impactful applications and major scientific breakthroughs e.g., protein folding prediction by DeepMind’s
AlphaFold and predicting side effects of drugs. Existing applications that use graph embeddings: (i) extract a graph out of a
DBMS, e.g., a GDBMS, into raw disk files; (ii) use an in-memory graph learning library, such as Pytorch Geometric [14] or Deep
Graph Library [15] to compute embeddings; and (iii) then use a separate (often custom built) system to use the embeddings
for a predictive task (e.g., recommendations). As such, these pipelines consist of using three (or more) disintegrated systems.
I am interested in developing graph data systems that can better integrate these components. In particular, how could a better
GDBMS-graph learning library integration help scale in-memory graph training? What features can a GDBMS be extended to natively
store and process embeddings and perform hybrid “querying” of node/edge embeddings, e.g., to predict non-existing properties and edges
between nodes, along with regular queries of existing nodes, edges and their properties?
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Teaching Statement, Amine Mhedhbi

My teaching philosophy is informed by the common characteristics of instructors whose
courses I found memorable. When I reflect back on my education, I find that effective teachers
were not those that only instructed the technical material in a good way but also those that
could raise curiosity, both through their enthusiasm and by giving students a glimpse of the
largeness of the field that the taught material is part of.

Over the past eight years, I have had a lot of teaching experience at my current gradu-
ate institution as well as my undergraduate Alma mater. At University of Waterloo, I served
as a teaching assistant (TA) for 3 terms for introductory programming courses using Racket
(200+ students) with two different versions for CS and non-CS students. I was also a TA for
13 terms for multiple database courses (40-200 students) ranging from learning SQL and us-
age of database management systems (DBMSs) to an introductory database implementation
course. At Concordia university during my undergraduate studies, I was twice an instructor
for a third year design engineering course (30-40 students), in which I lectured on mobile devel-
opment and supported student projects through hands-on lab sessions. I have had experiences
co-advising undergraduate research assistants and a master student with professor Semih Sal-
ihoglu. I was also a guest lecturer at a graduate seminar course on ‘Knowledge Graphs’. Fi-
nally, I gave a 3-hour teaching tutorial on my Ph.D. research topics at the Very Large Data Base
(VLDB) conference in 2022.

I have had prior teaching experience with a variety of class sizes ranging from 40 to 200+
students that come from different technical backgrounds. I have also experienced teaching and
interacting with students both in the physical and remote settings. I believe that these experi-
ences make me well prepared to teach classes and excel regardless of size, medium (physical
vs. remote), and background or technical level of the students.

In the remainder of this statement, I will outline the set of undergraduate and graduate
courses I am qualified to teach and then give my vision of database and data science education.

1 Undergraduate Courses

Regarding the topics that I can teach, I am able to teach introductory programming courses and
a variety of undergraduate database courses, both introductory and advanced ones. Although
not in my direct research area, I can also comfortably teach other systems courses, such as
operating systems, and software engineering (SOEN) ones that are focused on software design,
SOEN methodology, and are project based.

My aim for undergraduate courses is to ground them in real world examples and provid-
ing depth in terms of theory but also with hands-on programming assignments and projects.
To make this concrete, an example of assignments and projects in early introductory database
system implementation courses might require changes to a simple prototype DBMS. A more
advanced database implementation course would require changes to much more complex sys-
tems such as PostgreSQL. I have had prior experiences with creating such projects and assign-
ments in prior teaching roles.



While I was mainly an instructor and TA for CS classes, I can teach undergraduate courses
that are targeted for non-CS students, which I have done as a TA at the University of Waterloo.
Specifically, I have TAed, “CS 115 - Introducing to computer programming”, “CS 330 - Management
Information Systems”, and “CS 338 - Computer Applications in Business: Databases”, all targeted
for non-CS students with a range from students in mathematics to linguistics.

Due to my research area and having studied how this course is taught across many cam-
puses, I believe that there is a need for a textbook on database management system (DBMS)
implementation. Current textbooks present DBMS architectures that are decades old, and this
makes these courses using them less relevant to current day students. My aim is to collect
teaching material and the notes that I use to teach and transform this material into a new text-
book after my tenure-track years.

2 Graduate Courses

Early on, I am interested in teaching different graduate courses, one on query processing and
execution for analytical DBMSs that focuses on new algorithmic development and another on
graph data management for different workloads, especially for ML/AI applications. Later
on, I am also interested in developing a graduate course on the history of database system
implementation. The course would present the evolution of DBMSs, covering covering the
early days targeting transactional query processing, then business analytical workloads to the
later ‘no-size fits all’ era where systems target newer workloads, e.g., streaming, leading to
re-architecting DBMSs. This would act as a buffet course introducing many database imple-
mentation topics. I see the course covering both: i) how research directions changed over time;
and ii) the fundamentals of data system implementations through foundational papers.

3 Vision of Database and Data Science Education

My primary focus is teaching the next generation of CS students about data systems technol-
ogy in terms of use and development. A limitation of exclusively teaching students purely
technical material is that they may come to implicitly believe that technology is value neutral
and will not see societal problems as problems within their domains. As such, I believe that
both undergraduate and graduate courses relating to database and data science education re-
quire an interdisciplinary bent, to clarify the subtle but real impact technical choices can have
on society. Additionally, I hope that an interdisciplinary perspective will spark an interest in
the challenges that exist in other fields such as health, urban planning, and tech policy.

Conversely, students from business and management schools, life sciences, and the social
sciences and humanities, i.e., outside of CS, can always benefit from courses relating to database
and data science. These courses would cover the topics needed to tackle what many refer to
as golden age of data, in which there is a lot of interest in capturing and analyzing very large
datasets for quantitative studies and building data-driven products within their fields.

Both of these goals, making CS classes more interdisciplinary as well as providing non-CS
students with the necessary database and data science training might necessitate collaboration
across departments. I foresee such collaboration would further lead to a cross-disciplinary
research environment, due to faculty members from different departments interacting, which
grounds CS research and makes it helpful to real-world users.



 

   
 

 
 
 
 

 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

November 20, 2022

Dear Faculty Recruiting Committee:

I am writing this letter of reference for Amine Mhedhbi in my capacity as his PhD advisor. I want to begin by
saying that Amine has my strongest recommendation for the Assistant Professor position at your university.
As I will articulate throughout this letter, my recommendation is based on two opinions I have formed about
Amine throughout six years of advising him: (1) Amine has produced very impactful and high quality work
on his thesis topic of graph data management systems and I expect his work’s impact to be more visible
over time. (2) Amine has grown into a fiercely independent and ambitious researcher with a very practical
and systems-oriented research style in his field of data management and processing. I believe this gives him
a great potential to grow and makes him a very promising candidate for a junior faculty position. In the
remainder of this letter I will first give a brief background on Amine’s thesis topic and then summarize his
work and accomplishments covering only the work he lead. I refer you to his research statement for the work
that I co-authored with Amine but he did not lead or his work in which I was not involved at all.

Amine’s research has been on novel query processor and storage techniques to improve the performances
of graph database management systems (GDBMSs). GDBMSs are DBMSs that support a graph/network
model where users, who are developers, model their application data as a set of nodes, representing enti-
ties, and edges, representing relationships between entities. This data model contrasts with the prevalent
relational/tabular data model. The major commercial DBMSs in this space include Neo4j and TigerGraph.
Despite their data models, the query languages of these systems are very similar to SQL except that joins of
records are described through a graph-like syntax, where users “draw” a sub-graph pattern to match in the un-
derlying node and edge records. At the same time, these systems are relational in the sense that: (i) they store
node and edge records in node and edge relations; and (ii) they compile their queries to standard relational
operators, such as joins, projections, and aggregations of node and edge relations. DBMSs based on graph
models have been built throughout history driven by different waves of applications. The latest wave during
the NoSQL movement of 2010s was driven by recommendation and fraud detection applications. These ap-
plications require finding complex patterns across entities in application data. Example workloads include
finding cliques of users/nodes in social or phone networks, or long paths between bank accounts/nodes in
financial transaction networks. These workloads are equivalent to complex joins of node and edge relations,
where the joins are many-to-many, e.g., each user u’s record may join with many other users’ records whom u
is connected to. As such, these workloads are very challenging to evaluate for DBMSs because they generate
very large intermediate relations. Amine’s thesis precisely tackles this challenge through a combination of
novel join algorithms, intermediate relation representation systems, and storage optimizations. He based his
work on a GDBMS called GraphflowDB, whose research and development he lead.

Worst-case Optimal Join Algorithms: Amine’s first work in PhD was on tackling complex cyclic work-
loads1 such as finding triangles or larger clique-like patterns in an input database. The standard join algo-
rithms in DBMSs, called binary join plans/algorithms, iteratively join pairs of relations until all tables in the
query are joined. In graph terms, this corresponds to iteratively joining sets of query edges. An important the-
oretical breakthrough in join processing in the last decade was the realization that binary join algorithms can
generate provably large intermediate results. For example, when finding triangles, these plans can generate
m2 intermediate open triangles in a graph with m edges, while there can be at most m1.5 many triangles on
any input graph. This lead to invention of a new class join algorithms called worst-case optimal join (WCOJ)

algorithms, which perform joins column-by-column, i.e., in graph terminology query vertex-by-vertex, join-
ing parts of possibly more than 2 relations at a time. In the context of GDBMSs, these joins are done through
multiway intersections of adjacency lists of nodes. I suggested that Amine look into these algorithms and

1Although query cyclicity has very formal definitions, cyclic queries on graph data is exactly equivalent to whether the undirected
version of the pattern searched in the query has cycles or not.



 

   
 

 
 
 
 study how to develop a query processor that uses WCOJs in GraphflowDB.

Amine’s first insight into the problem was that the important thing to study was how to order the query
vertices in a query when using WCOJ algorithms. This is akin to optimizing the order of relations to join
in binary join algorithms. We referred to this problem as the problem of query vertex ordering (QVO). For
example, consider the (a)�>(b)�>(c), (c)�>(a) triangle pattern. Should the pattern be matched in a, b, c
or c, b, a order? Amine had important insights about the factors to consider when picking an order, such as
the directions of adjacency lists and the amount of pairwise intersections that can be cached when intersecting
more than 2 adjacency lists. He then realized that he needed a good cardinality estimator to pick good QVOs.
Cardinality estimator is the component of a DBMS that predicts the sizes of sub-queries. He designed a
specialized cardinality estimator based on keeping statistics on small-size patterns. Soon he had developed:
(i) a join optimizer with a new cost metric; (ii) a new cardinality estimator that picked QVOs in a cost-based
manner; and (iii) a query processor that demonstrated the benefits of using WCOJs on highly cyclic queries.

Amine was however very unsatisfied with his solution because he realized that there were a lot queries on
which binary join algorithms were orders of magnitude more performant than WCOJ plans. He then extended
his optimizer to generate plans that used a mix of binary join algorithms and WCOJ-like multiway intersec-
tions seamlessly. Although his approach was based on the most traditional query optimization paradigm—
a dynamic programming-based (DP) approach of extending optimal plans for sub-queries to larger queries–
this, in my opinion, is so far the most practical and general solution in literature to generate plans that use
a mix of WCOJ and binary join algorithms. I was quite impressed with Amine’s approach in this phase of
the project because several earlier papers had proposed novel optimization paradigms to generate plans with
WCOJs and binary joins, such as using generalized hypertree decompositions of queries. Despite my advise
to study these techniques, Amine vehemently rejected them because he thought they ignored common wis-
dom of using DP optimization and as such they were not practical. Amine’ solution also generated the most
general plan space of any system that implemented WCOJs in literature, in the sense that it can generate plans
no other system can and subsumes other systems’ plans.

Amine and I published this work in a PVLDB 2019 paper titled “Optimizing Subgraph Queries by Combining
Binary and Worst-Case Optimal Joins”. This work focused on finding all patterns in a particular snapshot of
a graph database (called a one-time query in DBMS literature). I was concurrently advising another Master’s
student to look into using WCOJ algorithms for continuous queries. In this setting, applications register a set
of patterns to a GDBMS whose input graph is changing through updates. The problem is to find emergence
and deletions of each registered pattern after each update. DBMSs that support continuous queries produce
joint plans for multiple queries, i.e., a single plan that concurrently evaluates multiple queries. This can be
thought of as generating multiple query plans for each query and then overlapping them in a single plan. In
our context, our goal was to find QVOs for each query so that after overlapping, the joint plan shares as much
computation as possible. Although we had made some progress with my Master’s student to understand
the core algorithms to use in a continuous query processor, we were unable to optimize our implementation
and choice of plans to get good results. Amine was very familiar with my Master’s student’s work. Upon
my student’s graduation, Amine offered to take a stab at the problem because he had ideas on sharing more
intersections across queries that could deliver promising results. His idea was again very practical and simple.
We had so far viewed the problem as maximizing homomorphic sub-queries that are generated by different
QVOs of queries. Instead, he observed that we can share partial intersections even if two sub-queries are not
homomorphic but subsets of intersections that are implied by their QVOs are identical. Indeed, when Amine
next implemented a new continuous query processor from scratch, we finally got important performance
optimizations that we could publish on. Amine and I then wrote these results (my Master’s student had
already moved on) as an extension to his PVDLB paper and published in TODS in 2021.

The work on the first WCOJ algorithms were published by Hung Ngo et. al in PODS 2012, which is the
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 primary venue to publish theoretical database research. In 2022, Ngo et al.’s work was given the PODS Test
of Time Award. In his acceptance presentation, Hung listed Amine’s work as one of first to integrate WCOJ
into actual systems. I know many graduate seminars offered by colleagues on GDBMSs assign his PVLDB
paper as a primary reading. I expect this work’s impact to be more visible over time because WCOJs are
critical to evaluate workloads with cyclic patterns in GDBMSs, which are frequent in the primary applications
supported by GDBMSs, e.g., in fraud detection and recommendation applications.

A+ Indexes:: Around his third year, Amine started working closely with another Master’s student on the
adjacency list indexing sub-system of GraphflowDB. This is the sub-system that indexes the edges of each
node. Nodes and edges in GDBMSs have labels, e.g., a social network application can model its data as
User and City nodes and Knows and LivesIn edges. We had observed that different systems make ad-hoc
decisions in how to design these indexes. For example, in the most basic design all of the edges of a node
would be indexed in a single adjacency list. Other designs would partition based on edge labels, i.e., there
would be separate Knows and LivesIn edges. This had important performance implications because the
design required different workloads to run different predicates when finding patterns in workloads. As a
simple example, if all edges are stored in a single list, a system needs to run additional predicates when
finding only Knows edges of a node, which could be avoided if edges are partitioned by edge labels.

Amine quickly realized that the right way to understand existing adjacency list designs were as different
but fixed materialized views, which is the standard technique in DBMSs to store results of ad-hoc queries
in relations. For example, in the design that partitions by edge labels, when a system accesses the Knows
adjacency list of node, the system effectively implicitly evaluates the edgeLabel=Knows predicate/query.
The first thing Amine realized was that there was no principled reason to limit the design space of indexes
to partitioning on edge labels. One could also consider partitioning based on values of other edge properties
(e.g., a year property storing in which year a User got to Know another User). Then, Amine and my Master’s
student studied which materialized views should be supported in adjacency list indexes of GDBMSs and how
we can use these views in the system’s query plans. Lead by Amine, they designed an end-to-end solution
that consisted of a new indexing sub-system which could store edges in nested partitions, support arbitrary
predicates, and an optimizer that could choose which views to use in query plans. Importantly this work
blended very nicely with Amine’s work on WCOJ algorithms, as we were able to show plans that used
WCOJ-like multiway intersections of values that came from arbitrary views, that were indexed as adjacency
lists. This work was published in the ICDE 2021 Conference in a paper titled “A+ indexes: Tunable and
Space-efficient Adjacency Lists in GDBMSs“. Although the design Amine lead was not new, it was the right
way to understand what adjacency list indexes are in GDBMS: they are materialized views over the edge

records. This is very characteristic of Amine’s research: instead of attempting to produce a novel approach
for the sake of producing novel solutions, his instinct is to diligently understand prior literature and building
on, modifying and reinterpreting a prior solution, which itself requires producing novel ideas.

Factorized Query Processing:. Amine’s third important piece of work focused on workloads that contained
acyclic patterns, such as when finding long paths or large star-shaped patterns in graph databases. In many
cyclic queries, such patterns are computed frequently as sub-patterns. We had realized in our work on WCOJs
that for many queries, including cyclic ones, often the bottleneck was the large intermediate results generated
for those acyclic sub-patterns in the query. Unlike WCOJs, which can reduce the number of intermediate
results, for acyclic queries, such a reduction is often not possible: it is in the nature of the databases with
many-to-many relations that they can contain many acyclic patterns. For example, on a k-regular graph,
there are kn stars for an n-star pattern. I had heard of a new theory on factorized databases from the theory
community that argued that the results of acyclic sub-queries should be represented in a compressed format
as unions of Cartesian products instead of standard flat tuples. For example, consider a node v⇤ that has k
outgoing edges to nodes {v1, ..., vk}. The result of a 2-star pattern (a)<�(b)�>(c) where b matches v⇤ can
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 be represented as (a={v1, ..., vk}) ⇥ (b = v⇤) ⇥ (c={v1, ..., vk}), instead of k2 many flat tuples. I pointed
Amine to this literature and said the answer to better handling acyclic intermediate results may lie there.

Amine quickly mastered this literature and understood the prior attempts to represent relations in factorized
formats. He was deeply unsatisfied with existing systems work as they were dropping all common wisdom
on how to architect query processors. For example, they were all based on full intermediate relation materi-
alization instead of pipelining tuples between operators. Similarly, they dropped vectorization—the standard
query processor architecture for analytics-oriented columnar DBMSs—in which operators pass vectors, e.g.,
1024, off flat tuples to each other. Instead, prior solutions would pass tries between operators, which required
re-writing the entire query processor. He immediately wanted to fill this gap and architect a modern factor-
ized query processor: one that adopts pipelining and vectorization. Amine’s solution was a very practical
design that was based on two simple insights: (1) most acyclic queries GDMBSs evaluate are long paths
and stars; and (2) if we give up the goal of producing arbitrary Cartesian product representations, we can
develop a practical processor that gives us the benefits of factorization without major changes to the rest the
operators. Amine’s design was very elegant: instead of passing a single vector of tuples between operators,
as done in traditional analytics-oriented columnar DBMSs, operators would pass multiple vectors of tuples,
which would represent the sets in the Cartesian product. His design ensured that operators would continue to
work on a single vector of tuples so the operators never had to take Cartesian products. As I told him myself,
the meeting when he proposed the design was my favorite meeting of the entire GraphflowDB project. It
was an elegant and a very practical design and very easy to explain in writing. This work was published in
PVLDB 2021 in a paper titled “Columnar Storage and List-based Processing for GDBMSs”. Amine appears
as a second author on this paper because I gave the advice to merge his work with another Master’s stu-
dent’s thesis work, which was on columnar storage techniques. This is because what Amine did was in fact
a novel columnar query processing technique, as it extended vanilla vectorized query processors of columnar
DBMSs. Once we decided to write a single paper, we thought that the query processor part of the paper was
relatively shorter than the work on the columnar storage designs, which was lead by my Master’s student.

Summary: I joined University of Waterloo in 2016 and am affiliated with the Data Systems Group (DSG)
there. During my tenure here, DSG has contained between 4-6 different faculty who publish in core data
management venues, such as VLDB, SIGMOD, and ICDE conferences. Over that period of time, I have
met or observed close to 20 PhD students who completed their theses in these fields. Along with Xu Chu
(Georgia Tech), I rank Amine in the top two PhDs from our group in that time frame in terms of their abilities
as researchers. Focusing on our students who have taken faculty jobs: I rank both Xu and Amine above
Michael Mior (Rochester Institute of Technology) and Chang Ge (University of Minnesota), and much above
Ahmed El-Roby (Carleton Unviersity, Canada). Amine and Xu have very different styles, so they are difficult
to rank. Xu produces core algorithmic work or focuses on algorithmic optimizations in systems, instead
of implementation-heavy systems optimizations. In contrast, Amine does and I believe will continue doing
implementation-heavy systems research. Xu is much stronger in his algorithmic skills and is more prolific
than Amine but Amine is the clear top systems-oriented researcher to graduate from DSG in the last 6 years.

I next want to clarify a point that may be relevant for interpreting Amine’s file. The above work I have
outlined have also formed an important part of my tenure case. Although I had set the long term vision for
the GraphflowDB project before Amine joined my group, GraphflowDB was not the only such project I had
started early in my Waterloo years. I had done the majority of my PhD work on theoretical data management
topics and advised several theory students in the beginning of my Waterloo years. I also started several
concurrent graph systems projects with other graduate students, such as GraphSurge, GraphWrangler and
a failed attempt to develop a distributed GDBMS. In the end, I ended up focusing around GraphflowDB
because Amine’s work was more productive compared to other systems or theoretical projects I was doing.
Therefore, my focus organically followed my most productive graduate student and project.
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 Amine is an outstanding and very ambitious researcher who has done a very high quality work during his
graduate school. He compares favorably to the other students I have seen graduate from DSG. His work has
appeared in top data management venues of PVLDB, ICDE, TODS, and SIGMOD. He was given both a
Microsoft and a Facebook PhD Fellowships (had to choose one of them and chose Microsoft). He knew from
day one in my group what type of researcher he wanted to be: a researcher who works on novel architectures
for core components of large-scale data management and processing systems. He was inspired by the long-
lived research projects that developed successful open-source systems like Spark from Berkeley, MonetDB
from CWI, and C-Store from MIT, each of which became very impactful work that changed how we develop
DBMS for different workloads. Amine is completing a thesis that is similar in style to these theses for
graph workloads with many-to-many joins. His thesis has already made visible impact in the field: Amine’s
techniques are integrated into a GDBMS/graph platform at Alibaba and Amine has given several seminars in
different research groups, such as Northeastern University, University of Edinburgh, CWI, and a workshop
on factorized databases organized by Dan Olteanu, the pioneer of factorized databases. When he forms his
group, you can expect that Amine will start similar long-term systems projects of his own, and aim to produce
impactful and high quality publications instead of aiming to produce a large quantity of publications. As he
articulates in his research statement, he will be pursuing an agenda in the “systems for machine learning”
space, studying the challenges that data systems can tackle for graph machine learning workloads. I think
this area is ripe with many interesting problems and will give Amine a lot of space to grow.

Amine is further an excellent lecturer and fully prepared to teach courses on data management and more
broadly systems. I have seen countless presentations by him, co-presented with him a tutorial in VLDB
2022, and invited him to give a lecture in my graduate seminar on knowledge graphs. Finally, Amine has
a very warm, positive, and a very optimistic personality. I have very fond memories of watching him do
freestyle football (see his video links at the bottom of his website) or being surprised to find him performing
on stage in an improv comedy theater I happened to drop by in Waterloo. I have no doubt he will be known
as a fun-loving and positive friend to his colleagues throughout his career.

Please do not hesitate to contact me if you have further questions on my opinions about Amine.

Sincerely,

Semih Salihoğlu
Associate Professor and David R. Cheriton Faculty Fellow
David Cheriton School of Computer Science
University of Waterloo, Canada
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22 November 2022 

Dear Faculty Hiring Committee, 
I am writing to strongly support Amine Mhedhbi’s application to your institution for a faculty 
position. Amine is a very good young researcher who has done some very interesting work and 
has many ideas that should lead to more high-quality results. 
I have followed Amine’s work since he started his PhD work at Waterloo under the supervision 
of Semih Salihoglu. I am a member of his PhD examining committee, so I know most of his work 
well. 
Early in his PhD, Amine and another PhD student were the lead authors of a survey paper on 
graph use and challenges; I was also a co-author. The objective of the survey was to get a full 
understanding of the uses of graph databases and compare them with the research focus that 
we find in published literature. This involved designing a survey, recruiting responders and 
analyzing the results. The research results were published in Proceedings of VLDB Endowment 
(PVDB) in 2018, and the paper was selected as the best paper of the VLDB 2018 Conference. 
We then expanded the paper with interviews by a number of large companies and a fuller study 
of literature. The extended paper appeared in VLDB Journal. The findings of this survey were 
instrumental in informing Amine’s work. 
Amine’s PhD work involves processing of large-scale graph data. Graph data has become 
important as part of the “big data,” because in many modern applications, the relationships 
among entities have become as important as entities themselves, and graphs capture these 
relationships naturally. Work in graph data management falls into two categories based on their 
workloads. The first workload class consists of analytical queries (or analytical workloads) 
whose evaluation typically requires processing each vertex in the graph over multiple iterations 
until a fixpoint is reached. Examples of analytical workloads include PageRank computation, 
clustering, finding motifs (patterns) in graphs, and graph machine learning. The second class of 
workloads is called  online queries (or online workloads), which are not iterative and usually 
require access to a portion of the graph and whose execution can be assisted by properly 
designed auxiliary data structures. Examples of online workloads are reachability queries, and 
single-source shortest path. Amine’s work mostly falls into the first category – graph analytics. 
Many of the graph analytics algorithms are difficult to scale to the large graph datasets that are 
in use today. In many cases, the use of theoretically appealing techniques requires careful 
redesign and novel architecting to be practically useful. This requires deep algorithmic 
considerations, systems architecting, and very careful and extensive analysis. Amine’s research 
does this very well and demonstrably achieves superior results. His work demonstrates a deep 
understanding of the theoretical underpinnings, algorithmic development, (prototype) system 
building and very careful experimental analysis. 
Amine’s research results have been integrated into GraphflowDB, which is a system that 
focuses on efficient subgraph computation over dynamic graphs. Although the project involves 
other students, Amine is the primary graduate student. The project involves considerable 
algorithmic and systems research and has led to a prototype that was demonstrated at the 2017 
SIGMOD Conference. GraphflowDB incorporates three of Amine’s contributions that I 
summarize below. 
One of Amine’s contributions is efficient joins on partial results of graph match queries. Existing 
techniques typically follow binary join whose intermediate results can be very large, and 
therefore, may not be suitable for large graphs. Amine investigated how to architect and build a 
technique, called worst-case optimal join (WOJ), into a graph database system. This required 



	

developing algorithms around WOJ and how to architect the system to fully utilize this 
technique. He went further and demonstrated that worst-case optimal join is not always the 
preferred technique, which was contrary to what we thought at the time. His PVLDB 2019 paper 
demonstrated that WOJ performs well under certain circumstances but not others. Amine 
studied the problem of expanding the query optimizer search space by considering both binary 
and WOJ, giving the optimizer more options in finding an efficient execution plan. The paper 
demonstrates both the feasibility and the usefulness of this approach. This work was 
subsequently extended by developing a cost-based optimizer for graph DBMSs in support of 
both one-time and continuous queries. The optimizer can take a set of continuous queries, 
decompose them, find common decompositions across the set of these queries and pick an 
efficient execution plan. This extended paper was published in ACM Transactions on Database 
Systems (TODS) in 2021. 
In a second line of research, Amine investigated storage structures for graph DBMSs, which is 
important for the GraphflowDB system that is disk-based. He worked on two problems that are 
important for storage system design. One line of work involves designing a columnar storage 
structure. This is not a direct adaptation of columnar storage in relational systems; he developed 
a unique list-based query processing technique and data structures for optimizing the edge and 
vertex lists. This work was published in PVLDB in 2021. The second line of work he has 
conducted involves improvements to the well-known adjacency list indexes. This data structure 
is efficient and works well, but its construction is based on a given workload composition and 
the structure is static. His research has led to the development of a tunable adjacency list index 
structure that allows adaptation to workload changes. This work is published in ICDE 
Conference in 2021.  
The third line of work he has done is along factorized query processing. He published his initial 
work in this area in his PVLDB 2021 paper I mentioned above. I know that part well, but there is 
more to his work in that area, and I do not fully know that work – I have not yet seen his 
dissertation where the full scope is described. I find the approach very interesting and novel, but 
I will leave deeper comments on that work to his supervisor. 
Amine’s research results to date demonstrate his ability to dig deep into problems to fully 
understand and to find efficient ways of solving them. The different topics he tackled show that 
he can maneuver in his research space easily. He finds unique problems and develops novel 
solutions – even when he adapts previously developed techniques. He has been very well 
trained in finding the right problems and figuring out how to attack them. 
Amine is an excellent graduate student with a very good background. He has a very good 
research sense, and he is articulate in discussing his research ideas. He has done very good 
work in his PhD research and has built a very respectable publication list. He is a serious 
researcher who does not mind doing the necessary work (reading, implementing, 
experimenting) to find a solution. I strongly and enthusiastically support his application for a 
faculty position. 

Sincerely, 

	
	

M. Tamer Özsu 
University Professor 
tamer.ozsu@uwaterloo.ca 
 



	

 
M. Tamer Özsu is a University Professor in the David R. Cheriton School of Computer Science at the University of Waterloo. He 
also holds a Distinguished Visiting Professorship at Tsinghua University, China. He is the Founding Director of Waterloo-
Huawei Joint Innovation Laboratory since 2018; he was the Director of the Cheriton School from January 2007 to June 2010, and 
the Associate Dean of Research of the Faculty of Mathematics from January 2014 to June 2016. Previously he was with the 
Department of Computing Science of the University of Alberta (1984–2000) where he served as Acting Department Chair in 
1994–95.  He has held visiting scientist/professor positions in US, France, Germany, Singapore, Italy, and Switzerland during his 
sabbatical leaves. His PhD degree is from the Ohio State University (1983). His research is on data management focusing on 
large-scale data distribution and management of non-traditional data. He is the co-author (with Patrick Valduriez) of the book 
Principles of Distributed Database Systems, which is considered the classic textbook on the topic and is now in its fourth edition 
with translations into Chinese and Portuguese. He has also edited, with Ling Liu, the Encyclopedia of Database Systems, whose 
second edition was released in 2019. He is a Fellow of the Royal Society of Canada, American Association for the Advancement 
of Science (AAAS), Association for Computing Machinery (ACM), The Institute of Electrical and Electronics Engineers (IEEE), 
Asia-Pacific Artificial Intelligence Association (AAIA), and Fellow of the Balsille School of International Affairs (BSIA). He is 
an elected member of the Science Academy, Turkey, and a member of Sigma Xi. He is the current and past holder of Cheriton 
Faculty Fellowship (2013–2016 and 2018–2024), a University Research Chair (2004–2011), and a Faculty Research Fellowship 
(2000–2003) at the University of Waterloo, and a McCalla Research Professorship (1993–1994) at the University of Alberta. He 
is the recipient of the IEEE Innovation in Societal Infrastructure Award (2022), CS-Can/Info-Can Lifetime Achievement Award 
(2018), ACM SIGMOD Test-of-Time Award (2015), the ACM SIGMOD Contributions Award (2006), The Ohio State 
University College of Engineering Distinguished Alumnus Award (2008), and multiple Outstanding Performance Awards at the 
University of Waterloo (2004, 2009, 2014, 2019). He was the Founding Editor-in-Chief of ACM Books (2013—2019) and 
Synthesis Lectures in Data Management (2009–2013). He has served as the Program Chair of all three major database 
conferences: VLDB (2004), ICDE (2007), and SIGMOD (2014), and has served on many Technical Program Committees. He is 
on the editorial boards of three journals, and two book series. He chairs the Advisory /Steering Committee of Hong Kong 
Polytechnic University’s Research Centre on Data Science and Artificial Intelligence and serves on the Technical Advisory 
Committee of National Engineering Laboratory for Big Data Software of Tsinghua University, on the Advisory Boards of Hong 
Kong University of Science and Technology School of Engineering, and Hong Kong University of Science and Technology Big 
Data Institute. He previously served as Chair of ACM SIGMOD (2001–2005), Member and Chair of Natural Sciences and 
Engineering Research Council (NSERC) of Canada’s Computer Science Grant Selection Committee (1991–1994), Member of 
Computer Research Association (CRA) Board (2009–2013), EIC of VLDB Journal and on the Scientific Advisory Board of 
National Institute of Informatics of Japan (2011–2017), Technical Expert Advisory Committee of City University of Hong Kong 
Multimedia Software Engineering Research Center (2014–2019), ACM Publications Board (2002–2017), the Board of VLDB 
Endowment (1996–2002). 



Microsoft Corporation  Tel 425 882 8080 

One Microsoft Way  Fax 425 936 7329 

Redmond, WA 98052-6399 http://www.microsoft.com/ 

 

 

 

 

Microsoft Corporation is an equal opportunity employer. 

 

November 28, 2022 
 
Dear Faculty Recruiting Committee,  

This letter is to recommend Amine Mhedhbi for a position in your department. I have known Amine since last 
spring when I hired him as an intern. He worked for me from June through September this year on a transaction 
processing project, and we have continued to collaborate since he returned to Waterloo. 
 
When considering Amine for a position, I was impressed by his publication record, recommendations, and 
interview. But I hesitated to hire him because his background wasn’t an ideal fit for my project. Since he 
volunteered to do a lot of reading about transaction processing before starting his internship, I decided to take a 
risk and hire him. He delivered far beyond my expectations. He arrived with a better understanding of 
transactions in a data sharing system than many graduate students who specialize in transaction processing. 
 
Our project is on distributed lock management in a data-sharing database system. In this type of system, the 
database system runs on multiple nodes of a data center network, and the instances share a single copy of the 
database on network-attached storage. Examples are Azure SQL Hyperscale, AWS Aurora, Google AlloyDB, 
Oracle RAC, and IBM DB2 Data Sharing. The project involves developing a high-performance lock manager, 
locking protocols to synchronize distributed caches, and a simulator to evaluate those protocols. Amine dove 
into detailed design and coding almost immediately and got the job done. We’re now in the evaluation phase 
and continue to innovate with new protocols. 
 
The project is all about performance. Amine persevered in diagnosing and fixing several subtle sources of 
inefficiency we encountered along the way. He demonstrated an excellent understanding of CPU cache 
architecture, multicore, and hardware synchronization.  And he contributed several ideas to optimize the cache 
synchronization protocol, which is the core of our research.  
 
Amine gave an excellent end-of-internship talk to our group. Several researchers commented that they found 
the work very interesting. I’m confident we’ll publish a top-tier conference paper about it. Beyond that I cannot 
share details since it is unpublished work. 
 
Amine writes beautiful, well-documented code. Perhaps this isn’t the most valuable skill for a professor. 
However, it reflects the deep thinking he applies to his work and his desire for elegant solutions.  
 
Amine learns quickly, thinks deeply, is articulate, and works very hard. During his internship we talked daily. He 
was a great foil to brainstorm and critically analyze new ideas. He’s always cheerful and a pleasure to work with. 
I recommend him very strongly and without any reservations for a position in your department. 
 
Sincerely, 
 

 
Philip A. Bernstein 
Distinguished Scientist, Microsoft Research 
Affiliate Professor, University of Washington 
Member, National Academy of Engineering 



6

Optimizing One-time and Continuous Subgraph Queries

using Worst-case Optimal Joins

AMINE MHEDHBI, CHATHURA KANKANAMGE, and SEMIH SALIHOGLU,
University of Waterloo

We study the problem of optimizing one-time and continuous subgraph queries using the new worst-case
optimal join plans. Worst-case optimal plans evaluate queries by matching one query vertex at a time using
multiway intersections. The core problem in optimizing worst-case optimal plans is to pick an ordering of
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1 INTRODUCTION

Subgraph queries, which find instances of a query subgraph Q (VQ ,EQ ) in an input graphG (V ,E),
are a fundamental class of queries supported by graph databases. We refer to finding subgraphs in a
static graph as one-time subgraph queries and monitoring subgraphs in a dynamic graph as contin-

uous subgraph queries. Subgraph queries appear in many applications where graph patterns reveal
valuable information [61]. For example, Twitter searches for diamonds in their follower network
for recommendations [23], cliquelike structures in social networks indicate communities [48], and
cyclic patterns in transaction networks indicate fraudulent activities [12, 44].

As observed in prior work [2, 6], a subgraph queryQ is equivalent to a multiway self-join query
that contains one E(ai ,aj ) (for Edge) relation for each ai→aj ∈ EQ . The top box in Figure 1(a)
shows an example query, which we refer to as diamond-X. This query can be represented as:

QDX = E1 �� E2 �� E3 �� E4 �� E5 where
E1 (a1,a2), E2 (a1,a3), E3 (a2,a3), E4 (a2,a4), and E5 (a3,a4) are copies of E(ai ,aj ).

We study evaluating a general class of subgraph queries where VQ and EQ can have labels. For
labelled queries, the edge table corresponding to the query edge ai→aj contains only the edges
in G that are consistent with the labels on ai , aj , and ai→aj . Subgraph queries are evaluated with
two main approaches:

• Query-edge(s)-at-a-time approach executes a sequence of binary joins to evaluateQ . Each bi-
nary join effectively matches a larger subset of the query edges ofQ inG untilQ is matched.

• Query-vertex-at-a-time approach picks a query vertex ordering σ of VQ and matches Q one
query vertex at a time according to σ . Query vertex matching uses a multiway join operator
that performs multiway intersections. This is the computation performed by the recent
worst-case optimal join algorithms [49, 50, 66]. In graph terms, this computation intersects
one or more adjacency lists of vertices to extend partial matches by one query vertex.

We refer to plans with only binary joins as BJ plans, with only intersections as WCO (for worst-
case optimal) plans, and with both operations as hybrid plans. Figure 1(a), (b), and (c) show an
example of each plan for the diamond-X query.

Recent theoretical results [8, 50] showed that BJ plans can be suboptimal on cyclic queries.
Specifically, the size of the intermediate results of BJ plans, on cyclic queries, can be asymptotically
larger than the maximum possible final output size of the query. This maximum output size is now
known as a query’s AGM bound. Given the sizes of a set of relations |R1 |, . . . , |Rn | and a join query
Q on these relations, the AGM bound is the maximum output size ofQ under all possible database
instances with these relation sizes. These results also showed that WCO plans correct for this sub-
optimality. However, this theory has two shortcomings. First, the theory does not give advice as to
how to pick a good query vertex ordering (QVO) for WCO plans. Specifically, the theory demon-
strates any query vertex ordering achieves worst-case optimality. In practice however, different
query vertex orderings have very different performances. Second, the theory does not capture
plans with binary joins, which have been shown to be efficient on many queries by decades-long
research in databases as well as several recent work in the context of subgraph queries [2, 38].

In this work, we study how to generate efficient plans that use WCO join-style multiway inter-
sections and use them to evaluate one-time and continuous subgraph queries in graph database
management systems. We describe two cost-based optimizers that we developed for GraphflowDB:
(i) a dynamic programming optimizer that generates efficient plans for one-time subgraph queries
using a mix of worst-case optimal join-style multiway intersections and binary joins and (ii) a
greedy optimizer that generates WCO plans for continuous queries that share computation across
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Fig. 1. Example plans. The subgraph on the top box of each plan is the actual query.

Table 1. Abbreviations Used Throughout the Paper

Abbrv. Explanation Abbrv. Explanation

BJ Binary Join E/I Extend/Intersect
CP Combined Plan GHD Generalized Hypertree Decompositions
DSQ Delta Subgraph Query QVO Query Vertex Ordering
EH EmptyHeaded WCO Worst-case Optimal

queries. Our cost metric for WCO plans captures the various runtime effects of query vertex or-
derings we have identified. Our cost-based optimizers’ plans are significantly more efficient than
the plans generated by prior solutions using WCO plans that are either based on heuristics or
have limited plan spaces. The optimizers of both native graph databases, such as Neo4j [43], as
well as those that are developed on top of RDBMSs, such as SAP’s graph database [60], are often
cost-based. As such, our work gives insights into how to integrate the new worst-case optimal join
algorithms into cost-based optimizers of existing systems.

In the remainder of this section, we give an overview of existing solutions for one-time and con-
tinuous subgraph queries, our approach, and contributions. Table 1 summarizes the abbreviations
used throughout the article.

1.1 Single One-time Subgraph Query Optimization

1.1.1 Existing Approaches. Perhaps the most common approach adopted by graph databases
(e.g., Neo4j), RDBMSs, and RDF systems [47, 70] is to evaluate subgraph queries with BJ plans. As
observed in prior work [49], BJ plans are inefficient in cliquelike queries, such as cliques. Several
prior solutions, such as BiGJoin [6], and the LogicBlox system have studied evaluating queries
with only WCO plans, which, as we demonstrate in this article, are not efficient for large cycle
queries. In addition, these solutions either use simple heuristics to select query vertex orderings
or arbitrarily select them.
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Table 2. Comparisons against Solutions for One-time Queries Using WCO Joins

QVO Binary Joins?

BiGJoin Arbitrarily No
LogicBlox Heuristics or Cost-based1 No
EmptyHeaded Arbitrarily Cost-based: depends on Q
CTJ Heuristic + Cost-Based (uses caching) No
GraphflowDB Cost-based & Adaptive Cost-based: depends on Q and G

The EmptyHeaded system [2], which is the closest to our work, is the only system we are aware
of that mixes worst-case optimal joins with binary joins. EmptyHeaded (EH) plans are general-

ized hypertree decompositions (GHDs) of the input query Q . A GHD is effectively a join tree
T of Q , where each node of T contains a sub-query of Q . EmptyHeaded evaluates each sub-query
using a WCO plan, i.e., using only multiway intersections, and then uses a sequence of binary
joins to join the results of these sub-queries. As a cost metric, EmptyHeaded uses the generalized

hypertree widths of GHDs and picks a minimum-width GHD. This approach has three shortcom-
ings: (i) If the GHD contains a single sub-query, then EmptyHeaded arbitrarily picks the query
vertex ordering for that query; otherwise, it picks the orderings for the sub-queries using a simple
heuristic; (ii) the width cost metric depends only the input query Q , so when running Q on dif-
ferent graphs, EmptyHeaded always picks the same plan; and (iii) the GHD plan space does not
allow plans that can perform multiway intersections after binary joins. As we demonstrate, there
are efficient plans for some queries that seamlessly mix binary joins and intersections and do not
correspond to any GHD-based plan of EmptyHeaded.

Cache Trie Join (CTJ) [28] is another system using a WCO join algorithm. An important ad-
vantage of WCO join algorithms is their small memory footprints. For example, when executed
in a purely pipelined fashion, such algorithms do not require memory to keep large intermediate
results. CTJ observes that by keeping a cache of certain intermediate results and reusing these
results, the performance of WCO join algorithms can be improved.

1.1.2 Our Contributions. Table 2 summarizes how our approach compares against prior so-
lutions. Our first main contribution is a dynamic programming optimizer that generates plans
with both binary joins and an Extend/Intersect operator that extends partial matches with one
query vertex. LetQ containm query vertices. Our optimizer enumerates plans for evaluating each
k-vertex sub-query Qk of Q , for k=2, . . . ,m, with two alternatives: (i) a binary join of two smaller
sub-queries Qc1 and Qc2 or (ii) by extending a sub-query Qk-1 by one query vertex with an inter-
section. This generates all possible WCO plans for the query as well as a large space of hybrid
plans that are not in EmptyHeaded’s plan space. Figure 2 shows an example hybrid plan for the
6-cycle query that is not in EmptyHeaded’s plan space.

For ranking WCO plans, our optimizer uses a new cost metric called intersection cost (i-cost).
I-cost represents the amount of intersection work that a plan P will do using information about
the sizes of the adjacency lists that will be intersected throughout P . For ranking hybrid plans,
we combine i-cost with the cost of binary joins. Our cost metrics account for the properties of
the input graph, such as the distributions of the forward and backward adjacency lists sizes and
the number of matches of different subgraphs that will be computed as part of a plan. Unlike
EmptyHeaded, this allows our optimizer to pick different plans for the same query on different
input graphs. Our optimizer uses a subgraph catalogue to estimate i-cost, the cost of binary joins,
and the number of partial matches a plan will generate. The catalogue contains information about:
(i) the adjacency list size distributions of input graphs; and (ii) selectivity of different intersections
on small subgraphs.
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Fig. 2. Example plan not in EmptyHeaded’s GHD-based plan space. Top box is the actual query.

Our second contribution is an adaptive technique for picking the query vertex orderings of WCO
parts of plans during query execution. Consider a WCO part of a plan that extends matches of
sub-query Qi into a larger sub-query Qk . Suppose there are r possible query vertex orderings,
σ1, . . . ,σr , to perform these extensions. Our optimizer tries to pick the ordering σ ∗ with the lowest
cumulative i-cost when extending all partial matches of Qi in G. However, for any specific match
t of Qi , there may be another σj that is more efficient than σ ∗. Our adaptive executor re-evaluates
the cost of each σj for t based on the actual sizes of the adjacency lists of the vertices in t , and
picks a new ordering.

We incorporate our optimizer into GraphflowDB and evaluate it across a large class of subgraph
queries and input graphs. We show that our optimizer is able to pick close to optimal plans across
a large suite of queries and our plans, including some plans that are not in EmptyHeaded’s plan
space, are up to 68× more efficient than EmptyHeaded’s plans. We show that adaptively pick-
ing query vertex orderings improves the runtime of some plans by up to 4.3×, in some queries
improving the runtime of every plan and makes our optimizer more robust against picking bad
orderings.

1.2 Multiple Continuous Subgraph Queries Optimization

Continuous subgraph query evaluation is the problem of detecting the emergence and deletions
of a set of (often a small number of) queries that are registered in a system, as the system gets
updates to the input graph it manages. Specifically, the problem is to produce a set of newly added
and deleted matches of a query after each update to the graph, as a set of tuples with + and - tags,
respectively. In this work, we consider the updates to be only edge insertions and deletions. Tradi-
tionally, this functionality is the core of triggers in active database management systems [29, 68].

1.2.1 Existing Approaches. Prior work on continuous subgraph queries has two main short-
comings: (i) They are either designed for a single query instead of multiple queries [6, 14, 30], so
do not benefit from optimization possibilities across queries and/or (ii) require large auxiliary data
structures [14, 30, 34, 55, 58]. We build on the Delta Generic Join incremental view maintenance

(IVM) algorithm from Reference [6]. Delta Generic Join is an IVM algorithm based on an algebraic
IVM technique called delta join query decompositions [11] of queries. Using graph terminology, we
refer to these queries as delta subgraph queries. Figure 3 shows the five delta subgraph queries of
the diamond-X query. Suppose a set Eδ of updates arrive atG. Let Eo be the old edges ofG and En

the new edges ofG after the update, i.e., En = Eo ∪ Eδ . Each query edge of a delta subgraph query
is labelled with δ , o, or n, indicating, upon an update toG, whether the edge should match an edge
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Fig. 3. Example delta subgraph queries for the diamond-X continuous subgraph query.

Table 3. Comparisons against Solutions for Continuous Queries Using WCO Joins

QVO
Multi-Query

Optimization?

Auxiliary Data

Structures?

DeltaBiGJoin [6] Arbitrary No No
GraphflowDBold [29] Heuristics No No
TurboFlux [30] Cost-based No Yes
GraphflowDB Cost-based Yes No

in Eδ , Eo , or En , respectively. Delta Generic Join evaluates each delta subgraph query using a WCO
plan. References [6] and [29] demonstrated the runtime, memory, and theoretical benefits of this
approach. For example, one advantage of the delta subgraph query framework is that it does not
require auxiliary data structures and that under insertion-only workloads, the cumulative compu-
tation performed by Delta Generic Join is worst-case optimal [6]. However, these works focused
on the case of evaluating a single query and assumed the query vertex orderings were given or
picked them using simple heuristics.

1.2.2 Our Contributions. Table 3 summarizes how our approach compares against prior solu-
tions. Our contribution is a greedy optimizer for multiple continuous subgraph queries that builds
upon the delta subgraph query framework. Our optimizer takes as input the delta subgraph query
decompositions of a set of queries Q̄ and outputs a low i-cost combined plan that cumulatively
evaluates all of the delta subgraph queries. We first prove that unlike one-time subgraph queries,
the optimization problem of finding the lowest i-cost combined plan is NP-complete. As a result,
instead of a dynamic programming optimizer, we describe a greedy optimization algorithm that
picks a plan, i.e., a query vertex ordering for each delta subgraph query, and generates a com-
bined plan that shares common operators across the plans of delta subgraph queries. The sharing
opportunity arises when delta subgraph queries share isomorphic components. An important ob-
servation we make is that in absence of perfect symmetry between delta subgraph queries, it is
not possible to share computations at the last operators of each plan, that is often where the ma-
jority of work is done in the plans. We describe an optimization we call partial intersection sharing

that allows partial computation sharing in the operators to increase the amount of computation
sharing across plans. We show that on small sets of queries, our optimizer is able to find close
to optimal plans in terms of wall-clock time in our experimental analysis. On larger queries, we
demonstrate that our optimizer can generate combined plans that are up to 3.51× more efficient
than optimizing and evaluating each delta subgraph query separately. For completeness, for single
continuous subgraph queries, we also provide comparisons against the most efficient continuous
subgraph query algorithm we are aware of called TurboFlux [30].

1.3 Outline

Section 2 provides necessary background. Section 3 and 4.2 describe, respectively, our one-time and
continuous subgraph query optimizers. Section 5 provides several details on the implementation

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 6. Publication date: May 2021.



Optimizing One-time and Continuous Subgraph Queries using Worst-case Optimal Joins 6:7

of our optimizers and GraphflowDB. Section 6 provides extensive experiments studying the per-
formances of our one-time and continuous plans. Finally, Sections 7 and 8 cover related work and
conclude, respectively.

2 PRELIMINARIES

We assume a subgraph queryQ (VQ ,EQ ) is directed, connected, and hasm query verticesa1, . . . ,am

and n query edges. To indicate the directions of query edges clearly, we use the ai→aj and ai←aj

notation. We assume that all of the vertices and edges inQ have labels on them, which we indicate
with l (ai ), and l (ai→aj ), respectively. Similar notations are used for the directed edges in the
input graph G (V ,E). Unlabelled queries can be thought of as labelled queries on a version of G
with a single edge and single vertex label. The outgoing and incoming neighbours of each v ∈ V
are indexed in forward and backward adjacency lists and sorted by their IDs, which allows for fast
intersections.

2.1 Generic Join: A WCO Join Algorithm

Generic Join [49] is a WCO join algorithm that evaluates queries one attribute at a time. We de-
scribe the algorithm in graph terms; Reference [49] gives an equivalent relational description. In
graph terms, the algorithm evaluates queries one query vertex at a time with two main steps:

• Query Vertex Ordering (QVO): Generic Join first picks an order σ of query vertices to
match. For simplicity, we assume σ = a1 . . . am . The projection of a query Q (V ,E) on a set
of vertices X ⊆ V , denoted by ΠXQ , is a query Qx (X ,EX ) such that for any pair ai , aj ∈ X ,
ai→aj ∈ Ex if only if ai→aj ∈ E. We assume the projection of Q onto any prefix of k query
vertices in σ for k = 1, . . . ,m to be connected.2

• Iterative Partial Match Extensions: Generic Join iteratively computes matches for
Q1, . . . ,Qm , where Qk = Π {a1, ...,ak }Q is a subquery that consists of Q’s projection on the
first k query vertices in σ : a1 . . . ak . Each iteration k produces a set of k-matches for Qk ,
where a k-match is a tuple t of size k and t[i], the ith element in t , is the vertex inG match-
ing ai in Qk . The first iteration is produced by matching all vertices in G to a1. To compute
Qk for k > 1, for each (k-1)-match t of Qk-1, Generic Join performs the following computa-
tion. First, the algorithm takes the forward adjacency list of t[i] for each ai→ak ∈ EQ and
the backward adjacency list of t[i] for each ai←ak∈ EQ , where i ≤ k-1 and intersects these
lists. The result of the intersection is the set S={s1, . . . , s� } of possible vertex matches for ak .
Then, for each si ∈ S , one output k-match (t[1], . . . , t[k − 1], si ) is produced by appending
si to t . If S = {}, then no output tuples are produced.
Consider for example, the diamond-X query QDX (VDX ,EDX ) from Section 1 with a QVO
σ = a1a2a3a4. The fourth iteration takes as input the set of 3-matches forQ3=Π {a1,a2,a3 }QDX

and produces a set of 4-matches for QDX . Let t = (v1,v4,v5) be a 3-match, where v1, v4,
and v5 match a1, a2, and a3, respectively. To compute the set S , i.e., vertex matches for
a4, Generic Join intersects the forward adjacency lists of v4 (matching a2) and v5 (match-
ing a3). Note that Generic Join uses the forward adjacency lists, because a2 and a3 are al-
ready matched in the pattern and both a2 and a3 have forward edges to a4 in the query,
i.e., a2→a4 ∈ EDX and a3→a4 ∈ EDX . Assume S = {v3,v11} then the set of output tuples is
{(v1,v4,v5,v3), (v1,v4,v5,v11)}.

2Otherwise, Generic Join would need to compute expensive Cartesian products to produce intermediate results that match

these prefix k query vertices.
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2.2 Delta Generic Join: A WCO IVM Algorithm

Recall from Section 1.2 that evaluating a continuous subgraph query Q is the problem of producing
a set of newly added and deleted matches of Q after each batch of updates to a dynamic graph.
We consider only edge insertions and deletions as updates and assume that the newly added and
deleted tuples should be produced as a set of tuples with + and - tags, respectively, after each
batch. In graph terms, a continuous subgraph query Q is equivalent to the IVM of the join query
that is equivalent to Q , that produces the changes in the output of Q after each update. We adopt
and optimize the Delta Generic Join framework [6] as an IVM algorithm to evaluate continuous
subgraph queries. Let Eδ be a set of updates, Eo be the old edges in G before Eδ , and En the new
edges, i.e., En = Eo ∪ Eδ . We assume added and deleted edges in Eδ are identified by +/− labels,

respectively. Emerged and deleted outputs are identified similarly. We will use ai
δ /o/n−−−−→ aj notation

to refer to the query edges that should match edges in Eδ , Eo , or En . Delta Generic Join uses an
algebraic IVM technique called delta join query decomposition of queries [11], which decomposes
Q , of n query edges, into n delta subgraph queries (DSQ)s, and upon an update evaluates each
delta subgraph query and unions their results to find the emerged and deleted instances of Q :

DSQ1 = a11
δ−→ a12,a21

o−→ a22,a31
o−→ a32, . . . ,an1

o−→ an2

DSQ2 = a11
n−→ a12,a21

δ−→ a22,a31
o−→ a32, . . . ,an1

o−→ an2

...

DSQn = a11
n−→ a12,a21

n−→ a22,a31
n−→ a32, . . . ,an1

δ−→ an2

For example, the delta subgraph queries of the asymmetric triangle query are as follows:

DSQ1 = a1
δ−→ a2,a2

o−→ a3,a1
o−→ a3

DSQ2 = a1
n−→ a2,a2

δ−→ a3,a1
o−→ a3

DSQ3 = a1
n−→ a2,a2

n−→ a3,a1
δ−→ a3

We represent delta subgraph queries visually as labelled graphs as shown in Figure 3. We assume
the updates that arrive, i.e., |Eδ |, are small, say, several edges, compared to existing edges in G.
Delta Generic Join runs each delta subgraph query using Generic Join with a QVO that starts with
the two query vertices in a δ query edge. This ensures running Generic Join leads to a very small
number of 2-matches.

3 OPTIMIZING ONE-TIME QUERIES

In this section, we describe our end-to-end solution to optimizing one-time queries using a mix of
WCO join-style intersections and binary joins. The outline of the section is as follows:

• Section 3.1 describes how we optimize the QVOs of WCO plans, which constitute a subset
of our plan space. We describe our WCO plan space, three performance effects of different
QVOs that we identify and demonstrate through experiments, and the i-cost metric we
designed to capture these effects.

• Section 3.2 describes our full plan space, which includes plans with binary joins, and our
dynamic programming optimizer that generates plans that can seemlessly mix WCO join-
style multiway intersections with binary joins.

• Section 3.4 describes our cost and cardinality estimation technique, which uses a subgraph
catalogue that contains statistics about small size subgraphs.
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• Section 3.5 describes our adaptive technique that changes the QVOs of WCO sub-plans as
actual adjacency list sizes are observed during query execution.

3.1 Optimizing WCO Plans

This section demonstrates our WCO plans, the effects of different query vertex orderings we have
identified, and our i-cost metric for WCO plans. Throughout this section, we present several experi-
ments on unlabelled queries for demonstration purposes. The datasets we use in these experiments
are described in Table 9.

3.1.1 WCO Plans and E/I Operator. Each query vertex ordering σ of Q is effectively a different
WCO plan for Q . Figure 1(b) shows an example σ , which we represent as a chain of m–1 nodes,
where the (k–1)th node from the bottom contains a sub-query Qk , which is the projection of Q
onto the first k query vertices of σ . We use two pipelined operators to evaluate WCO plans:
Scan: Leaf nodes of plans, which match a single query edge, are evaluated with a Scan operator.
The operator scans the forward adjacency lists in G that match the labels on the query edge, and
its source and destination query vertices, and outputs each matched edge u→v ∈ E as a 2-match.
Extend/Intersect (E/I): Internal nodes labelledQk (Vk , Ek ) that have a child labelledQk–1 (Vk–1,
Ek–1) are evaluated with an E/I operator. The E/I operator takes as input (k–1)-matches and ex-
tends each tuple t to a set of k-matches. The operator is configured with one or more adjacency

list descriptors (descriptors for short) and a label lk for the destination vertex, which indicate the
adjacency lists that the operator needs to use when performing intersections when extending each
input k-1-match t it receives. Each descriptor is an (i, dir, le ) triple, where i is the index of a vertex
in t , dir is forward or backward, and le is the label on the query edge the descriptor represents.
For each (k–1)-match t , the operator first computes the extension set S = {s1, . . . , s� } of t by inter-
secting the adjacency lists described by its descriptors, ensuring they match the specified edge and
destination vertex labels, and then produces one k-match, (t[1], . . . , t[k − 1], si ), for each si ∈ S .
When there is a single descriptor, S is the vertices in the adjacency list described by the descriptor.
Otherwise, we intersect the adjacency lists using iterative 2-way in tandem intersections.

When extending a single (k–1)-match t to �many k-matches, all of these k matches are identical
on the first k-1 query vertices of σ (which is equal to t ). Therefore later E/I operators, which might
use the adjacency lists of these k-1 vertices may perform repeated intersections. In such cases, our
E/I operators cache and reuse all or a subset of the intersections they make for the last tuple they
extend. We next explain this optimization through two examples. Consider the diamond-X query
QDX from Section 1 with a QVO σ = a2a3a1a4. Let o3 and o4 be the E/I operators extending the
2-matches to 3-matches and 3-matches to 4-matches, respectively. Let t = (v1,v2) be a 2-match,
wherev1 andv2 matcha2 anda3, respectively.o3, when taking t as input, computes an extension set
S = {s1, . . . , s� } and passes each output 3-match (v1,v2, si ) to o4 consecutively. Therefore, o4 would
intersect the forward adjacency lists ofv1 andv2 � consecutive times. Instead, o4 can compute this
intersection for (v1,v2, s1) once and reuse it for the following �−1 tuples it receives. Similarly,
consider a 4-clique query, which is the same as QDX with an added edge a1→a4. o4, given the
same input, would now intersect the forward adjacency lists of v1, v2, and si . In this example, the
intersections that o4 needs to perform to extend each of the � tuples is different. However, if we
order our 2-way in tandem intersections to start with the forward adjacency lists of v1 and v2,
they would all perform this partial intersection, which we can cache and reuse in each of the �
extensions, i.e., in each extension, we intersect this partial intersection’s result with the forward
adjacency list of si .

Caching and reusing the last full or partial intersection overall improves the performance of
WCO plans as it reduces the amount of repetitive work at the E/I operators. This optimization also
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Table 4. Experiment on Intersection Cache Utility for
Diamond-X

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

Cache On 2.4 2.9 3.2 3.3 3.3 3.4 4.4 6.5
Cache Off 3.8 3.2 3.2 3.3 3.3 3.4 8.5 10.7

Table 5. Runtime (seconds), Intermediate Partial Matches (part. m.), and
i-cost of Different QVOs for the Asymmetric Triangle Query

BerkStan Live Journal
QVO time part. m. i-cost time part. m. i-cost
a1a2a3 2.6 8M 490M 64.4 69M 13.1B
a2a3a1 15.2 8M 55,8B 75.2 69M 15.9B
a1a3a2 31.6 8M 55,9B 79.1 69M 17.3B

has a very small memory footprint, since we only store at most one full or one partial intersection
at each E/I operator at any point in time during query execution. As a demonstrative example,
Table 4 shows the runtime of all WCO plans for the diamond-X query with caching enabled and
disabled on the Amazon graph. The orderings in the table are omitted. 4 of the 8 plans utilize the
intersection cache and improve their runtime. One of the plans improves by 1.9x.

3.1.2 Effects of QVOs. The work done by a WCO plan is commensurate with the “amount of
intersections” it performs. Three main factors affect intersection work and therefore the runtime
of a WCO plan σ : (1) directions of the adjacency lists σ intersects, (2) the amount of intermediate
partial matches σ generates, and (3) how much σ utilizes the intersection cache. We discuss each
effect next.
Directions of Intersected Adjacency Lists: Perhaps surprisingly, there are WCO plans that have
very different runtimes only because they compute their intersections using different directions of
the adjacency lists. The simplest example of this is the asymmetric triangle query a1→a2, a2→a3,
a1→a3. This query has three QVOs, all of which have the same Scan operator, which scans each
u→v edge inG, followed by three different intersections (without utilizing the intersection cache):

• σ1:a1a2a3: intersects both u and v’s forward lists.
• σ2:a2a3a1: intersects both u and v’s backward lists.
• σ3:a1a3a2: intersects u’s forward and v’s backward lists.

Table 5 shows a demonstrative experiment studying the performance of each plan on the Berk-
Stan and LiveJournal graphs (the i-cost column in the table will be discussed in Section 3.1.3 mo-
mentarily). For example, σ1 is 12.1× faster than σ2 on the BerkStan graph. Which combination of
adjacency list directions is more efficient depends on the structural properties of the input graph,
e.g., forward and backward adjacency list distributions.

Different WCO plans generate different partial matches leading to different amount of intersec-
tion work. Consider the tailed triangle query in Figure 4(b), which can be evaluated by two broad
categories of WCO plans:

• Edge-2Path: Some plans, such as QVOa1a2a4a3, extend scanned edgesu→v to 2-edge paths
(u→v←w), and then close a triangle from one of 2 edges in the path.

• Edge-Triangle: Another group of plans, such as QVO a1a2a3a4, extend scanned edges to
triangles and then extend the triangles by one edge.
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Fig. 4. Queries used to demonstrate the effects of QVOs.

Table 6. Runtime (seconds), Intermediate Partial Matches (part.
m.), and i-cost of Different QVOs for the Tailed Triangle Query

Amazon Epinions
QVO time part. m. i-cost time part. m. i-cost
a1a2a3a4 0.9 15M 176M 0.9 4M 0.9B
a1a3a2a4 1.4 15M 267M 1.0 4M 0.9B
a2a3a1a4 2.4 15M 267M 1.7 4M 1.0B
a1a4a2a3 4.3 35M 640M 56.5 55M 32.5B
a1a4a3a2 4.6 35M 1.4B 72.0 55M 36.5B

Let |E |, |2Path |, and |	| denote the number of edges, 2-edge paths, and triangles. Ignoring the
directions of extensions and intersections, the Edge-2Path plans do |E | many extensions plus
|2Path | many intersections, whereas the Edge-Triangle plans do |E | many intersections and |	|
many extensions. Table 6 shows the runtimes of the different plans on Amazon and Epinions
graphs with intersection caching disabled (again the i-cost column will be discussed momentarily).
The first 3 rows are the Edge-Triangle plans. Edge-Triangle plans are significantly faster than
Edge-2Path plans, because in unlabelled queries |2Path | is always at least |	| and often much
larger. Which QVOs will generate fewer intermediate matches depend on several factors: (i) the
structure of the query; (ii) for labelled queries, on the selectivity of the labels on the query; and (3)
the structural properties of the input graph, e.g., graphs with low clustering coefficient generate
fewer intermediate triangles than those with a high clustering coefficient.
Intersection Cache Hits: The intersection cache of our E/I operator is utilized more if the QVO
extends (k–1)-matches to ak using adjacency lists with indices from a1 . . . ak–2. Intersections that
access the (k–1)th index cannot be reused, because ak–1 is the result of an intersection performed
in a previous E/I operator and will match to different vertex IDs. Instead, those accessing indices
a1 . . . ak−2 can potentially be reused. We demonstrate that some plans perform significantly better
than others only because they can utilize the intersection cache. Consider a variant of the diamond-
X query in Figure 4(a). One type of WCO plans for this query extend u→v edges to (u,v,w ) sym-
metric triangles by intersecting u’s backward and v’s forward adjacency lists. Then each triangle
is extended to complete the query, intersecting again the forward and backward adjacency lists
of one of the edges of the triangle. There are two sub-groups of QVOs that fall under this type
of plans: (i) a2a3a1a4 and a2a3a4a1, which are equivalent plans due to symmetries in the query,
so will perform exactly the same operations, and (ii) a1a2a3a4, a3a1a2a4, a3a4a2a1, and a4a2a3a1,
which are also equivalent plans. Importantly, all of these plans cumulatively perform exactly the
same intersections but those in group (i) and (ii) have different orders in which these intersections
are performed, which lead to different intersection cache utilizations.

Table 7 shows the performance of one representative plan from each sub-group: a2a3a1a4 and
a1a2a3a4, on several graphs. The a2a3a1a4 plan is 4.4× faster on Epinions and 3× faster on Amazon.
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Table 7. Runtime (seconds), Intermediate Partial Matches (part.
m.), and i-cost of Some QVOs for the Symmetric Diamond-X Query

Amazon Epinions
QVO time part. m. i-cost time part. m. i-cost
a2a3a1a4 1.0 11M 0.1B 0.9 2M 0.1B
a1a2a3a4 3.0 11M 0.3B 4.0 2M 1.0B

This is because when a2a3a1a4 extends a2a3a1 triangles to complete the query, it will be accessing
a2 and a3, so the first two indices in the triangles. For example if (a2 = v0, a3 = v1) extended to t
triangles (v0,v1,v2), . . . , (v0,v1,vt+2), these partial matches will be fed into the next E/I operator
consecutively, and their extensions to a4 will all require intersecting v0 and v1’s backward adja-
cency lists, so the cache would avoid t–1 intersections. Instead, the cache will not be utilized in the
a1a2a3a4 plan. Our cache gives benefits similar to factorization [52]. In factorized processing, the
results of a query are represented as Cartesian products of independent components of the query.
In this case, matches of a1 and a4 are independent and can be done once for each match of a2a3. A
study of factorized processing is an interesting topic for future work.

3.1.3 Cost Metric for WCO Plans. We introduce a new cost metric called intersection cost (i-cost),
which we define as the size of adjacency lists that will be accessed and intersected by different
WCO plans. Consider a WCO plan σ that evaluates sub-queriesQ2, . . . ,Qm , respectively, whereQ
= Qm . Let t be a (k–1)-match of Qk–1 and suppose t is extended to instances of Qk by intersecting
a set of adjacency lists, described with adjacency list descriptors Ak–1. Formally, i-cost of σ is as
follows: ∑

Qk−1∈Q2 ...Qm−1

∑

t ∈Qk–1

∑

(i,dir )∈Ak–1
s.t. (i, dir) is accessed

|t[i].dir |. (1)

We discuss how we estimate i-costs of plans in Section 3.4. For now, note that Equation (1) captures
the three effects of QVOs we identified: (i) the |t .dir | quantity captures the sizes of the adjacency
lists in different directions; (ii) the second summation is over all intermediate matches, capturing
the size of intermediate partial matches; and (iii) the last summation is over all adjacency lists
that are accessed, so ignores the lists in the intersections that are cached. For the demonstrative
experiments we presented in the previous section, we also report the actual i-costs of different
plans in Tables 5, 6, and 7. The actual i-costs are measured in a profiled run of each query. Notice
that in each experiment, i-costs of plans rank in the correct order of runtimes of plans.

There are alternative cost metrics from literature, such as the Cout [16] and Cmm [35] metrics,
that would also do reasonably well in differentiating good and bad WCO plans. However, these
metrics capture only the effect of the number of intermediate matches. For example, they would
not differentiate the plans in the asymmetric triangle query or the symmetric diamond-X query,
i.e., the plans in Tables 5 and 7 have the same actual Cout and Cmm costs.

3.2 Full Plan Space and Dynamic Programming Optimizer

In this section, we describe our full plan space, which contain plans that include binary joins in
addition to the E/I operator, the costs of these plans, and our dynamic programming optimizer.

3.2.1 Hybrid Plans and HashJoin Operator. In Section 3.1, we represented a WCO plan σ as a
chain, where each internal node ok had a single child labelled with Qk , which was the projection
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of Q onto the first k query vertices in σ . A plan in our full plan space is a rooted tree as follows.
Below, Qk refers to a projection of Q onto an arbitrary set of k query vertices.

• Leaf nodes are labeled with a single query edge of Q .
• Root is labeled with Q .
• Each internal node ok is labeled with Qk = {Vk ,Ek }, with the projection constraint that Qk

is a projection of Q onto a subset of query vertices. ok has either one child or two children.
If ok has one child ok–1 with label Qk–1 = {Vk–1, Ek–1}, then Qk–1 is a subgraph of Qk with
one query vertex qv ∈ Vk and qv ’s incident edges in Ek missing. This represents a WCO-
style extension of partial matches of Qk–1 by one query vertex to Qk . If ok has two children
oc1 and oc2 with labels Qc1 and Qc2, respectively, then Qk = Qc1 ∪Qc2 and Qk � Qc1 and
Qk � Qc2. This represents a binary join of matches Qc1 and Qc2 to compute Qk .

As before, leaves map to Scan operators, an internal node ok with a single child maps to an E/I
operator. If ok has two children, then it maps to a Hash-Join operator:
Hash-Join: We use the classic hash join operator, which first creates a hash table of all of the
tuples of Qc1 on the common query vertices between Qc1 and Qc2. The table is then probed for
each tuple of Qc2.

Our plans are highly expressive and contain several classes of plans: (1) WCO plans from the pre-
vious section, in which each internal node has one child; (2) BJ plans, in which each node has two
children and satisfy the projection constraint; and (3) hybrid plans that satisfy the projection con-
straint. We show in our supplementary Appendix C that our hybrid plans contain EmptyHeaded’s
minimum-width GHD-based hybrid plans that satisfy the projection constraint. For example the
hybrid plan in Figure 1(c) corresponds to a GHD for the diamond-X query with width 3/2. In ad-
dition, our plan space also contains hybrid plans that do not correspond to a GHD-based plan.
Figure 2 shows an example hybrid plan for the 6-cycle query that is not in EmptyHeaded’s plan
space. As we show in our evaluations, such plans can be very efficient for some queries.

The projection constraint prunes two classes of plans:

1. Our plan space does not contain BJ plans that first compute open triangles and then
close them. Consider a triangle QT that is a subquery of a larger query Q . Suppose QT

is a1→a2→a3, a1→a3. Then due to the projection constraint, we do not enumerate any
plan that contains an open triangle QOT , e.g., a1→a2→ a3, of QT , with, say, a later binary
join to close the a1→a3 edge. This is because QOT is not a projection of Q , as it does not
contain the a1→a3 edge. Such BJ plans are in the plan spaces of existing optimizers, e.g.,
Postgres, MySQL, and Neo4j. This is not a disadvantage, because for each such plan, there
is a more efficient WCO plan that computes triangles directly with an intersection of two
already-sorted adjacency lists. Specifically, we force the triangles to be computed by ex-
tending edges (which are projections of Q) directly to QT using WCO-style intersections.

2. More generally, some of our hybrid plans contain the same query edge ai→aj in multi-
ple parts of the join tree, which may look redundant, because ai→aj is effectively joined
multiple times. There can be alternative plans that remove ai→aj from all but one of the
sub-trees. For example, consider the two hybrid plans P1 and P2 for the diamond-X query
in Figure 5(a) and (b), respectively. P2 is not in our plan space, because it does not satisfy
the projection constraint, because a2→a3 is not in the right sub-tree. Omitting such plans
is also not a disadvantage, because we duplicate ai→aj only if it closes cycles in a sub-tree,
which effectively is an additional filter that reduces the partial matches of the sub-tree. For
example, on the Amazon graph dataset, P1 takes 14.2 s and P2 takes 56.4 s so P1 is 3.97×
faster than P2.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 6. Publication date: May 2021.



6:14 A. Mhedhbi et al.

Fig. 5. Two plans: P1 shares a query edge and P2 does not.

3.2.2 Cost Metric for General Plans. A Hash-Join operator performs a very different compu-
tation than E/I operators, so the cost of Hash-Join needs to be normalized with i-cost. This is an
approach taken by DBMSs to merge costs of multiple operators, e.g., a scan and a group-by, into
a single cost metric. Consider a Hash-Join operator ok that will join matches of Qc1 and Qc2 to
computeQk . Suppose there are n1 and n2 instances ofQc1 andQc2, respectively. Then ok will hash
n1 number of tuples into a table and probe this table n2 times. We compute two weight constants
w1 andw2 and calculate the cost of ok asw1n1 +w2n2 i-cost units. These weights can be hardcoded
as done in the Cmm cost metric [35], but we pick them empirically.

3.2.3 Dynamic Programming Optimizer. Algorithm 1 shows the pseudocode of our optimizer.
Our optimizer takes as input a query Q (VQ ,EQ ). We start by enumerating and computing the
cost of all WCO plans (line 1). We discuss this step momentarily. We then initialize the cost of
computing 2-vertex sub-queries of Q , so each query edge, to the selectivity of the label on the
query edge (line 2). Then starting from k = 3 up to |VQ |, for each k-vertex sub-query Qk of Q , we
find the lowest cost plan P∗Qk

to compute Qk in three different ways:

(i) P∗Qk
is the lowest cost WCO plan that we enumerated (line 5).

(ii) P∗Qk
extends the best plan P∗Qk–1

for aQk–1 by an E/I operator (Qk–1 contains one fewer query

vertex than Qk ) (lines 7–10).
(iii) P∗Qk

merges two best plans P∗Qc1
and P∗Qc2

for Qc1 and Qc2, respectively, with a Hash-Join

(lines 12–15).

The best plan for each Qk is stored in a sub-query map. We enumerate all WCO plans, be-
cause the best WCO plan P∗Qk

for Qk is not necessarily an extension of the best WCO plan P∗Qk–1

for a Qk–1 by one query vertex. That is because P∗Qk
may be extending a worse plan Pbad

Qk–1
for

Qk–1 if the last extension has a good intersection cache utilization. Strictly speaking, this prob-
lem can arise when enumerating hybrid plans, too, if an E/I operator in case (ii) above follows a
Hash-Join. A full plan space enumeration would avoid this problem completely but we adopt dy-
namic programming to make our optimization time efficient, i.e., to make our optimizer efficient,
we are potentially sacrificing picking the plan with the lowest estimated-cost. However, we verified
that our optimizer returns the same plan as a full enumeration optimizer in all of our experiments
in Section 6. So at least for our experiments there, we have not sacrificed optimality.

Finally, our optimizer omits plans that contain a Hash-Join that can be converted to an E/I.
Consider the a1→a2→a3 query. Instead of using a Hash-Join to materialize the a2→a3 edges and
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ALGORITHM 1: DP Optimization Algorithm

Require: Q (VQ ,EQ )
1: WCOP = enumerateAllWCOPlans(Q) // WCO plans

2: QPMap: init each ai
le−−→aj ’s cost to the μ (le )

3: for k = 3, . . . , |VQ | do

4: for Vk ⊆ V s.t. |Vk |=k do

5: Qk (Vk ,Ek )=ΠVk
Q ; bestP = WCOP(Qk ); minC =∞

6: // Find best plan that extends to Qk by one query vertex

7: for vj ∈ Vk let Qk–1 (Vk–1,Ek–1) = ΠVk –vj
Qk do

8: P = QPMap(Qk–1).extend(Qk );
9: if cost(P) < minC then

10: bestPlan = P;

11: // Find best plan that generates Qi with a binary join

12: for Vc1,Vc2⊂Vk : Qc1=ΠVc1Qk ,Qc2=ΠVc2Qk do

13: P = join(QPMap(Qc1), QPMap(Qc2));
14: if cost(P) < minC then

15: bestPlan = P;

16: QPMap(Qk ) = bestPlan;

17: return QPMap(Q);

then probe a scan of a1→a2 edges, it is more efficient to use an E/I to extend a1→a2 edges to a3

using a2’s forward adjacency list.

3.3 Plan Generation for Very Large Queries

Our optimizer can take a very long time to generate a plan for large queries. For example, enu-
merating only the best WCO plan for a 20-clique requires inspecting 20! different QVOs, which
would be prohibitive. To overcome this, we further prune plans for queries with more than 10
query vertices as follows:

• We avoid enumerating all WCO plans. Instead, WCO plans get enumerated in the DP part
of the optimizer. Therefore, we possibly ignore good WCO plans that benefit from the in-
tersection cache.

• At each iteration k , out of the tk many plans that evaluate a k-vertex sub-query of Q we
only keep the r lowest cost plans (5 by default). At iteration k + 1, we will extend these r
plans to tk+1 many plans that evaluate (k + 1)-vertex sub-queries but we will again keep on
the top r , so on and so forth.

3.4 Cost and Cardinality Estimation

To assign costs to the plans we enumerate, we need to estimate: (1) the cardinalities of the partial
matches different plans generate; (2) the i-costs of extending a sub-queryQk–1 toQk by intersecting
a set of adjacency lists in an E/I operator; and (3) the costs of Hash-Join operators. We focus on
the setting where each subquery Qk has labels on the edges and the vertices. In the remainder of
this section, we describe how we make these estimations using a data structure called the subgraph

catalogue. However, we emphasize that our optimizer can be used with any estimation technique
that can estimate i-cost and cardinalities of partial matches of sub-queries and a detailed study of
advanced cost and cardinality techniques is beyond this article’s scope and is left for future work.

Table 8 shows an example catalogue. Each entry contains a key (Qk–1,A, alk

k
), whereA is a set of

(labelled) query edges and alk

k
is a query vertex with label lk . Let Qk be the subgraph that extends
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Table 8. A Subgraph Catalogue

(Qk–1 A lk ) |A| μ(Qk )

(1la
lx−→2lb ; L1:2

lx−→; 3la ) |L1 |:4.5 3.8

(1la
lx−→2lb ; L1:2

lx−→; 3lb ) |L1 |:4.5 2.4

(1la
lx−→2lb ; L1:2

ly

−→; 3la ) |L1 |:8.0 3.2

(1la
lx−→2la ; L1:1

lx−→, L2:2
lx−→; 3la ) |L1 |:4.2, |L2 |:5.1 1.5

(1la
lx−→2la ; L1:1

lx←−, L2:2
lx←−; 3la ) |L1 |:9.8, |L2 |:8.4 2.5

(...; ...; ...) ... ...

A is a set of adjacency list descriptors; μ is selectivity.

Qk–1 with a query vertex labelled with alk

k
and query edges inA. Each entry contains two estimates

for extending a match of a sub-query Qk–1 to Qk by intersecting the adjacency lists A describes:

1. |A|: Average sizes of the lists in A that are intersected.
2. μ(Qk ): Average number of Qk that will extend from one Qk–1, i.e., the average number of

vertices that: (i) are in the extension set of intersecting the adjacency lists A; and (ii) have
label lk .

In Table 8, the query vertices of the input subgraph Qk–1 are shown with canonicalized integers,
e.g., 0, 1 or 2, instead of the non-canonicalized ai notation we used before. Note that Qk–1 can be
extended to Qk using different adjacency lists A with different i-costs. The fourth and fifth entries
of Table 8, which extend a single edge to an asymmetric triangle, demonstrate this possibility.

3.4.1 Catalogue Construction. For each inputG, we construct a catalogue containing all entries
that extend an at most h-vertex subgraph to an (h+1)-vertex subgraph. By default, we set h to 3.
When generating a catalogue entry for extending Qk–1 to Qk , we do not find all instances of Qk–1

and extend them to Qk . Instead, we first sample Qk–1. We take a WCO plan that extends Qk–1

to Qk . We then sample z random edges (1,000 by default) uniformly at random from G in the
Scan operator. The last E/I operator of the plan extends each partial match t it receives to Qk by
intersecting the adjacency lists inA. The operator measures the size of the adjacency lists inA and
the number of Qk ’s this computation produced. These measurements are averaged and stored in
the catalogue as |A| and μ(Qk ) columns.

3.4.2 Cost Estimations. We use the catalogue to do three estimations as follows:
1. Cardinality of Qk : To estimate the cardinality of Qk , we pick a WCO plan P that computes
Qk through a sequence of (Q j–1, Aj , lj ) extensions. The estimated cardinality of Qk is the product
of the μ(Aj ) of the (Q j–1, Aj , lj ) entries in the catalogue. If the catalogue contains entries with up
to h-vertex subgraphs and Qk contains more than h nodes, then some of the entries we need for
estimating the cardinality of Qk will be missing. Suppose for calculating the cardinality of Qk , we
need the μ(Ax ) of an entry (Qx–1, Ax , lx ) that is missing, because Qx–1 contains x–1 > h query
vertices. Let z = (x–h–1). In this case, we remove each z-size set of query vertices a1, . . . az from
Qx–1 and Qx , and the adjacency list descriptors from Ax that include 1, . . . , z in their indices. Let
(Qy–1, Ay , ly ) be the entry we get after a removal. We look at the μ(Ay ) of (Qy–1, Ay , ly ) in the
catalogue. Out of all such z set removals, we use the minimum μ(Ay ) we find.

As an example, consider a missing entry for extending Qk–1= 1→2→3 by one query vertex to 4
by intersecting three adjacency lists all pointing to 4 from 1, 2, and 3. For simplicity, let us ignore
the labels on query vertices and edges. The resulting sub-query Qk will have two triangles: (i)
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an asymmetric triangle touching edge 1→2 and (ii) a symmetric triangle touching 2→3. Suppose
entries in the catalogue indicate that an edge on average extends to 10 asymmetric triangles but
to 0 symmetric triangles. We estimate thatQk–1 will extend to zeroQk taking the minimum of our
two estimates.
2. I-cost of E/I operator: Consider an E/I operator ok extending Qk–1 to Qk using adjacency lists
A. We have two cases:

• No intersection cache: When ok does not utilize the intersection cache, we estimate its i-cost
as:

i-cost(ok ) = μ (Qk–1) ×
∑

Li ∈A
|Li |. (2)

Here, μ (Qk–1) is the estimated cardinality of Qk–1, and |Li | is the average size of the adja-

cency list Li ∈ A that are logged in the catalogue for entry (Qk–1,A, alk

k
) (i.e., the |A| column).

• Intersection cache utilization: If two or more of the adjacency list inA, say, Li and Lj , access
the vertices in a partial match Q j that is smaller than Qk–1, then we multiply the estimated
sizes of Li and Lj with the estimated cardinality of Q j instead of Qk–1. This is because we
infer that ok will utilize the intersection cache for intersecting Li and Lj .

Reasoning about utilization of intersection cache is critical in picking good plans. For example, re-
call our experiment from Table 4 to demonstrate that the intersection cache broadly improves all
plans for the diamond-X query. Our optimizer, which is “cache-conscious” picks σ2 (a2a3a4a1). In-
stead, if we ignore the cache and make our optimizer “cache-oblivious” by always estimating i-cost
with Equation (2), it picks the slower σ4 (a1a2a3a4) plan. Similarly, our cache-conscious optimizer
picks a2a3a1a4 in our experiment from Table 7. Instead, the cache-oblivious optimizer assigns the
same estimated i-cost to plans a2a3a1a4 and a1a2a3a4, so cannot differentiate between these two
plans and picks one arbitrarily.
3. Cost of Hash-Joinoperator: Consider a Hash-Join operator joining Qc1 and Qc2. The esti-
mated cost of this operator is simply w1n1 + w2n2 (recall Section 3.2.2), where n1 and n2 are now
the estimated cardinalities of Qc1 and Qc2, respectively.

3.4.3 Limitations. Similarly to Markov tables [3] and MD- and Pattern-tree summaries [39],
our catalogue is an estimation technique that is based on storing information about small size
subgraphs and extending them to make estimates about larger subgraphs. We review these tech-
niques in detail and discuss our differences in Section 7. Here, we discuss several limitations that
are inherent in such techniques. We emphasize again that our optimizer can be used with more
advanced cardinality estimation techniques and studying such techniques is beyond the scope of
this article.

First, as expected our estimates (both for i-cost and cardinalities) get worse as the size of the
subgraphs for which we make estimates increase beyond h. Equivalently, as h increases, our esti-
mates for fixed-size large queries get better. At the same time, the size of the catalogue increases
significantly as h increases. Similarly, the size of the catalogue increases as graphs get more het-
erogenous, i.e., contain more labels. Second, using larger sample sizes, i.e., larger z values, increase
the accuracy of our estimates but require more time to construct the catalogue. Therefore h and z
respectively trade off catalogue size and creation time with the accuracy of estimates. We provide
demonstrative experiments of these tradeoffs in our supplementary Appendix B for cardinality
estimates.
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Fig. 6. Input graph for adaptive QVO example.

Fig. 7. Example adaptive WCO plan.

3.5 Adaptive WCO Plan Evaluation

Recall that the |A| and μ statistics stored in a catalogue entry (Qk–1, A, alk

k
), are estimates of the

adjacency list sizes (and selectivities) for matches of Qk–1. These are estimates based on averages

over many sampled matches of Qk–1. In practice, actual adjacency list sizes and selectivities of
individual matches of Qk–1 can be very different. Let us refer to parts of plans that are chains of
one or more E/I operators as WCO subplans. Consider a WCO subplan of a fixed plan P that has a
QVO σ ∗ and extends partial matches of a sub-query Qi to matches of Qk . Our optimizer picks σ ∗

based on the estimates of the average statistics in the catalogue. Our adaptive evaluator updates
our estimates for individual matches of Qi (and other sub-queries in this part of the plan) based
on actual statistics observed during evaluation and possibly changes σ ∗ to another QVO for each
individual match of Qi .

Example 3.1. Consider the input graph G shown in Figure 6. G contains 3n edges. Consider the
diamond-X query and the WCO plan P with σ = a2a3a4a1. Readers can verify that this plan will
have an i-cost of 3n: 2n from extending solid edges, n from extending dotted edges, and 0 from
extending dashed edges. Now consider the following adaptive plan that picks σ for the dotted and
dashed edges as before but σ ′ = a2a3a1a4 for the solid edges. For the solid edges, σ ′ incurs an i-cost
of 0, reducing the i-cost to n.

3.5.1 Adaptive Plans. We optimize subgraph queries as follows. First, we get a fixed plan P
from our dynamic programming optimizer. If P contains a chain of two or more E/I operators
oi ,oi+1 . . . ,ok , then we replace it with an adaptive WCO plan. The adaptive plan extends the first
partial matches Qi that oi takes as input in all possible (connected) ways to Qk . In WCO plans oi

is Scan and Qi is one query edge. Therefore in WCO plans, we fix the first two query vertices in
a QVO and pick the rest adaptively. Figure 7 shows the adaptive version of the fixed plan for the
diamond-X query from Figure 1(b). In addition, we adapt hybrid plans if they have a chain of two
or more E/I operators.
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3.5.2 Adaptive Operators. Unlike the operators in fixed plans, our adaptive operators can feed
their outputs to multiple operators. An adaptive operator oi is configured with a function f that
takes a partial match t ofQi and decides which of the next operators should be given t . f consists of
two high-level steps: (1) For each possible σj that can extendQi toQk , f re-evaluates the estimated
i-cost ofσj by re-calculating the cost of plans using updated cost estimates (explained momentarily).
oi gives t to the next E/I operator of σ ∗j that has the lowest re-calculated cost. The cost of σj is re-

evaluated by changing the estimated adjacency list sizes that were used in cardinality and i-cost
estimations with actual adjacency list sizes we obtain from t .

Example 3.2. Consider the diamond-X query from Figure 1(a) and suppose we have an adaptive
plan in which the Scan operator matches edges to a2a3, so for each edge needs to decide whether
to pick the ordering σ1 : a2a3a4a1 or σ2 : a2a3a1a4. Suppose the catalogue estimates the sizes of
|a2→| and |a3→| as 100 and 2000, respectively. So we estimate the i-cost of extending an a2a3

edge to a2a3a4 as 2100. Suppose the selectivity μ j of the number of triangles this intersection will
generate is 10. Suppose Scan reads an edge u→v where u’s forward adjacency list size is 50 and
v’s backward adjacency list size is 200. Then we update our i-cost estimate directly to 250 and μ j

to 10 × (50/100) × 200/2000 = 0.5.

As we show in our evaluations, adaptive QVO selection improves the performance of many
WCO plans but more importantly guards our optimizer from picking bad QVOs.

4 OPTIMIZING CONTINUOUS QUERIES

We next consider evaluating continuous subgraph queries that are registered in a GDBMS and
maintaining their outputs as updates arrive to the graphs. Continuous queries provide trigger func-
tionality to developers and are used to develop applications that require detecting the emergence
and/or deletion of subgraph patterns in a graph, e.g., the MagicRecs recommendation application
from Twitter [23] that continuously monitors diamonds in the Twitter social network. We consider
the setting where a set of subgraph queries Q̄ are registered in a system and a series of updates
Eδ1 , Eδ2 \ldots arrive at G and our goal is to detect the emergence and deletions of subgraphs that
match any of the Q ∈ Q̄ . In this section, we describe our end-to-end solution to optimizing these
queries using WCO plans.

Our approach is based on the Delta Generic Join incremental view maintenance algorithm that
we reviewed in Section 2. References [6] and [29] used this framework for evaluating single sub-
graph queries, respectively in a distributed and single node settings, where QVOs were picked
arbitrarily or using simple heuristics. We build upon this framework and study how to evaluate
multiple continuous queries and select the QVOs in a cost-based optimizer using the i-cost met-
ric we introduced in Section 3. Our optimizer generates a single low i-cost combined plan, which
combines the individual plans generated for each delta subgraph query and shares common com-
putations and evaluates all of the queries in Q̄ . The outline of this section is as follows:

• Section 4.1 describes our WCO plan space for delta subgraph queries and our combined
plans for sets of delta subgraph queries.

• Section 4.2 describes our greedy optimizer that picks QVOs for each delta subgraph query
and shares subplans to generate a combined plan.

• Section 4.3 describes our partial intersection sharing technique that allows sharing of com-
putations across the E/I operators that perform different intersections but have partial over-
laps in the intersections. We motivate this optimization by an important empirical obser-
vation we make about the limitation of computation sharing in combined plans.
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Fig. 8. Individual and combined plans for delta subgraph queries of a diamond query example.

In the remainder of the section, we assume that given a batch of updates Eδ , there are three
types of adjacency lists in memory for each vertex v in G:

• delta contains v’s neighbours in Eδ .
• old contains v’s neighbours in G before the update.
• new contains v’s neighbours in G after the update.

4.1 Optimizing Plans for Delta Subgraph Queries and Combined Plans

Recall from Section 2.2 that Delta Generic Join decomposes each continuous subgraph query Q
into n delta subgraph queries, where n is the number of query edges in Q . Then, Delta Generic
Join picks aQVO for each delta subgraph query starting from the two query vertices that form the
δ query edge and evaluates it one query vertex at a time, and then unions the results.

The QVO for each delta subgraph query is essentially a logical plan. For example, consider the
diamond query a1→a2, a1→a3, a2→a4, a3→a4 and assume for simplicity that the query has a single
query edge label on each query edge. Consider the following delta decomposition of this query:

DSQ1 = a1
δ−→ a2,a1

o−→ a3,a2
o−→ a4,a3

o−→ a4

DSQ2 = a1
n−→ a2,a1

δ−→ a3,a2
o−→ a4,a3

o−→ a4

DSQ3 = a1
n−→ a2,a1

n−→ a3,a2
δ−→ a4,a3

o−→ a4

DSQ4 = a1
n−→ a2,a1

n−→ a3,a2
n−→ a4,a3

δ−→ a4

Figure 8(a) shows four query plans respectively corresponding to the following four QVOs:
a1a2a4a3, a1a3a4a2, a2a4a1a3 and a3a4a1a2. There are two differences between these logical plans
and the ones for one-time subgraph queries from Section 3.1: (i) Each operator oi is a sub-query
Si whose query edges are labeled with δ , n, or o to indicate whether they match Eδ , En , or Eo ,
respectively; and (ii) each internal node has only one child. So the plans do not contain binary
joins. We avoid binary joins, because one branch of a binary join would match sub-queries with
only old or new query edges, which we assume are very large compared to the delta edges (recall
from Section 2.2 that delta subgraph queries have only one δ query edge). Therefore joins in such
branches would lead to very large intermediate results.

We evaluate these plans with Scan and E/I operators, which slightly differ from the ones in
Section 3.1.1:
Scan: Scans only the edges in Eδ , so the edges in the delta adjacency lists and appends a +/−

label to them indicating a deletion or an addition of an edge.
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Extend/Intersect (E/I): Each adjacency list descriptor is now an (i, dir, version) triple.
version can be old or new indicating whether the adjacency list should come from the new or
old adjacency lists of vertices (E/I’s do not access Eδ ).

When evaluating multiple delta subgraph queries at the same time, there might be opportunities
to share computation between the plans. This opportunity arises when plans of two or more delta
subgraph queries contain operators whose outputs are both isomorphic sub-queries, so we do not
need to compute the same sub-queries over and over again. Instead, we can just compute these
sub-queries once and give their results to possibly multiple operators. Due to these opportunities,
instead of evaluating each delta subgraph query separately, we evaluate all of them together using
a combined plan, which we define next.

Definition 4.1 (Combined Plan). Let Q̄ be a set of queries and Q̄DSQ be a set of DSQs correspond-
ing to the union of a delta decomposition for each query in Q̄ . We assume that no two DSQs in
Q̄DSQ are isomorphic as that would imply that Q̄ contains two isomorphic queries (note that two
DSQs from the same query cannot be isomorphic, because according to the decomposition the
number of n- and o-labeled edges in each DSQ is different). A combined plan (CP) for Q̄DSQ is a
directed acyclic graph of Scan and E/I operators that contain: (1) one source Scan operator that
scan δ edges, i.e., updates to the graph; (2) a set of E/I operators that take input from exactly one
other operator (Scan or E/I) but can give outputs to any number of E/I operators; and (3) exactly
|Q̄DSQ | many sink E/I operator, where there is a one to one mapping between the outputs of sink
E/I operators and DSQs in Q̄DSQ , i.e., the output of each DSQ in Q̄DSQ is produced by exactly
one sink E/I operator. An E/I operator produces the output of a DSQ if the subgraph query that it
evaluates is isomorphic to the DSQ considering the edge labels δ , n, and o.

For example, Figure 8(b) shows an example combined plan for the 4 DSQs above. In Figure 8(b),
we omit the ai labels on the query vertices that take different labels for different delta subgraph
queries. Tracing back from each sink operator back to the source (Scan) operator effectively gives a
QVO for one DSQ. For example, the left most sink operator evaluates DSQ1 above and uses exactly
the same QVO as the leftmost DSQ. In fact, the combined plan in Figure 8(b) evaluates the 4 DSQs
in our example using exactly the 4 individual plans from Figure 8(b) but shares some duplicate
operators whose inputs and outputs are isomorphic subgraphs, such as the level 2 E/I operators of
DSQ1 and DSQ2 as well as DSQ3 and DSQ4.

Our continuous subgraph query optimizer aims to find an efficient combined plan evaluating all
of the DSQs of a delta decomposition of a set of registered queries Q̄ in GraphflowDB. Similarly
to one-time queries, we adopt a cost-based approach using the i-cost metric and compute the
estimated cost of a combined plan as the sum of the estimated i-costs of its E/I operators (we take
the cost of Scan operator as 1). When estimating the i-costs of an E/I operator, we use the same
catalogue-based cost estimation formulas described for one-time queries in Section 3.4.2 (recall
the two bullet points under item 2). In particular, we do not differentiate between delta, old, and
new query edges that are used in the operators of the combined plan. There are two reasons for
this: (1) the delta query edges only appear in the source nodes in combined plans, which map to
Scan operator and get a uniform cost of 1; and (2) the differences between the lengths of the old
and new adjacency lists are minor, because we assume there are a small number of edges in each
update to the graph.

We can formally state the optimization problem our optimizer solves for continuous queries. For
simplicity of the formal definition, we assume that a full catalogue is available to the optimizer,
i.e., information about every possible Qk−1 to Qk extension exists in the catalogue. As we explain
momentarily, this assumption holds in our implementation as well, i.e., for continuous queries
GraphflowDB generates a catalogue that contains all the relevant entries for the registered queries.
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Definition 4.2 (Multiple Continuous Subgraph Query Optimization Problem). Given a set of
queries Q̄ and a delta decomposition of these queries Q̄DSQ and an arbitrary full catalogue C ,
find the lowest estimated cost combined plan CP evaluating Q̄DSQ .

We do not establish the hardness of this formal problem in this article and leave this to future
work. However, in our supplementary Appendix A.1, we show that the natural decision version of
a generalized version of this problem, in which we assume that Q̄DSQ can contain arbitrary DSQs
and do not necessarily have to be the set of DSQs from delta decompositions of a set of queries, is
NP-hard. Our reduction is from the maximum common induced subgraph problem [40]. Resolving
if the problem is easier when the DSQs are delta decompositions of a set of queries, which is a
property that holds in our setting, is left for future work.

We end this section with two notes. First, each query Q can be decomposed in multiple ways.
For example, an alternative decomposition for our example diamond query could have started with

DSQ1 : a1
o−→ a2,a1

o−→ a3,a2
δ−→ a4,a3

o−→ a4 instead of a1
δ−→ a2,a1

o−→ a3,a2
o−→ a4,a3

o−→ a4. These
decompositions are not identical. We studied the effects of different decompositions but found
that they make little difference in performance. So we take an arbitrary decomposition of each
query Q and do not consider and optimize alternative decompositions. Second, each delta query
that contains a new query edge can be further decomposed into smaller delta subgraph queries al-

gebraically. For example,DSQ2 = a1
n−→ a2,a1

δ−→ a3,a2
o−→ a4,a3

o−→ a4 above is algebraically equiv-

alent to DSQ21 = a1
δ−→ a2,a1

δ−→ a3,a2
o−→ a4,a3

o−→ a4 ∪ DSQ22 = a1
o−→ a2,a1

δ−→ a3,a2
o−→ a4,a3

o−→
a4, because new edges are unions of delta and old edges. These further decompositions, which
we call expanded delta query decompositions can allow for more sharing opportunities, because
the query edges in delta queries have only two labels (delta and old) instead of three (delta,
old, and new). This can lead to more isomorphic sub-queries but this expansion leads to many
more delta queries, and we observed in practice that this does not lead to significant performance
improvements in our query sets.

4.2 Greedy Optimizer

One approach to optimizing this problem is to find the lowest i-cost QVO for each delta subgraph
query in Q̄DSQ and then merge these individual plans in a combined plan. This approach often
generates reasonably good plans and will form one of our baseline optimizers in our evaluations.
However, this approach does not directly search for sharing opportunities or optimize for the
total i-cost of the combined plan. To do so, we adopt a greedy approach. We start with an empty
combined planCP . In each iteration, the algorithm goes through each QVO of each delta subgraph
query in Q̄DSQ and finds the pair <qvo∗,dsq∗> with the minimum additional cost to CP (ties are
broken randomly). This fixes the QVO of dsq∗ to be qvo∗, and we merge the plan P∗ induced
by <qvo∗,dsq∗> to CP . The minimum additional cost is the extra i-cost introduced by the new
operators added to CP . We remove dsq∗ from Q̄DSQ and repeat this greedy step until Q̄DSQ is
empty. The additional cost of a <qvo,dsq> pair is computed as follows. Let the logical plan induced
by <qvo, dsq> be P . Recall that P is a linear plan that starts with Scan followed by a series of E/I
operators. Then starting from the last operator in P and going to previous operators, we find the
first operator oi ∈ P , that produces matches isomorphic to an operator o′i in CP. If such o′i exists,
then the suffix operators after oi in P are added toCP as suffix operators to o′i . The additional cost
of <qvo,dsq> is the sum of the costs of these suffix operators.

Catalogue Generation: Recall from above that we adopt the same catalogue-based cost and cardi-
nality estimation technique we use for one-time queries and do not differentiate between delta,
old, and new query edges that are used in the operators of the combined plan.
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Fig. 9. Part of a combined plan example shows the transformation from sharing delta plan operators to also
sharing partial intersection work.

However, unlike one-time subgraph queries, where the catalogue entries are limited to entries
with at most h query vertices, when optimizing continuous queries, we generate all necessary
catalogue entries for a given query set Q̄ . This is because continuous queries are long running
and the number of added queries is often small, so even if some of the queries are large in size,
the number of necessary entries for a fixed small number of queries is not large. In contrast, a
system needs a catalogue that can be used to answer arbitrary one-time queries. For example, if a
query Q ∈ Q̄ has six query vertices, we generate a catalogue entry for extending each five-vertex
sub-query Q ′ of Q to Q . This is because our greedy optimizer computes the cost of each possible
QVO for each delta subgraph query, so each of these entries is necessary. As before, each entry is
generated based on sampling.

4.3 Partial Intersection Sharing

Consider two plans, P1 and P2 for two delta subgraph queries corresponding to two QVOs. Suppose
that P1 and P2 compute isomorphic sub-queries until their level i operators but their level i + 1 op-
erators’ outputs are not isomorphic. Let o1

i and o2
i be the level i operators of P1 and P2, respectively,

and o1
i+1 and o2

i+1 be their level i + 1 operators. Our greedy optimizer will share computation across
o1

i and o2
i but not o1

i+1 and o2
i+1. Even though the (i + 2)-matches produced by oi+1

1 oi+1
2 may not be

isomorphic, so the full intersections performed by these operators are not identical, part of the in-
tersections performed by these operators might be common. Consider the combined plan shown in
Figure 9(a), which represents the combination of three plans for three delta subgraph queries. The
third-level operators of these plans perform different intersections that partially match. Specifi-
cally, all of these three operators take as input 2-edge paths, say, u→v→w , and intersect u’s new
forward and w ’s new backward adjacency lists but the middle and right operators also intersect a
third adjacency list. This gives an opportunity to partially share the common two-way intersec-
tion in one operator and complete the remaining intersections in other operators. Partial intersec-
tion sharing is especially important for increasing the amount of computation shared at the last-
level operators, because unless two delta subgraph queries are completely isomorphic, or one is
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contained in another, the last-level operators of individual plans for delta subgraph queries cannot
be shared. As we show in our evaluations, in some workloads, the majority of the work done can
be in the last-level and sharing partial intersection work yields significant benefits.

We implement partial intersection sharing through two variants of the E/I operator:
E/I-Partial: Similarly to E/I, intersects two or more adjacency lists and outputs the result either
as an adjacency list to the next E/I-Remaining operator and as regular output tuples to next E/I
and E/I-Partial operators.
E/I-Remaining: Given an intersection result from an E/I-Partial operator, intersects it further
with one or more adjacency lists.

Figure 9(b) shows an example plan that partially shares computation in the last-level operators
of the plan in Figure 9(a).

Our optimizer searches for partial intersections as a post processing step once a combined plan
CP with full operator sharing is generated.3 Specifically, starting from the lowest-level Scan op-
erator, we iterate over each operator inCP at levels 1, 2, so on and so forth, up to the last level. For
each operator oj , we iterate over, we inspect the next-level operators in CP that extend the out-
puts of oj . Let S j be that set of successor operators. We enumerate all partial intersections ALDP I

that at least two operators in S j share and calculate how much i-cost reduction sharing ALDP I

would yield. The amount of i-cost reduction is the multiplication of: (1) partial matches of oj ; (ii)
sum of the estimated lengths of the adjacency lists in ALDP I ; and (iii) the number of operators
that share ALDP I minus 1. Let ALD∗P I be the partial intersection that reduces the most i-cost. We
add an E/I-Partial operator opar t that takes as input the outputs of oj

4 and intersects ALD∗P I .
Then we remove ALD∗P I from each operator o′ in S j that contain ALD∗P I and replace o′ with an
E/I-Remaining operator.

5 SYSTEM IMPLEMENTATION

We implemented our new techniques inside GraphflowDB. GraphflowDB is a single machine,
multi-threaded, main memory graph DBMS implemented in Java. The system supports a sub-
set of the Cypher language [53]. We extended the Cypher language with a CONTINUOUS clause to
allow registering continuous subgraph queries. One-time queries and continuous queries are op-
timized respectively by our dynamic programming and greedy optimizers. Our optimizers share
significant code. In particular, they use a single plan enumerator that can be configured to either
generate one-time plans that contain both E/I and HashJoin operators or only WCO plans that
start by scanning delta edges. Our optimizers also use the same catalogue for cost and cardinality
estimations. In the rest, we give implementation details about several other components of the
system.
Storage: We index both the forward and backward adjacency lists and store them in sorted vertex
ID order. Adjacency lists are by default partitioned by the edge labels or by the labels of neighbour
vertices if a single edge label exists. With this partitioning, we can quickly access the edges of
nodes matching a particular edge label and destination vertex label, allowing us to perform filters
on labels very efficiently. Upon an update to the graph, we create the new adjacency lists of the
vertices whose adjacency lists are changing. These are reused from a pool of existing lists to avoid
Java object creations. Once all delta queries are executed, we copy the data of the new adjacency

3Alternatively, partial intersection overlaps can be searched as part of our greedy optimizer. We implemented the post-

processing approach because of its simplicity.
4Note that oj may have been replaced with an E/I-Remaining operator o′j in the previous iteration, in which case opar t

takes as input o′j ’s output.
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Table 9. Datasets Used

Domain Name Nodes Edges
Social Epinions (Ep) 76K 509K

LiveJournal (LJ) 4.8M 69M
Twitter (Tw) 41.6M 1.46B

Web BerkStan (BS) 685K 7.6M
Google (Go) 876K 5.1M

Product Amazon (Am) 403K 3.5M
Citation Patent (Pa) 3.7M 16.5M

lists to the old adjacency lists to update them and reset the adjacency lists in the pool for the next
batch update. All delta edges are kept in a fixed forward array that is also reused across batches.
Query Executor: Our query plans follow a Volcano-style plan execution [22]. Each plan P has one
final Sink operator, which connects to the final operators of all branches in P . The execution starts
from the Sink operator and each operator asks for a tuple from one of its children until a Scan
starts matching an edge. In adaptive parts of one-time plans, an operator oi may be called upon to
provide a tuple from one of its parents, but due to adaptation, provide tuples to a different parent.
We note that our executor can be improved using query compilation techniques [45] or SIMD
instructions for intersecting sorted neighbour ID lists [2, 36]. These techniques are complementary
to our work.
Parallelization: We implemented a work-stealing-based parallelization technique. Let w be the
number of threads in the system. We give a copy of a plan P to each worker and workers steal work
from a single queue to start scanning ranges of edges in the Scan operators. Threads can perform
extensions in the E/I operators without any coordination. Hash tables used in Hash-Join operators
are partitioned into d>>w many hash table ranges. When constructing a hash table, workers grab
locks to access each partition but setting d>>w decreases the possibility of contention. Probing
does not require coordination and is done independently.

6 EVALUATION

In this section, we demonstrate the efficiency of the plans that our one-time and continuous query
optimizers generate. We begin in Section 6.1 by describing the hardware and the datasets we use
in our experiments. Sections 6.2 and 6.3 then present our experiments for one-time and continu-
ous queries, respectively. We refer readers to our supplementary appendix for several additional
experiments throughout the section.

6.1 Setup

6.1.1 Hardware. We use a single machine that has two Intel E5-2670 @2.6 GHz CPUs and 512
GB of RAM. The machine has 16 physical cores and 32 logical cores. Except for our scalability
experiments in Section 6.2.5, we use only one physical core. We set the maximum size of the JVM
heap to 500 GB and keep the default minimum heap size of the JVM. We ran each experiment
twice, one to warm-up the system and recorded measurements for the second run.

6.1.2 Datasets. The datasets we use are in Table 9.5 Our datasets differ in several structural
properties: (i) size; (2) how skewed their forward and backward adjacency lists distribution is; and
(3) average clustering coefficients, which is a measure of the cyclicity of the graph, specifically

5We obtained the graphs from Reference [37] except for the Twitter graph, obtained from Reference [33].
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Fig. 10. Subgraph queries used for evaluations.

the amount of cliques in it. The datasets also come from a variety of application domains: social
networks, the web, and product co-purchasing. For our one-time query experiments, each dataset
catalogue was generated with z = 1,000 and h = 3 except for Twitter, where we set h = 2. For our
continuous query experiments, as we discussed in Section 4.2, we generate all relevant catalogue
entries.

6.1.3 Queries Notation. Our datasets and queries are not labelled by default, and we label them
randomly as done in prior work [9, 24]. For a subgraph query Q or a query set QS , we use the
notation Qi and QSi , respectively, to refer to evaluating Q and QS on a dataset for which we
randomly generate a label l on each edge, where l ∈ {l1, l2, . . . , li }. For example, evaluating Q2 on
Amazon indicates randomly adding one of two possible labels to each data edge in Amazon and
query edge on Q . If a query is unlabelled, then we simply refer to it as Q .

6.2 One-time Query Optimizer Evaluations

In these experiments, we aim to answer five questions relating to one-time subgraph query op-
timization: (1) How good are the plans our optimizer picks? (2) Which type of plans work better
for which queries? (3) How much benefit do we get from adapting QVOs at runtime? (4) How do
our plans and processing engine compare against EmptyHeaded (EH), which is the closest to our
work and the most performant baseline we are aware of? (5) How do our plans compare against
prior work titled “Flexible Caching in Trie Joins” [28], which is another algorithm that extends the
worst-case optimal Leapfrog TrieJoin (LFTJ) algorithm with caching [66]? We also tested the
scalability of our single-threaded and parallel implementation on our largest graphs LiveJournal
and Twitter. Finally, for the completeness of our study, in Appendix D, we compare our plans on
big queries against the subgraph matching algorithm CFL [10].

For the experiments in this section, we used the 14 queries shown in Figure 10, which contain
both acyclic and cyclic queries with dense and sparse connectivity with up to 7 query vertices and
21 query edges. To give a sense of the scale, we report the number of output tuples of the unlabeled
versions of these queries in Table 10. We use both unlabeled and labeled versions of these queries.
When we put labels, these numbers will naturally decrease depending the number of query edges
each query has and the number of labels we use. The majority of these queries are obtained from
real applications and from the literature. For example, queries Q1 and Q2 are used in Reference [2]
and Reference [6], queries Q2–Q7 are used in Reference [38] and Q12 is used in Reference [56].
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Table 10. The Number of Output Tuples for Unlabeled Versions of the Queries in Figure 10
on Amazon (Am), Epinions (Ep), and Google (Go)

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Am 11.6M 118.2M 110.0M 59.0M 64.8M 37.8M 118.9M
Go 28.2M 375.3M 358.4M 239.9M 295.8M 217.0M 2.0B
Ep 3.6M 326.3M 305.0M 87.0M 100.3M 32.0M 320.6M

Q8 Q9 Q10 Q11 Q12 Q13 Q14

Am 558.7M 3.1B 5.8B 3.1B 4.5B 30.2B 907.3M
Go 3.9B 42.5B 61.5B 173.1B 34.2B 266.4B 256.6B
Ep 12.5B 262.1B 1125.2B 7865.1B 1544.5B 39502.0B 32.9B

6.2.1 Plan Suitability For Different Queries and Optimizer Evaluation. To evaluate how good are
the plans our optimizer generates, we compare the runtime of plans we pick against a query’s plan
spectrum, i.e., the set of all plans enumerated by GraphflowDB for the query. This also allows us to
study which types of plans are suitable for which queries. We generated plan spectrums of queries
Q1–Q8 andQ11–Q13 on Amazon without labels, Epinions with 3 labels, and Google with 5 labels.
The spectrums of Q12 and Q13 on Epinions took a prohibitively long time to generate and are
omitted. Figure 11 presents our spectrums for Q1–Q8 and Q11. Figure 12 presents our spectrums
for Q12 and Q13. Each circle in the figures is the runtime of a plan and × is the plan our optimizer
picks. Throughout these experiments, we use the term “optimal plan” to refer to the executed plan
with the lowest runtime, i.e., the plan corresponding to the lowest circle in our plan spectrum
charts.

We first observe that different types of plans are more suitable for different queries. The main
structural properties of a query that govern which types of plans will perform well are how large
and how cyclic the query is. For cliquelike queries, such asQ5, and small cycle queries, such asQ3,
best plans are WCO. On acyclic queries, such as Q11 and Q13, BJ plans are best on some datasets
and WCO plans on others. On acyclic queries WCO plans are equivalent to left deep BJ plans,
which are worse than bushy BJ plans on some datasets. Finally, hybrid plans are best plans for
queries that contain small cyclic structure that do no share edges, such as Q8.

Our most interesting query is Q12, which is a 6-cycle query. Q12 can be evaluated efficiently
with both WCO and hybrid plans (and reasonably well with some BJ plans). The hybrid plans
first perform binary joins to compute 4-paths, and then extend 4-paths into 6-cycles with an in-
tersection. Figure 2 from Section 1 shows an example of such hybrid plans. These plans do not
correspond to the GHDs in EH’s plan space. On the Amazon graph, one of these hybrid plans is
optimal and our optimizer picks that plan. On the Google graph our optimizer picks an efficient
BJ plan although the optimal plan is WCO.

Our optimizer’s plans were broadly close to optimal across our experiments. Specifically, our
optimizer’s plan was optimal in 15 of our 31 spectrums, was within 1.4× of the optimal in 21
spectrum and within 2× in 28 spectrums. In two of the three cases we were more than 2× of
the optimal, the absolute runtime difference was in sub-seconds. Ignoring queries whose plans
generally ran in sub-second latency, there was only one experiment in which our plan was not
close to the optimal plan, which is shown in Figure 11(z). Observe that our optimizer picks different
types of plans across different types of queries. In addition, as we demonstrated withQ12 above, we
can pick different plans for the same query on different datasets (Q8 and Q13 are other examples).

Although we do not study query optimization time in this article, our optimizer generated a
plan within 331 ms in all of our experiments except for Q75 on Google, which took 1.4 s.
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Fig. 11. Runtime (seconds) of the set of all plans enumerated by GraphflowDB for queries Q1–Q8 and Q11.
“x” specifies the plan picked by GraphflowDB.

6.2.2 Adaptive WCO Plan Evaluation. To understand the benefits we get by adaptively picking
QVOs, we studied the spectrums of WCO plans ofQ2,Q3,Q4,Q5, andQ6, and hybrid plans forQ10
on Epinions, Amazon and Google graphs. These are the queries in which our DP optimizer’s fixed
plans contained a chain of two or more E/I operators (so we could adapt them). The spectrum
of Q10 on Epinions took a prohibitively long time to generate and is omitted. Figure 13 shows
the 17 spectrums we generated. In the case of Q2, Q3, and Q4, selecting QVOs adaptively overall
improves the performance of every fixed plan. For example, the fixed plan our DP optimizer picks
for Q3 on Epinions improves by 1.2× but other plans improve by up to 1.6×. Q10’s spectrum for
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Fig. 12. Runtime (seconds) of the set of all plans enumerated by GraphflowDB for queries Q12 and Q13. “x”
specifies the plan picked by GraphflowDB.

Fig. 13. Runtime (seconds) of the set of adaptive plans enumerated by GraphflowDB for queries Q2–Q6 and
Q10. “x” specifies the plan picked by GraphflowDB.
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hybrid plans are similar to Q3 and Q4’s. Each hybrid plan of Q10 computes the diamonds on the
left and triangles on the right and joins on a4. Here, we can adaptively compute the diamonds (but
not the triangles). Each fixed hybrid plan improves by adapting and some improve by up to 2.1×.
OnQ5 most plans’ runtimes remain similar but one WCO plan improves by 4.3×. The main benefit
of adapting is that it makes our optimizer more robust against picking bad QVOs. Specifically, the
deviation between the best and worst plans are smaller in adaptive plans than fixed plans.

The only exception to these observations is Q6, where several plans’ performances get worse,
although the deviation between good and bad plans still become smaller. We observed that for
cliques, the overheads of adaptively picking QVOs is higher than other queries. This is because:
(i) cost re-evaluation accesses many actual adjacency list sizes, so the overheads are high; and (ii)
the QVOs of cliques have similar behaviors: each one extends edges to triangles, then four cliques,
etc.), so the benefits are low.

6.2.3 EmptyHeaded (EH) Comparisons. EH is one of the most efficient systems for one-time
subgraph queries and its plans are the closest to ours. Recall from Section 1 that EH has a cost-
based optimizer that picks a GHD with the minimum width, i.e., EH picks a GHD with the lowest
AGM bound across all of its sub-queries. This allows EH to often (but not always) pick good decom-
positions. However: (1) EH does not optimize the choice of QVOs for computing its sub-queries;
and (2) EH cannot pick plans that have intersections after a binary join, as such plans do not cor-
respond to GHDs. In particular, the QVO that EH picks for a query Q is the lexicographic order
of the variables used for query vertices when a user issues the query. EH’s only heuristic is that
QVOs of two sub-queries that are joined start with query vertices on which the join will happen.
Therefore by issuing the same query with different variables, users can make EH pick a good or
a bad ordering. This shortcoming has the advantage that by making EH pick good QVOs, we can
show that our orderings also improve EH. The important point is that EH does not optimize for
QVOs. We therefore report EH’s performance with both “bad” orderings (EHb ) and “good” order-
ings (EHд). For good orderings, we use the ordering that GraphflowDB picks. For bad orderings, we
generated the spectrum of plans in EH (explained momentarily) and picked the worst-performing
ordering for the GHD EH picks. For our experiments, we ranQ3,Q5,Q7,Q8,Q9,Q12, andQ13 on
Amazon, Google, and Epinions. We first explain how we generated EH spectrums and then present
our results.

EH Spectrums: Given a query, EH’s query planner enumerates a set of minimum width GHDs and
picks one of these GHDs. To define the plan spectrum of EH, we took all of these GHDs, and by
rewriting the query with all possible different variables, we generate all possible QVOs of the sub-
queries of the GHD that EH considers. Figure 14 shows a sample of the spectrums for Q3 and Q7
on Amazon and for Q8 on Epinions along with GraphflowDB’s plan spectrum (including WCO,
BJ, and hybrid plans) for comparison. For Q9, Q12, and Q13, we could not generate spectrums
as every EH plan took more than our 30-minute time limit. For Q7, both GraphflowDB and EH
generate only WCO plans. For Q8, EH generates two GHDs (two triangles joined on a3) whose
different QVOs give four different plans for a total of eight. One of the plans in the spectrum is
omitted as it had memory issues. We note that out of these queries, Q9 was the only query for
which EH generated two different decompositions (ignoring the QVOs of sub-queries) but neither
decomposition under any QVO ran within our time limit on our datasets.
GraphflowDB vs. EmptyHeaded Comparisons: We ran our queries on GraphflowDB with adapt-
ing off. To compare, we ran EH’s plan with good and bad QVOs for Q3, Q5, Q7, Q8 (recall no EH
plan ran within our time limit for Q9, Q12, and Q13). We repeated the experiments once with no
labels and once with two labels. Table 11 shows our results. Except for Q1 on Google and Q82

on Amazon where the difference is only 500 ms and 200 ms, respectively. GraphflowDB is always
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Fig. 14. Runtime (seconds) of the set of all plans enumerated by EmptyHeaded (EH) compared with those
enumerated by GraphflowDB (GF). “x” specifies the plan picked by GraphflowDB.

Table 11. Runtime (seconds) of GraphflowDB (GF) and EmptyHeaded with Good Orderings (EHд ) and Bad
Orderings (EHb )

Q1 Q3 Q32 Q5 Q52 Q7 Q72 Q8 Q82 Q9 Q92 Q12 Q122 Q13 Q132

Am

EHb
EHд

GF

1.0
0.6
0.6

19.0
5.4
5.5

3.4
1.3
2.1

47.1
3.3
1.9

9.2
1.5
0.8

91.4
21.2
9.5

11.6
1.7
0.9

22.2
10.6
5.1

1.8
1.4
2.0

Mm
Mm
24.7

Mm
Mm
2.4

Mm
Mm
209.2

Mm
Mm
14.8

Mm
Mm
48.0

Mm
Mm
11.3

Go
EHb
EHд

GF

1.9
1.4
2.6

444.5
12.0
14.0

42.6
2.1
4.0

401.1
11.3
5.9

77.6
2.3
2.1

1.04K
107.3
48.8

23.4
4.8
3.3

66.6
35.8
17.0

16.0
3.0
4.5

Mm
Mm
236.2

Mm
Mm
6.9

Mm
Mm
510.6

Mm
Mm
73.8

Mm
Mm
1.44K

Mm
Mm
70.1

Ep
EHb
EHд

GF

0.5
0.2
0.4

42.7
26.6
28.1

6.5
1.7
4.6

64.5
3.5
1.5

11.4
0.9
0.6

560.7
45.7
23.7

2.9
0.8
1.2

1.01K
117.2
37.5

22.0
7.0
5.4

Mm
Mm
865.3

Mm
Mm
26.1

Mm
Mm
TL

Mm
Mm
TL

Mm
Mm
95.0k

Mm
Mm
2.35k

T L indicates the query did not finish in 48 hrs. Mm indicates running out of memory.

Fig. 15. Plan (drawn horizontally) with seamless mixing of intersections and binary joins on Q9.

faster than EHb , where the runtime is as high as 68× in one instance. The most performance dif-
ference is on Q5 and Google, for which both our system and EH use a WCO plan. When we force
EH to pick our good QVOs, on smaller size queries EH can be more efficient than our plans. For
example, although GraphflowDB is 32× faster than EHb on Q3 Google, it is 1.2× slower than EHд .
Importantly EHд is always faster than EHb , showing that our QVOs improve runtimes consistently
in a completely independent system that implements WCO join-style processing.

We next discussQ9, which demonstrates again the benefit we get by seamlessly mixing intersec-
tions with binary joins. Figure 15 shows the plan our optimizer picks on Q9 on all of our datasets.
Our plan separately computes two triangles, joins them, and finally performs a 2-way intersection.
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Fig. 16. Example of CTJ’s tree decompositions (TDs) for Q2.

This execution does not correspond to the GHD-based plans of EH, so is not in the plan space of
EH. Instead, EH considers two GHDs for this query but neither of them finished within our time
limit.

6.2.4 CTJ Comparisons. Similarly to Generic Join, LFTJ [66] is a WCO join algorithm that eval-
uates join queries one attribute at a time, so evaluates subgraph queries one query vertex at a
time. Therefore the same optimization problem of picking a good QVO arises when using LFTJ.
An important advantage of these algorithms is their small memory footprints. For example, when
executed in a purely pipelined fashion, LFTJ does not require memory to keep large intermedi-
ate results. Reference [28] observes that by keeping a cache of certain intermediate results and
reusing these results, LFTJ’s performance can be improved. For example, consider evaluating the
“two-triangle” query Q8 and using the QVO a1a2a3a4a5. Note that for each a3 value, irrespective
of the previous a1 and a2 values, the same a4a5 values would be matched. Therefore, if LFTJ keeps
a cache of a3 to a4a5 matches as it extends a3’s, it can save and reuse computation. The algorithm
from Reference [28] called CTJ extends LFTJ with caching. This is a more advanced cache than
our simple intersection cache and in some queries, gives LFTJ benefits that are similar to using the
HashJoin operator in binary or hybrid join plans. For example, consider a hybrid plan forQ8 that
uses a HashJoin to evaluate a3a4a5 triangles on the one side, hashes these on a3, and then probes
this hash table with a1a2a3 triangles. The hash table here is similar to CTJ’s cache and reuses the
computation that was done to compute a3a4a5 triangles for different a3 values.

CTJ generates plans as follows. First CTJ enumerates a set of ordered tree decompositions (TDs),
which are rooted TDs, whose bags have a particular preorder [28]. The adhesion of two parent-
child bags is the number of common attributes they have. Then using a set of heuristics, CTJ picks
one of these TDs. Specifically, CTJ picks a TD with the minimum value for its largest adhesions,
breaking ties with maximizing the number of bags, and then minimizing the sum of adhesions.
One of these TDs is picked arbitrarily (say, TD T ). Then for T , CTJ defines: (1) a set of compatible

QVOs; and (2) a caching scheme. Finally, from the compatible QVOs, one is picked using heuristics
from another reference, Tributary Join [15]. We explain with an example.

Example 6.1. Consider the Q2 diamond query from Figure 10(b). For this query, there are several
TDs that CTJ can pick according to its heuristics. Three of these are shown in Figure 16 (a), (b),
and (c) as they have the same adhesion sizes (which is minimum) and the other tie-break metrics.
Suppose CTJ picks TD12 . A preorder traversal on TD12 orders the bags as follows: (1) {a1,a2,a3};
and (2) {a4,a2,a3}. Next, CTJ removes from each bag the query vertices in the adhesions found in
the root-to-bag path, which yields the ordering: (1) {a1,a2,a3}; and (2) {a4}. These are the variables
owned by each bag. The compatible QVOs are those that order the QVO for each bag and con-
catenating these orderings from root to the leaf. Of these, CTJ uses another cost called Tributary
Join’s [15] cost model to choose the QVO in each bag. We explain Tributary Join momentarily.
Suppose the algorithm picks the QVO a1a2a3a4. For each non-root bag B in TD, CTJ adds a cache
to LFTJ. Suppose the parent of B is p in TD. The cache has (i) as key the query vertices in the
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adhesion of p and B and (ii) as value the query vertices “owned” by B. For example, the cache for
the QVO a1a2a3a4 for TD12 will be from key:{a2,a3} to value:a4.

The focus of CTJ and Reference [28] is to control the memory consumption of LFTJ to increase
its performance and not on how to pick TDs or optimize the QVO selection. For example, while
CTJ can avoid storing the complete joins of subqueries, our binary join and hybrid plans do not
have mechanisms to control for memory. In our setting, we assume that the HashJoin operators
have enough memory to create their hash tables. Instead, our work focuses primarily on efficient
plan selection for queries. There are several important differences between our optimized plans
and the plans CTJ uses:

1. On some queries, the heuristics that CTJ uses to pick a TD cannot distinguish between
efficient TDs from inefficient ones. For example, consider the diamond query Q2 from
Figure 10(b). CTJ’s heuristics will not be able to tie break between TD21 , TD22 , and TD23

in Figure 16(a), (b), and (c), respectively, and pick one of these arbitrarily, which yield dif-
ferent QVOs (and caching schemes). In fact, in the code provided by the users, we noticed
that similar to EH, we can make CTJ pick different TDs and final QVOs, with very differ-
ent runtimes. For instance, TD21 and TD22 on Google lead to runtimes 86.6 s and 806.2 s,
respectively. The difference in runtime is mainly due to a difference in the number of inter-
mediate results, which are 72.94M for TD21 and 1.38B for TD22 . Yet CTJ’s optimizer does not
differentiate between these two TDs and their final QVOs. Instead, our i-cost-based model
can differentiate between these QVOs.

2. Once a TD has been picked, CTJ uses Tributary Join’s [15] technique to pick a QVO within
each bag. Tributary Join studies picking the QVO for LFTJ algorithm in the context of joining
multiple relational tables and picks the QVO based on the distinct values in the attributes of
the relations. This heuristic however is not designed for self-join queries as in our subgraph
queries, where attributes will have the same number of distinct values, specifically |V | (as-
suming every vertex in an input graph has an incoming and outgoing edge). Recall that in
subgraph queries, each binary E(ai ,aj) relation is a replica of the edges of the input graph
G (V ,E). Note that in our evaluations we either use unlabeled queries or add random edge
labels to the edges of our datasets and queries. This effectively partitions the edge table E
into multiple tables, but any differences in the distinct values across these partitions would
be due to random assignment.

3. On some queries CTJ’s plans do not benefit from caching results of sub-queries larger than a
single query edge, due to the heuristics CTJ uses to pick TDs. For example, for a path query,
say, Q13, CTJ considers TD’s in which each bag consists of a single query, edge. Since CTJ
caches the results of a single bag, only results of a single query edge, so adjacency lists can
be cached. This contrasts with traditional binary join plans that can cache sub-paths.

We compared GraphflowDB to CTJ on default versions of queries Q1 to Q14 on Amazon, Google,
and Epinions. We obtained the CTJ code from the authors of Reference [28]. Recall that CTJ’s main
focus is in controlling the cache size. We observed that we obtain the best runtime numbers when
we run CTJ with an unbounded cache size, which implies that CTJ caches every key-value between
each bag. Table 12 shows our results. As we explained above, CTJ can pick between multiple differ-
ent TDs and QVOs depending on how the query is written. In Table 12, we report the best runtime
for CTJ for each query after writing the attributes of the query in every lexicographic order. As
shown in the table, GraphflowDB outperforms the implementation we obtained for CTJ across
these queries, varying from competitive performances to differences that are two orders of magni-
tude in runtime. We note that it is not possible to a very controlled comparison here, because the
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Table 12. Runtime (Seconds) of GraphflowDB (GF) and CTJ

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Am
CTJ
GF

5.1
0.6(8.5x)

38.9
4.7(8.3x)

41.5
5.5(7.6x)

22.6
2.0(11.3x)

21.0
1.9(11.1x)

18.6
3.3(5.6x)

61.1
9.5(6.4x)

Go
CTJ
GF

15.3
2.6(5.9x)

82.7
12.3(6.7x)

86.6
12.0(7.2x)

59.4
4.9(12.1x)

55.7
5.9(9.4x)

64.0
8.6(7.4x)

464.1
48.8(9.5x)

Ep
CTJ
GF

2.3
0.4(5.8x)

88.4
31.5(2.8x)

94.7
26.6(3.6x)

10.5
1.5(7.2x)

9.5
1.5(6.3x)

27.5
3.3(8.3x)

329.2
23.7(13.9x)

Q8 Q9 Q10 Q11 Q12 Q13 Q14

Am
CTJ
GF

94.8
5.1(18.6x)

142.1
56.3(2.5x)

2256.5
20.8(108.5x)

184.2
6.8(27.1x)

878.5
209.2(4.2x)

456.0
48.0(9.5x)

639.6
125.0(5.12x)

Go
CTJ
GF

606.3
17.0(35.7x)

574.4
303.9(1.9x)

94084.1
135.9(692.3x)

8055.1
214.6(37.5x)

3048.5
510.6(6.0x)

2165.4
1440.0(1.5x)

67049.9
5348.7(1.5x)

EP
CTJ
GF

3251.1
37.5(86.7x)

1618.8(1.5x)
2384.8

158274.2
1908.7(82.9x)

T L
12852.5

T L
T L

145K
95027.4(1.5x)

95027.4
3373.1(13.0)

T L indicates the query did not finish in 48 hrs.

Fig. 17. Scalability experiments.

implementations of GraphflowDB plans and CTJ are very different, e.g., the implementations use
different programming languages and data organization. However, the differences we discussed
above contribute to these runtime differences. For example, the plan that CTJ uses for Q13, which
is a path query and where CTJ does not benefit from caching, generates 3.43B many intermediate
tuples on Amazon. In contrast, GraphflowDB’s plan hashes on a4 and generates only 0.39B many
intermediate tuples.

6.2.5 Scalability Experiments. We next demonstrate the scalability of GraphflowDB on larger
datasets and across a larger number of physical cores. The goal of our experiments is to demon-
strate that when more cores are available, our approach can utilize them efficiently. We evaluated
Q1 on LiveJournal and Twitter graphs, Q2 on LiveJournal, and Q14, which is a very difficult 7-
clique query, on Google. We repeated each query with 1, 2, 4, 8, 16, and 32 cores, except we use 8,
16, and 32 cores on the Twitter graph. Figure 17 shows our results. Our plans scale linearly until
16 cores with a slight slow down when moving 32 cores, which is the maximum number of cores
in our hardware. For example, going from 1 core to 16 cores, our runtime is reduced by 13× forQ1
on LiveJournal, 16× for Q2 on LiveJournal, and 12.3× for Q14 on Google.

6.3 Continuous Query Optimizer Evaluations

We next evaluate our optimizer for continuous queries. We aim to answer three main questions: (1)
How much benefit do combined plans get from sharing operators and why? (Section 6.3.2), (2) How
much benefit do combined plans get from sharing partial intersections and why? (Section 6.3.2),
and (3) How good are the plans our optimizer picks? (Section 6.3.3). In Section 6.3.4, we test the
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Fig. 18. Queries used for continuous subgraph query evaluations.

scalability of our implementation on a billion-scale Twitter graph. Finally, for completeness, in
Appendix E, we compare our approach on single queries against TurboFlux, a recent work on
continuous subgraph query evaluation. Although our approaches and implementations are very
different, we found GraphflowDB outperforms TurboFlux by at least 3.3× and by up to 117.5× on
our queries.

6.3.1 Query and Datasets. We used four different query sets:

• SEED: Directed versions of 6 queries from Reference [38] shown in Figure 18(a).
• MagicRecs: Diamond queries of Twitter’s MagicRecs recommender [23] shown in

Figure 18(d).
• 4Cs: All four unique directed 4-cliques as shown in Figure 18(c).
• 4Cs5C: 4Cs set and a 5-clique shown in Figure 18(c) and (b).

Our query sets have structural overlaps across their queries, which is necessary to have sharing
opportunities. We use four datasets: Amazon (Am), Google (Go), Epinions (Ep), and Patents (Pt)
from Table 9. In our scalability experiments, we will also use the Twitter (Tw) dataset. Note that
adding labels on query edges decreases sharing opportunities as delta subgraph queries need to
be both structurally isomorphic and have the same query edge labels. To allow for more sharing
opportunity across queries in our query sets, we keep the edge labels in query sets homogeneous
by labelling them with a single label. Interestingly, as we discuss in Section 6.3.2, adding more
labels on datasets, i.e., making the datasets more heterogeneous, increases benefits of sharing.

6.3.2 Benefits of Combined Plans and Partial Intersection Sharing. To evaluate (i) how much
benefit is gained from sharing computation across plans (both non-greedily and greedily) and (ii)
the benefits of partial intersection sharing, we compared the performance of the plans generated
by four optimizers:

• Bns (for no sharing): Picks the lowest i-cost QVO for each delta subgraph query and runs
each one separately.6

6We also adaptively evaluated the delta subgraph queries in Bns but our query sets contain cliquelike cyclic and benefits

of adapting these queries were minor (see Section 6.2.2).
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Table 13. Runtime (Seconds) of Bns , Bs , Gr , and Gopis on 4Cs, 4Cs5C, SEED, and MagicRec Query Sets

Runtime I-cost Runtime I-cost Runtime I-cost

4Cs1 4Cs2 4Cs3

Am

Bns

Bs

Gr
Grp

6.29
5.56 (1.13x)
5.46 (1.15x)
5.46 (1.15x)

0.602B (65%)
0.478B (1.26x)
0.442B (1.36x)
0.442B (1.36x)

1.33
1.07 (1.24x)
1.01 (1.32x)
0.92 (1.45x)

0.094B (48%)
0.067B (1.40x)
0.060B (1.57x)
0.053B (1.77x)

0.72
0.60 (1.20x)
0.47 (1.53x)
0.46 (1.57x)

0.033B (32%)
0.021B (1.57x)
0.017B (1.94x)
0.015B (2.20x)

Pa

Bns

Bs

Gr
Grp

8.61
5.23 (1.65x)
4.63 (1.86x)
4.28 (2.01x)

0.858B (29%)
0.479B (1.79x)
0.423B (2.03x)
0.383B (2.24x)

3.28
1.76 (1.86x)
1.67 (1.96x)
1.67 (1.96x)

0.178B (12%)
0.081B (2.20x)
0.073B (2.44x)
0.073B (2.44x)

2.12
1.17 (1.81x)
0.97 (2.19x)
0.99 (2.14x)

0.076B (7%)
0.032B (2.38x)
0.025B (3.04x)
0.024B (3.17x)

4Cs5C1 4Cs5C2 4Cs5C3

Am

Bns

Bs

Gr
Grp

13.4
11.8 (1.14x)
11.4 (1.18x)
11.4 (1.18x)

1.226B (35%)
1.015B (1.21x)
0.979B (1.25x)
0.979B (1.25x)

1.87
1.32 (1.42x)
1.20 (1.56x)
1.11 (1.68x)

0.129B (6%)
0.084B (1.54x)
0.075B (1.72x)
0.071B (1.82x)

0.90
0.50 (1.80x)
0.50 (1.80x)
0.45 (2.00x)

0.043B (1%)
0.026B (1.65x)
0.021B (2.05x)
0.020B (2.15x)

Pa

Bns

Bs

Gr
Grp

9.73
5.34 (1.82x)
4.43 (2.20x)
4.50 (2.16x)

1.015B (0%)
0.479B (2.12x)
0.423B (2.40x)
0.383B (2.65x)

4.50
1.66 (2.71x)
1.43 (3.15x)
1.43 (3.15x)

0.217B (0%)
0.081B (2.68x)
0.065B (3.34x)
0.065B (3.34x)

2.84
0.97 (2.93x)
0.81 (3.51x)
0.81 (3.51x)

0.094B (0%)
0.032B (2.94x)
0.024B (3.92x)
0.024B (3.92x)

SEED1 SEED2 SEED3

Am

Bns

Bs

Gr
Grp

28.8
27.3 (1.05x)
26.1 (1.10x)
26.0 (1.11x)

2.675B (59%)
2.322B (1.15x)
2.299B (1.16x)
2.226B (1.20x)

3.60
2.44 (1.48x)
2.44 (1.48x)
2.21 (1.63x)

0.201B (23%)
0.129B (1.56x)
0.125B (1.61x)
0.117B (1.72x)

1.45
0.85 (1.71x)
0.82 (1.77x)
0.84 (1.73x)

0.060B (10%)
0.033B (1.82x)
0.031B (1.94x)
0.030B (2.00x)

Pa

Bns

Bs

Gr
Grp

15.5
9.26 (1.67x)
9.26 (1.67x)
9.26 (1.67x)

1.343B (6%)
0.639B (2.10x)
0.639B (2.10x)
0.639B (2.10x)

7.02
4.38 (1.60x)
3.29 (2.13x)
3.29 (2.13x)

0.261B (4%)
0.116B (2.25x)
0.105B (2.49x)
0.105B (2.49x)

4.01
2.28 (1.76x)
1.77 (2.27x)
1.77 (2.27x)

0.101B (0.3%)
0.044B (2.30x)
0.034B (2.97x)
0.034B (2.97x)

MagicRec1 MagicRec2 MagicRec3

Am
Bns

Bs

Gr

36.6
21.1 (1.73x)
20.9 (1.75x)

5.238B (18%)
2.288B (2.29x)
2.188B (2.39x)

5.41
2.73 (1.98x)
2.73 (1.98x)

0.659B (20%)
0.301B (2.19x)
0.265B (2.49x)

2.03
1.10 (1.85x)
1.05 (1.93x)

0.180B (17%)
0.076B (2.37x)
0.066B (2.73x)

Pa
Bns

Bs

Gr

87.6
44.1 (1.99x)
43.7 (2.00x)

11.16B (16%)
4.484B (2.49x)
4.114B (2.71x)

11.7
6.48 (1.81x)
6.22 (1.88x)

1.406B (14%)
0.537B (1.95x)
0.473B (2.21x)

6.88
3.22 (2.14x)
2.66 (2.59x)

0.435B (13%)
0.159B (2.74x)
0.138B (3.15x)

The percentage value next to Bns total i-cost shows the percentage of work done in the last level.

Values in parentheses show the factor of improvement of the runtime over Bns .

• Bs (for sharing): Puts the plans of Bns into a combined plan.
• Gr: The combined plan generated by our greedy optimizer.
• Grp (for partial intersection sharing): The combined plan from Gr sharing partial intersec-

tions.

We measured the performances of these plans on Amazon, Google, Epinions, and Patents with
one, two, and three labels. In each experiment, we pick 90% of the edges of the input graph G
randomly and pre-load them to GraphflowDB. We then insert the remaining 10% edges in batches
of 5. Table 13 shows our experiments on Patent and Amazon. Appendix F shows our results on
Epinions and Google. The table shows the total runtime and i-cost of Bns , Bs , Gr, and Grp . We
show the i-cost numbers to explain an important pattern we discuss momentarily. The numbers
in the parantheses next to Bs , Gr, and Grp report the relative performance improvements of Gr
and Grp over Bns . We explain the percentage value next to the i-cost value of Bns momentarily.
In the remainder of this section, we make several observations on the experiments reported in
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Table 13 and readers can verify that these observations also hold in our experiments reported in
Appendix F.

We start by analyzing the benefits of sharing computations. For this, we compare the Bns and Bs

rows, which use exactly the same QVOs for each delta subgraph query and only differ on whether
or not they share computation. We can also compare Bns and Gr rows but in addition to sharing
vs. not sharing, these plans also differ in the QVOs they use for each delta subgraph query. So, Bns

and Bs comparison is more controlled. First, observe that sharing always improves performance.
Specifically, Bs outperforms Bns by up to 2.93×. However observe also that there are significant
variations in the relative runtime improvements across experiments. We next explain what governs
these differences.

Fundamentally, the runtime improvements of sharing depends on what fraction of Bns ’s work Bs

shares. Equivalently, this fraction depends on how much of the work is done at the operators where
sharing happens in Bs . In our query sets, one good proxy for this is to study the amount of work
that is done in the last-level operators. The last-level operators consist of the operators of the delta
subgraph queries with the largest number of query vertices. Unless two delta subgraph queries
are completely symmetric, which does not happen in our query sets, there can be no computation
sharing in the last-level operators. Therefore, the amount of work done in this level is a good
proxy for how much benefits sharing can give. We report the percentage of i-cost in the last-level
operators in the parentheses next to the i-cost column of Bns . The lower this number, the more
benefits we expect to get from sharing. For example, on Amazon, 4Cs1 this percentage is 65% and
the runtime benefits of Bs is 1.13×, while on MagicRecs1, this percentage is 18% and the runtime
difference is 1.73×. A controlled comparison can be made between 4Cs1 and 4Cs5C1 on the Patents
dataset. On Patents, even though there are matches for the 4Cs query set, there are no matches of
the 4-cliques that are subsets of the 5-clique in 4Cs5C. That is why we see percentage of 0% in the
Patents row of 4Cs5C1, because the last-level operators have no inputs. So when evaluating 4Cs5C1

with Bns , each of 10 delta subgraph queries of the 5-clique query needs to search for matches for
4-cliques over and over again. However, Bs shares the computation of these 10 delta subgraph
queries with the delta subgraph queries from the 4-clique queries, so incurs no additional i-cost
(observe the 0.479B i-cost of Bs both in 4Cs1 and 4Cs5C1 on Patents). So we expect Bs to outperform
Bns by a larger fraction in 4Cs5C1 than in 4Cs1. This is indeed what we observe on Patents: 1.65×
vs. 1.82× in runtime and 1.79× vs. 2.12× in i-cost.

How much work is done at the last-level operators also depends on structural properties of the
input datasets. We focus on two structural properties that give us controlled ways to test their
effects:

(i) Clustering coefficient: This is a measure of how cyclic a graph is and for the number of
cliques there are in a graph. Because all of the queries in 4Cs and 4Cs5C query sets are
cliques, the clustering coefficients of the input graphs allow us to control for how much of
the work is done in the last levels. When the clustering coefficient is low there will be less
cliques in the graph, so the last-level operators, which produce outputs, will do less work.
Let us take as an example the benefits of sharing on 4Cs5C1 on Amazon and Patents, which
respectively have clustering coefficients of 0.42 and 0.08. So we expect more benefits on
Patents than on Amazon. Indeed, this is what we observe. Bs outperforms Bns on Amazon
and Patents, respectively, by a factor of 1.14× and 1.82× in runtime and 1.21× and 2.12× in
i-cost. A similar pattern holds on 4Cs and in fact the rest of our query sets, which are also
cyclic.

(ii) Dataset heterogeneity: The number of labels in the datasets gives us another parameter
we can use to control for the amount of work that’s done at the last levels. Increasing the
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number of labels in a dataset decreases the number of matches of the queries in our query
sets, which have a single label, so less work would be done in the last-level operators. Indeed
readers can observe that the fraction of work done in the last level decreases when the data
heterogeneity increases or we go right on any row in Table 13. Therefore, we expect Bs

to outperform Bns by a larger factor as we go right in the table. For example, on Amazon
SEED row, performance increases from 1.05× to 1.48×, to 1.71× as labels increase from 1 to
2 to 3. This pattern broadly holds in our experiments but there are exceptions. For example,
moving from 1 to 2 labels on Patents and running the SEED query set, we see lower relative
benefits of sharing, a reduction from 1.67× to 1.60×. This is because as we observed above
on Patents there are no 4-cliques so 0% of the work is done in the last-level operator even
when there is a single label on the dataset. So we cannot use this metric as a proxy to predict
the benefits of sharing as labels increase.

We next compare Bs and Gr to answer whether or not our greedy optimizer, which directly
optimizes for a combined low i-cost plan, can find more computation sharing opportunities than
Bs . Observe that across all of our experiments Gr is able to find a plan with better i-cost and runtime.
For example on Patents 4Cs5C2, Gr improves performance over Bns by 3.51×while Bs improves by
2.93× (so an additional 1.21x improvement). Similarly on 4Cs3 Amazon, Gr improves performance
over Bns by 1.53× while Bs improves by 1.20× (so an additional 1.28x improvement). There are
very few exceptions to this pattern (all in Appendix F and in all of them the absolute difference is
less than 140 ms and relative slow down at most 1.04×).

Finally, we compare Grp with Gr to understand how much benefits we get from our partial
intersection sharing optimization. We omit Grp numbers for MagicRecs. This is because to ap-
ply partial intersection sharing, we need three-way intersections and on MagicRecs our Gr plan
only performs two way intersections. Observe that in all of our experiments, Grp either performs
equally or better than Gr (except 3 cases of a total of 48). For example, on Amazon dataset and SEED2

query set, we see that Grp improves performance over Bns by 1.68×while Gr improves over Bns by
1.56× (So an improvement of 1.08×). There is no simple answer to when Grp outperforms Gr more.
For example, we do not observe a clear pattern that increasing the number of labels in input labels
increases the benefits of partial sharing. This is because we perform partial intersection sharing at
all levels, so shifting the amount of work done to lower-level operators does not necessarily imply
that we should expect to benefit less from partial sharing. Importantly, our experiments demon-
strate that partial intersection sharing is robust and improves performance broadly in our experi-
ments. Finally, putting our greedy optimizer’s plan and the partial intersection sharing, we observe
up to 3.51× runtime improvements over Bns and up to 3.92× reduction in i-cost in our experiments.

6.3.3 Goodness of Greedy Optimizer. We next study how good are our greedy optimizer’s com-
bined plans, compared to the space of all combined plans. We compare the plans we pick against
all other possible plans in a query set’s plan spectrum using the same setup as Section 6.3.2. For
this analysis, we pick query sets that consist of one or two queries to ensure that the number of
possible combined plans is small. The queries we evaluate on are the diamond query (QD ), the
diamond-X query (QDX ), and the 4-Clique query (Q4C ) on four datasets. We also evaluate on two
query sets with two queries: one contains two 4-Cliques (Q4Cs ) and the other contains a diamond
and a 4-Clique (QD−4C ). We use all datasets with one and two labels. Except we omit Amazon
with two labels as the runtimes of all plans were less than 1 s. Our greedy optimizer’s plans were
broadly optimal or very close to optimal across our experiments. Figure 19 shows our spectrum
charts. Our optimizer’s plans were optimal in 16 of our 25 spectrums and within 1.15× of the op-
timal in 7 spectrums. In the 2 left cases, we were 1.30× and 1.47× of the optimal and the absolute
runtime difference was 77 ms and 313 ms, respectively.
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Fig. 19. Runtime (seconds) of a sample of the plans enumerated by the continuous query optimizer for
Diamond (QD ), Diamond-X (QDX ), and 4-Clique (Q4C ) and two query sets, one of two 4-Cliques (Q4Cs ) and
the other of a Diamond and a 4-Clique (QD−4C ) on datasets Am, Ep, Go, and Pa with one and two labels.
“x” specifies the plan picked by GraphflowDB.

6.3.4 Scalability. Finally, for completeness of our work, we tested the scalability of our com-
bined plans on our largest graph Twitter dataset and loaded 90% of it to GraphflowDB. We eval-
uated the system on the 4Cs and 4Cs5C query sets. For 4Cs, we inserted 500K random updates in
batches of 5. For 4Cs5C, we inserted 25K updates. Table 14 shows the runtime and output through-
put, i.e., number of cliques output. We are able to output 23.8M cliques per second on the 4Cs5C.
These numbers look competitive with distributed implementation of Delta Generic Join from Ref-
erence [6], which reports outputting 46.5M 4-cliques on a larger graph using 224 cores. A direct
comparison is not possible, since the work from Reference [6] considers a single query at at time,
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Table 14. Continuous Subgraph Queries Scalability Evaluations

Runtime (seconds) Output matches throughput/second

4Cs 1,323 14.5M
4Cs5C 6,627 23.8M

does not contain an optimizer, is designed and implemented for the distributed setting, and is
written in a different programming language.

7 RELATED WORK

Our current work substantially expands a previous conference publication [41], which studied
optimizing one-time subgraph queries using WCO join algorithms. We expand on this work by
studying how to optimize continuous subgraph queries using WCO join algorithms. This includes
the entire Section 4.2 and parts of every section related to continuous subgraph query evalua-
tion. We also expand our experimental evaluation in Section 6 for one-time queries by providing
spectrum analyses for all of our queries.

In the rest of this section, we review related work in WCO join and IVM algorithms, one-time and
continuous subgraph query evaluation algorithms, and cardinality estimation techniques related
to our catalogue. We focus on serial algorithms and single node systems. For join and subgraph
query evaluation, several distributed solutions have been developed in the context of graph data
processing [38, 64], RDF engines [1, 70], or multiway joins of relational tables [4, 6, 54]. We do not
review this literature here in detail. Reference [34] and Reference [58] evaluate multiple one-time
subgraph queries with selective predicates. We omit their detailed review here. There is a rich
body of work on adaptive query processing in relational systems and multiple query processing
in stream processing, for which we refer readers to References [13, 20, 26, 62].

WCO Join Algorithms and IVM: Prior to Generic Join, there were two other WCO join algo-
rithms introduced called NPRR [50] and LFTJ [66]. Similarly to Generic Join, these algorithms
also perform attribute-at-a-time join processing using intersections. We covered EH [2], CTJ [28],
and Tributory Join [15], which are systems and algorithms that use these algorithms for one-time
natural join or subgraph queries in Section 6.

Our continuous subgraph query evaluation is based on the Delta Generic Join [6], an IVM al-
gorithm for join queries. Numerous works exist on IVM of relational queries. A survey of this
literature can be found in Reference [57]. The closest to Delta Generic Join is an IVM algorithm
based on LFTJ from Reference [67], which maintains an index that can be as large as the AGM
bound of the query. Instead, our approach, as also observed in Reference [6], does not maintain
any auxiliary indexes.

DBToaster [5, 31] is another IVM system that generates delta queries to maintain continuous
queries. To incrementally maintain a query Q , DBToaster relies on higher-order IVM. Although
this technique can be used to maintain our join-only continuous subgraph queries, it is primarily
designed for and is efficient on queries with aggregations. In particular, DBToaster maintains all
of the higher order delta queries of Q , and upon an update to the relations, uses ith degree delta
queries to update (i − 1)th degree views. These update computations do not involve any joins and
perform only selections (and other operations such as arithmetic and unions). However, to avoid
joins, DBToaster maintains views that are sub-queries of Q , which can be prohibitively expensive
for the queries we target. For example, to maintain a triangle query Q : R (a,b) �� S (b, c ) ��
T (c,a), DBToaster would use three delta queries, e.g., ΔR (Q ) : ΔR �� S �� T , which is similar to
our delta queries, with the following important difference. To compute ΔR (Q ) without computing
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joins, DBToaster maintains the viewVST = S �� T . Notice that this computes the “open triangles”
(in graph setting). Instead, our processor does not maintain any views other than the original
tables, and executes ΔR �� S �� T from scratch. Note also that because we adopt worst-case
optimal joins in our evaluator, even when evaluating delta queries from scratch, we do not generate
open triangles.

More recent work improves over DBToaster and higher-order IVM techniques [27]. Since
Higher-Order IVM materializes not only the result of Q but also the results of the higher-order
delta query, it struggles to computeQ when it is output size is much larger than that of the database
especially for the in-memory setting. Reference [27] introduces an algorithm to maintain results
of acyclic queries under updates relying instead of materialization on a data structure called Dy-

namic Constant-delay Linear Representation (DCLR). DCLR and the Dynamic Yannakakis
Algorithm introduced guarantee linear time maintenance under updates while using only linear
space in the size of the database. The technique is reminiscent of factorized database representa-
tion and processing [52]. In contrast to DCLR, our delta query IVM technique that we adopted does
not require any space (not even linear space) and can maintain both cyclic and acyclic queries.

Single One-time Subgraph Query Evaluation Algorithms: Many of the earlier subgraph
matching algorithms are based on Ullmann’s branch and bound or backtracking method [65].
The algorithm conceptually performs a query-vertex-at-a-time matching using an arbitrary QVO.
This algorithm has been improved with different techniques to pick better QVOs and filter par-
tial matches, often focusing on queries with labels [17, 18, 63]. Several recent algorithms perform
preprocessing to find candidate vertex sets (the set of possible data vertices for each query vertex),
build an auxiliary data structure for these sets and finally pick a QVO for the evaluation. Such
algorithms include TurboI SO [25], CFL [10], CECI [9], and DP-iso [24]. Each of these algorithms
include optimizations on the auxiliary data structure as well as query processing. TurboI SO , for
example, proposes to merge similar query vertices (same label and neighbours) to minimize the
number of partial matches and once the merged and smaller query is evaluated, perform a Carte-
sian product to enumerate the final outputs. CFL decomposes the query into a dense subgraph and
a forest, and processes the dense subgraph first to reduce the number of partial matches. CFL also
uses an index called compact path index, which estimates the number of matches for each root-
to-leaf query path in the query and is used to enumerate the matches as well. We compare our
approach to CFL in our supplementary Appendix D as its code is available. CECI and DP-iso rely
on an auxiliary data structure that maintains edges between candidates and also rely on multiway
intersections when finding candidate sets. Each of the algorithms has its own optimization, e.g.,
CECI divides the data graph into multiple embedding clusters for parallel processing while DP-iso
relies on an adaptive QVO selection and a pruning technique called pruning by failing sets, which
are partial matches with no possible extensions in the data graph. A systematic comparison of our
approach against these approaches is beyond the scope of this article. Our approach is specifically
designed to be decomposable into operator-based query plans that the query processors of existing
GDBMSs generate and implementable on GDBMSs that adopts a cost-based optimizer.

Another group of algorithms index different structures in input graphs, such as frequent paths,
trees, or triangles, to speed up query evaluation [69, 71]. Such approaches can be complementary
to our approach. For example, Reference [6] in the distributed setting demonstrated how to speed
up Generic Join based WCO plans by indexing triangles in the graph.

Multi-Query Optimization: Computation sharing by identifying common computations arises
in many query processing settings, such as when running a single complex query that contains re-
peated sub-queries, running a batch of queries with common expressions [59, 72], data streaming
systems that perform on-line queries with common aggregations [32], or in systems that maintain
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multiple materialized views [5, 42]. Our continuous subgraph query evaluation setting is an ex-
ample of maintaining multiple views. When a query processor needs to evaluate multiple queries,
instead of using separate individual plans for each query, the task is to construct a consolidated
plan to evaluate all of these queries, ensuring that common subexpressions are evaluated once
and consumed by multiple upstream operators. There as been many prior work that have stud-
ied different aspects of this problem, such as how to detect common sub-expressions, e.g., using
exhaustive [62] or heuristic algorithms [59], or whether to share computation through material-
ization [42, 59] or pipelining [19]. Our approach is based upon these same foundations. Specif-
ically, our combined plans fall under a heuristic method that finds common expressions greed-
ily, similar to Reference [59], and performs the entire computation in a pipelined manner. Build-
ing upon these methods, our work studies how to optimize the delta decompositions of multi-
ple subgraph queries when using the new intersection-based worst-case optimal join algorithms,
for which we use a new i-cost metric, and a partial intersection sharing technique to improve
performance.

Multiple Continuous Subgraph Query Algorithms: EMVM [55] evaluates multiple subgraph
queries under single-edge insertion workloads. Given a set of queries Q̄ , EMVM partitions the
queries in Q̄ into separate query sets Q̄l1 , . . . , Q̄lk

, one for each separate edge predicate li (called
labels) in the queries. Each query set Q̄li

contains as many edge-annotated views (EAVs) of the
same query Q as there are edges with predicate li in Q . EAVs are similar to our delta subgraph
queries. For each Q̄li

, EMVM constructs a larger “merged view” that is similar to our combined
plans. EMVM assumes a query set with highly selective predicates, which is reflected in two main
differences between EMVM and our approach: (1) Merged views are constructed to share as many
edges as possible between the queries on M, ignoring their cyclic structures, and (2) queries are
evaluated one query edge at a time.

Single Continuous Subgraph Query Algorithms: TurboFlux [30] evaluates a query using a
data centric graph (DCG), which is a compressed representation of partial matches of the query
in G (EG ,VG ). Upon updates to G, TurboFlux runs a subgraph matching algorithm on the DCG to
detect instances ofQ . Such processing on compressed data structures is very different from out flat
tuple-based processing and, unlike our approach, seems harder to decompose into existing graph
databases. Our supplementary Appendix E gives a more detailed overview of TurboFlux and its
performance comparison against our approach.

Reference [21] describes a general search localization technique called IncIsoMat that, given an
update e (u,v ) toG computes a region ofG called the affected area that may include an emergence
or deletion of instances of a query Q . Matching instances of Q is found by using any subgraph
matching algorithm on the affected area and is left unspecified. Our delta subgraph query frame-
work automatically localizes its search to the same and sometimes smaller area around e . Finally,
Reference [14] describes a technique called SJ-Tree, which constructs a left-deep query plan P for a
queryQ , where each leaf is either a 1-edge or 2-edge path ofQ . Upon updates to the graph, SJ-Tree
maintains partial matches to each intermediate node of P using a hash join algorithm. SJ-Tree is
designed for queries with highly selective predicates, e.g., the reference assumes that the number
of matches for 2-edge paths are expected to be significantly fewer than 1-edge paths, which does
not hold for many queries in practice. As a result, for many queries, this technique can materialize
prohibitively large intermediate results.

Cardinality Estimation Using Small-size Graph Patterns: Our catalogue is closely related to
Markov tables [3], and MD- and Pattern-tree summaries from Reference [39]. Similarly to our cat-
alogue, both of these techniques store information about small-size subgraphs to make cardinality
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estimates for larger subgraphs. Markov tables were introduced to estimate cardinalities of paths
in XML trees and store exact cardinalities of small size paths to estimate longer paths. MD- and
Pattern-tree techniques store exact cardinalities of small-size acyclic patterns, and are used to esti-
mate the cardinalities of larger subgraphs (acyclic and cyclic) in general graphs. These techniques
are limited to cardinality estimation and store only acyclic patterns. In contrast, our catalogue
stores information about acyclic and cyclic patterns and is used for both cardinality and i-cost es-
timation. In addition to selectivity (μ) estimates that are used for cardinality estimation, we store
information about the sizes of the adjacency lists (the |A| values), which allows our optimizer to
differentiate between WCO plans that generate the same number of intermediate results, so have
same cardinality estimates, but incur different i-costs. Storing cyclic patterns in the catalogue allow
us to make accurate estimates for cyclic queries.

8 CONCLUSION

We described two cost-based optimizers: (i) a cost-based dynamic programming optimizer for one-
time subgraph queries that enumerates a plan space that contains WCO plans, BJ plans, and a
large class of hybrid plans and (ii) a cost-based greedy optimizer for continuous subgraph queries,
which builds on top of the delta subgraph query framework. Our one-time optimizer generates
novel hybrid plans that seamlessly mix intersections with binary joins, which are not in the plan
space of prior optimizers for subgraph queries. Our continuous optimizer relies on multi-query
optimization using computation sharing to lower the costs of plans. Within both optimizers, WCO
plans are assigned a cost based on our i-cost metric, which captures the several runtime effects of
QVOs we identified through extensive experiments.

Our approaches in this article have several limitations, which give us directions for future work.
First, our optimizer can benefit from more advanced cardinality and i-cost estimators, such as
those based on sampling outputs or machine learning. Second, for very large one-time queries,
currently our one-time optimizer enumerates a limited part of our plan space. Studying faster plan
enumeration methods, similar to those discussed in Reference [46], is an important future work
direction. Finally, existing literature on subgraph matching, both in the one-time and continuous
settings, contain several optimizations for identifying and evaluating independent components of
a query separately. Example optimizations include factorization [52] or postponing the Cartesian
product optimization from Reference [10].
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This online appendix contains: (1) the complexity result of the multiple continuous subgraph query optimiza-

tion problem; (2) catalogue experimental results; (3) an explanation for how our plans subsume EmptyHeaded

plans; (4) comparisons against CFL and TurboFlux; and (5) further continuous subgraph query evaluation

experiments.

A COMPLEXITY OF MULTIPLE CONTINUOUS SUBGRAPH QUERY OPTIMIZATION

A.1. Formal Optimization Problem and Its Computational Complexity

Recall that we do not know the exact complexity of the actual computational problem that our
optimizer solves. However, we can show that the natural decision version of a slightly more gen-
eral version of the problem, in which we drop the assumption that the set of DSQs in Q̄DSQ are
delta decompositions of a set of subgraph queries is NP-hard. Note that combined plans effectively
use common operators across DSQs if the DSQs compute isomorphic sub-queries. Our goal in
providing this proof is to make the connection between our optimization problem and the max-
imum common induced subgraph problem, which is NP-hard. We first define the more general
optimization problem we consider:

Definition (Generalized Multiple DSQ Optimization Problem (GDOP)): Given a set of arbitrary
delta subgraph queries Q̄DSQ , i.e., a set of subgraph queries where one edge is labeled with δ and
the other edges with o or n, and an arbitrary full catalogue C , and a target cost k , find whether or
not there is a combined plan with cost at most k .

Theorem A.1. GDOP is NP-hard.

Proof. We show that the GDOP is NP-hard on instances in which the given a catalogue that
has a value of 1 for each cost and selectivity. That is the entries in the catalogue are such that
any Qk−1 to Qk extension entry has μ value 1 and the |A| value equal to lists that sum to 1. We
call this the uniform catalogue. Note that when this is the input catalogue the optimal combined
plan is the plan that contains the smallest number of operators. We next show that the maximum

common induced subgraph problem (MCISP) [40] , which is NP-hard, reduces to GDOP. Given
two graphs G1 and G2 and a target value t , MCISP is the problem of finding whether or not there
is a subgraph H with at least t vertices that is an induced subgraph of both G1 and G2, i.e., the
projection of G1 and G2 onto the vertices in H gives H .

The reduction is as follows. Take an instance of MCISP with graphs G1 and G2 and a target
induced subgraph of size t . Assume the nodes inG1 are labeled with a1,a2, . . . ,am1 and each node
inG2 is labeled with b1,b2, . . . ,bm2 . We first construct an instance of GDOP as follows. Label each
edge ofG1 andG2 with o, and extend bothG1 andG2 with a new edge x→y with label δ and connect

© 2021 Association for Computing Machinery.

0362-5915/2021/05-ART6 $15.00

https://doi.org/10.1145/3446980

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 6. Publication date: May 2021.

https://doi.org/10.1145/3446980


6:2 A. Mhedhbi et al.

both x and y to each node in G1 and G2. These labeled and extended G1 and G2 graphs are now
delta subgraph queries, and we refer to them as DSQ1 and DSQ2. Now consider solving GDOP on
DSQ1 and DSQ2 using a uniform catalogue and a target cost ofm1 +m2 + 1 − t , which, due to the
structure of the catalogue, is the problem of finding a combined plan with at mostm1 +m2 + 1 − t
operators.

First, observe that any combined plan needs to have exactly two sink E/I operators because
there are two DSQs, i.e., in the DAG of any correct combined plan for this GDOP instances there
will be two final “branches” leading to sink operators. Second, observe that we only need to con-
sider combined plans whose DAGs have the following structure: (1) start with a source Scan that

matches
δ−→ as usual; (2) a chain of z E/I operators each giving its output to one output E/I operator,

which compute a common sub-query for bothDSQ1 andDSQ2, where the last E/I operator gives its
output to two operators (to start the final two “branches”); (3) two branches, one with r1 =m1 − z
many and the other with r2 =m2 − z many E/I operators, each giving its output to one output
E/I operator. Any combined plan that branches and merges multiple times is suboptimal, because,
we can always keep the last two branches and then only keep one chain back to the source Scan
operator, so remove all but one of the previous branches that eventually merge, which strictly de-
creases the number of operators in the combined plan. Therefore any combined plan effectively
starts with a Scan operator that evaluates the extra x→y edge we added to G1 and G2 and then a
z-size common induced subgraph ofG1 andG2 and then in two separate branches of E/I operators
evaluates the rest of the vertices in G1 and G2, with a cost of m1 +m2 + 1 − z (+1 is for the initial
scan operator). Therefore, there is an induced subgraph of size at least t if and only if there is a
combined plan in the GDOP instance with at mostm1 +m2 + 1 − t cost, completing the proof. �

B CATALOGUE EXPERIMENTS

We present preliminary experiments to show two tradeoffs: (1) the space vs. estimation quality
tradeoff that parameter h determines; and (2) construction time vs. estimation quality tradeoff that
parameter z determines. For estimation quality we evaluate cardinality estimation and omit the
estimation of adjacency list sizes, i.e., the |A| column, that we use in our i-cost estimates. We first
generated all 5-vertex size unlabeled queries. This gives us 535 queries. For each query, we assign
labels at random given the number of labels in the dataset (we consider Amazon with 1 label,
Google with 3 labels). Then for each dataset, we construct two sets of catalogues: (1) we fix z to
1,000, and construct a catalogue with h = 2, h = 3, and h = 4 and record the number of entries
in the catalogue; (2) we fix h to 3 and construct a catalogue with z = 100, z = 500, z = 1,000, and
z = 5,000 and record the construction time. Then, for each labeled query Q , we first compute its
actual cardinality, |Qtrue |, and record the estimated cardinality of Q , Qest for each catalogue we
constructed. Using these estimation we record the q-error of the estimation, which is max(|Qest | /
|Qtrue |, |Qtrue | / |Qest |). This is an error metric used in prior cardinality estimation work [35] that
is at least 1, where 1 indicates completely accurate estimation. As a very basic baseline, we also
compared our catalogues to the cardinality estimator of PostgreSQL. For each dataset, we created
an Edge relation E(from, to). We create two composite indexes on the table on (from, to) and (to,
from) which are equivalent to our forward and backward adjacency lists. We collected stats on
each table through the ANALYZE command. We obtain PostgreSQL’s estimate by writing each
query in an equivalent SQL select-join query and running EXPLAIN on the SQL query.

Our results are shown in Tables 1 and 2 as cumulative distributions as follows: for different q-
error bounds τ , we show the number of queries that a particular catalogue estimated with q-error
at most τ . As expected, larger h and larger z values lead to less q-error, while respectively yielding
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Table 1. Q-error and Catalogue Creation Time (CT)

in Secs for GraphflowDB for Different z Values

z CT ≤2 ≤3 ≤3 ≤5 ≤10 >20

Am

100 0.1 318 445 510 526 529 535
500 0.3 384 486 520 527 530 535

1,000 0.5 383 481 519 529 532 535
5,000 1.5 384 475 518 529 532 535

Go3

100 3.1 166 276 356 415 561 535
500 9.3 214 310 371 430 477 535

1,000 17.0 222 315 371 430 475 535
5,000 66.1 219 322 373 432 473 535

Table 2. Postgres (PG) and GraphflowDB (GF) Q-error and Number of Catalogue

Entries (|R|) for GF for Different h Values

h |R| ≤2 ≤3 ≤3 ≤5 ≤10 >20
2 8 348 464 512 523 527 535

Am GF 3 138 381 482 512 524 527 535
4 2858 498 510 518 524 527 535

PG – – 15 15 23 23 25 535
2 144 181 289 375 447 492 535

Go3 GF 3 20.3K 222 315 371 430 475 535
4 11.9M 441 497 515 524 529 535

PG – – 0 0 0 0 0 535

larger catalogue sizes and longer construction times. The biggest q-error differences are obtained
when moving from h = 3 to h = 4 and z = 100 to z = 500. There are a few exception τ values when
the larger h or z values lead to very minor decreases in the number of queries within the τ bound
but the trend holds broadly.

C SUBSUMED EMPTYHEADED PLANS

We show that our plan space contains EmptyHeaded’s GHD-based plans that satisfy the projec-
tion constraint. For details on GHDs and how EmptyHeaded picks GHDs we refer the reader to
Reference [2]. Briefly, a GHD D of Q is a decomposition of Q where each node i is labelled with
a subquery Qi of Q . The interpretation of a GHD D as a join plan is as follows: each subquery is
evaluated using Generic Join first and materialized into an intermediate table. Then, starting from
the leaves, each table is joined into its parent in an arbitrary order. So a GHD can easily be turned
into a join planT in our notation (from Section 3.2) by “expanding” each sub-queryQi into a WCO
subplan according to the chosen QVO that EmptyHeaded picks for Qi and adding intermediate
nodes in T that are the results of the joins that EmptyHeaded performs. Given Q , EmptyHeaded
picks the GHDD∗ forQ as follows. First, EmptyHeaded loops over each GHDD ofQ , and computes
the worst-case size of the subqueries, which are computed by the AGM bounds of these queries
(i.e., the minimum fractional edge covers of sub-queries; see Reference [8]). The maximum size of
the subqueries is the width of GHD and the GHD with the minimum width is picked. This effec-
tively implies that one of these GHDs satisfy our projection constraint. This is because adding a
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missing query edge to Qi (Vi ,Ei ) can only decrease its fractional edge cover. To see this consider
Q ′i (Vi ,E

′
i ), which containsV ′ but also any missing query edge in Ei . Any fractional edge cover for

Qi is a fractional edge cover for Q ′i (by giving weight 0 to E ′i − Ei in the cover), so the minimum
fractional edge cover of Q ′i is at most that for Qi , proving that D∗ is in our plan space.

We verified that for every query from Figure 10, the plans EmptyHeaded picks satisfy the pro-
jection constraint. However, there are minimum-width GHDs that do not satisfy this constraint.
For example, for Q10, EmptyHeaded finds two minimum-width GHDs: (i) one that joins a diamond
and a triangle (width 2) and (ii) one that joins a three path (a2a1a3a4) joined with a triangle with
an extended edge (also width 2). The first GHD satisfies the projection constraint, while the sec-
ond one does not. EmptyHeaded (arbitrarily) picks the first GHD. As we argued in Section 3.2.1
, satisfying the projection constraint is not a disadvantage, as it makes the plans generate fewer
intermediate tuples. For example, on a Gnutella peer-to-peer graph [37] (neither GHD finished in
a reasonable amount of time on our datasets from Table 9), the first GHD for Q10 takes around
150ms, while the second one does not finish within 30 minutes.

D CFL COMPARISON

CFL [10] is one of the state-of-the-art subgraph matching algorithms whose code is available. The
algorithm can evaluate labelled subgraph queries as in our setting. The main optimization of CFL
is what is referred to as “postponing Cartesian products” in the query. These are conditionally
independent parts of the query that can be matched separately and appear as Cartesian products
in the output. CFL decomposes a query into a dense core and a forest. Broadly, the algorithm first
matches the core, where fewer matches are expected and there is less chance of independence
between the parts. Then the forest is matched. In both parts, any detected Cartesian products
are postponed and evaluated independently. This reduces the number of intermediate results the
algorithm generates. CFL also builds an index called CPI, which is used to quickly enumerate
matches of paths in the query during evaluation. We follow the setting from the evaluation section
of Reference [10]. We obtained the CFL code and 6 different query sets used in Reference [10]
from the authors. Each query set contains 100 randomly generated queries that are either sparse
(average query vertex degree ≤ 3) or dense (average query vertex degree > 3). We used three sparse
query sets Q10s, Q15, and Q20s containing queries with 10, 15, and 20 query vertices, respectively.
Similarly, we used three dense query sets Q10d, Q15d, and Q20d. To be close to their setup, we use
the human dataset from the original CFL paper. The dataset contains 86,282 edges, 4,674 vertices,
44 distinct labels. We report the average runtime per query for each query set when we limit
the output to 105 and 108 matches as done in Reference [10]. Table 3 compares the runtime of
GraphflowDB and CFL on the 6 query sets. Except for one of our experiments, on Q10d with 105

output size limit, GraphflowDB’s runtimes are faster (between 1.2× to 12.2×) than CFL. We note
that although our runtime results are faster than CFL on average, readers should not interpret
these results as one approach being superior to another. For example, we think the postponing

Table 3. Average Runtime (seconds) of GraphflowDB (GF) and CFL on Large Queries

|T | Q10s Q15s Q20s Q10d Q15d Q20d

105
GF 7.3 6.0 5.5 29.2(2.2x) 99.8 142.0

CFL 9.3(1.2x) 17.5(2.9x) 40.5(7.3x) 13.2 389.9(3.9x) 1,140.7(8.0x)

108
GF 625.6 665.5 797.2 1,159.6 1,906.2 1,556.9

CFL 4,818.9(7.7x) 5,898.1(8.8x) 7,104.1(8.9x) 7,974.3(6.8x) 11,656.2(6.1x) 19,135.7(12.2x)

Qi(s/d) is a query set of 100 randomly generated queries where i is the number of vertices and s and d specify sparse and

dense queries, respectively as specified in Appendix D.
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Table 4. Turboflux (Tf ) vs. GraphflowDB (GF) on

Continuous Subgraph Queries Diamond (QD ), Diamond-X

(QDX ), 4-Clique (Q4C ), and 5-Clique (Q5C ) from

the Query Set SEED

QD Q4C Q5C

Am
GF 3.5 2.1 9.1

Tf 11.4 (3.3x) 13.2 (6.3x) 1069 (117.5x)

Go
GF 9.1 3.8 50.4

Tf 29.9 (3.3x) 41.6 (10.9x) 3090 (61.3x)

of Cartesian products optimization and a CPI index are good techniques and can improve our
approach. However, one major advantage of our approach is that we do flat tuple-based processing
using standard database operators, so our techniques can easily be integrated into existing graph
databases. It is less clear how to decompose CFL-style processing into database operators.

E TURBOFLUX COMPARISON

TurboFlux [30] evaluates a query using a data centric graph (DCG), which is a compressed
representation of partial matches of the query in G (EG ,VG ). Briefly, the DCG is a multigraph
GDCG (VDCG ,EDCG ) whereVDCG = VG and EDCG contains |VQ | − 1 parallel edges for each e ∈ EG .
Each parallel edge has a state of null (N), implicit (IM), or explicit (EX) and a label which is one of
the query vertices in Q . An EX edge u→v with label ai ∈ VQ indicate a set of successful matches
of vertices (according to an order) to query vertices where v matches ai . Updates to G, TurboFlux
transitions the states of the edges and then runs a subgraph matching algorithm on the DCG.

We obtained the code from the original authors. We used four different continuous subgraph
queries from the SEED query set: (i) a Diamond (QD ); (ii) a Diamond-X (QDX ); (iii) a 4-Clique
(Q4C ); and (iv) a 5-Clique (Q5C ). As in previous experiments we pre-loaded both TurboFlux and
GraphflowDB with a random 90% of the dataset. We streamed in the remaining 10% of edges one
edge at a time because TurboFlux does not support batching of updates. We show the results of
this experiment in Table 4. Across all datasets and queries, GraphflowDB outperforms TurboFlux
by at least 3.3× and by up to 117.5×. As we emphasized in our one-time query CFL comparisons,
readers should not conclude from these experiments that our approach is superior to TurboFlux’s
approach. The compared approaches and the actual implementations of these approaches are very
different (and we were only provided the binary). We provide these experiments merely for com-
pleteness of our work and sanity checks to verify that our implementation is competitive with ex-
isting recent solutions from literature. We believe approaches such as DCG that allow compressed
representations are good techniques. One important distinction to note is that our approach was
specifically designed to be easily integrated into a GDBMS and our implementation is part of a
GDBMS architecture. In contrast it is less clear how to decompose TurboFlux-style processing
into actual database implementations. This is an interesting research direction.

F RUNTIME AND EXECUTION METRICS FOR CONTINUOUS SUBGRAPH QUERIES

Table 5 reports the rest of our experiments from Section 6.3 on Epinions and Google datasets.
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Table 5. Runtime (Seconds) of Bns , Bs , Gr, and Gopis on 4Cs, 4Cs5C, SEED, and MagicRec Query Sets

Runtime I-cost Runtime I-cost Runtime I-cost

4Cs1 4Cs2 4Cs3

Ep
Bns

Bs

Gr
Grp

5.51
5.15 (1.07x)
4.95 (1.11x)
4.78 (1.15x)

1.488B (84%)
1.347B (1.10x)
1.328B (1.20x)
1.244B (1.20x)

0.56
0.43 (1.30x)
0.49 (1.14x)
0.49 (1.14x)

0.163B (65%)
0.125B (1.30x)
0.126B (1.30x)
0.126B (1.30x)

0.33
0.21 (1.57x)
0.22 (1.50x)
0.18 (1.83x)

0.052B (50%)
0.035B (1.49x)
0.037B (1.41x)
0.030B (1.73x)

Go
Bns

Bs

Gr
Grp

14.61
13.03 (1.12x)
13.10 (1.12x)
13.16 (1.11x)

3.032B (58%)
2.226B (1.36x)
2.073B (1.46x)
1.864B (1.63x)

2.70
2.14 (1.26x)
2.23 (1.21x)
1.99 (1.36x)

0.515B (38%)
0.314B (1.64x)
0.285B (1.81x)
0.278B (1.85x)

1.31
1.12 (1.17x)
1.00 (1.31x)
0.94 (1.39x)

0.188B (39%)
0.126B (1.49x)
0.118B (1.59x)
0.106B (1.77x)

4Cs5C1 4Cs5C2 4Cs5C3

Ep
Bns

Bs

Gr
Grp

16.71
16.35 (1.02x)
15.78 (1.06x)
15.80 (1.06x)

5.607B (64%)
5.339B (1.05x)
5.320B (1.05x)
5.235B (1.07x)

0.97
0.95 (1.02x)
0.82 (1.18x)
0.66 (1.47x)

0.278B (22%)
0.218B (1.28x)
0.215B (1.29x)
0.209B (1.33x)

0.42
0.29 (1.45x)
0.36 (1.17x)
0.27 (1.56x)

0.074B (7%)
0.048B (1.54x)
0.048B (1.54x)
0.041B (1.80x)

Go
Bns

Bs

Gr
Grp

33.96
33.1 (1.03x)
32.3 (1.05x)
32.8 (1.04x)

5.422B (36%)
4.436B (1.22x)
4.283B (1.27x)
4.073B (1.33x)

3.54
2.88 (1.23x)
2.64 (1.34x)
2.71 (1.31x)

0.607B (6%)
0.374B (1.63x)
0.343B (1.77x)
0.332B (1.83x)

1.63
0.99 (1.65x)
0.97 (1.68x)
0.97 (1.68x)

0.211B (1%)
0.136B (1.55x)
0.126B (1.67x)
0.113B (1.87x)

SEED1 SEED2 SEED3

Ep
Bns

Bs

Gr
Grp

205.9
197.8 (1.04x)
197.8 (1.04x)
192.8 (1.07x)

47.76B (86%)
46.03B (1.04x)
46.03B (1.04x)
44.75B (1.07x)

8.45
7.68 (1.10x)
7.68 (1.10x)
7.45 (1.13x)

2.071B (61%)
1.740B (1.19x)
1.732B (1.20x)
1.691B (1.22x)

2.43
1.80 (1.35x)
1.81 (1.34x)
1.81 (1.34x)

0.430B (43%)
0.323B (1.33x)
0.317B (1.36x)
0.311B (1.38x)

Go
Bns

Bs

Gr
Grp

97.9
97.4 (1.01)

81.6 (1.20x)
81.6 (1.20x)

13.04B (74%)
11.98B (1.09x)
11.51B (1.13x)
11.51B (1.13x)

7.25
5.50 (1.32x)
5.64 (1.29x)
5.31 (1.37x)

0.715B (34%)
0.499B (1.43x)
0.500B (1.43x)
0.474B (1.51x)

3.31
2.37 (1.40x)
1.77 (1.87x)
1.61 (2.06x)

0.208B (28%)
0.146B (1.42x)
0.114B (1.82x)
0.109B (1.91x)

MagicRec1 MagicRec2 MagicRec3

Ep
Bns

Bs

Gr

1524
1416 (1.08x)
1414 (1.08x)

40.64B (19%)
18.06B (2.25x)
17.65B (2.30x)

40.2
24.6 (1.63x)
24.4 (1.65x)

9.999B (28%)
5.414B (1.85x)
5.121B (1.95x)

7.66
3.73 (2.05x)
3.66 (2.09x)

2.048B (24%)
1.014B (2.02x)
0.929B (2.20x)

Go
Bns

Bs

Gr

475.3
430.4 (1.10x)
427.2 (1.11x)

43.77B (20%)
20.19B (2.17x)
19.88B (2.20x)

18.2
10.3 (1.77x)
9.9 (1.84x)

7.345B (26%)
3.922B (1.87x)
3.607B (2.04x)

5.48
2.78 (1.97x)
2.62 (2.09x)

1.600B (23%)
0.786B (2.04x)
0.702B (2.23x)

The percentage value next to Bns total i-cost shows the percentage of work done in the last level. Values in parentheses

show the factor of improvement of the runtime over Bns .
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Abstract— Graph database management systems (GDBMSs)
are highly optimized to perform fast traversals, i.e., joins of
vertices with their neighbours, by indexing the neighbourhoods
of vertices in adjacency lists. However, existing GDBMSs have
system-specific and fixed adjacency list structures, which makes
each system efficient on only a fixed set of workloads. We
describe a new tunable indexing subsystem for GDBMSs, we
call A+ indexes, with materialized view support. The subsystem
consists of two types of indexes: (i) vertex-partitioned indexes that
partition 1-hop materialized views into adjacency lists on either
the source or destination vertex IDs; and (ii) edge-partitioned
indexes that partition 2-hop views into adjacency lists on one
of the edge IDs. As in existing GDBMSs, a system by default
requires one forward and one backward vertex-partitioned index,
which we call the primary A+ index. Users can tune the primary
index or secondary indexes by adding nested partitioning and
sorting criteria. Our secondary indexes are space-efficient and
use a technique we call offset lists. Our indexing subsystem allows
a wider range of applications to benefit from GDBMSs’ fast join
capabilities. We demonstrate the tunability and space efficiency
of A+ indexes through extensive experiments on three workloads.

I. INTRODUCTION
The term graph database management system (GDBMS) in
its contemporary usage refers to data management software
such as Neo4j [1], JanusGraph [2], TigerGraph [3], and Graph-
flowDB [4], [5] that adopt the property graph data model [6].
In this model, entities are represented by vertices, relationships
are represented by edges, and attributes by arbitrary key-
value properties on vertices and edges. GDBMSs have lately
gained popularity among a wide range of applications from
fraud detection and risk assessment in financial services to
recommendations in e-commerce [7]. One reason GDBMSs
appeal to users is that they are highly optimized to perform very
fast joins of vertices with their neighbours. This is primarily
achieved by using adjacency list indexes [8], which are join
indexes that are used by GDBMSs’ join operators.

Adjacency list indexes are often implemented using constant-
depth data structures, such as the compressed sparse-row
(CSR) structure, that partition the edge records into lists by
source or destination vertex IDs. Some systems adopt a second
level partitioning in these structures by edge labels. These
partitionings provide constant time access to neighbourhoods
of vertices and contrasts with tree-based indexes, such as B+
trees, which have logarithmic depth in the size of the data
they index. Some systems further sort these lists according to
some properties, which allows them to use fast intersection-
based join algorithms, such as the novel intersection-based

worst-case optimal (WCO) join algorithms [9]. However, a
major shortcoming of existing GDBMSs is that systems make
different but fixed choices about the partitioning and sorting
criteria of their adjacency list indexes, which makes each system
highly efficient on only a fixed set of workloads. This creates
physical data dependence, as users have to model their data,
e.g., pick their edge labels, according to the fixed partitioning
and sorting criteria of their systems.

We address the following question: How can the fast
join capabilities of GDBMSs be expanded to a much wider
set of workloads? We are primarily interested in solutions
designed for read-optimized GDBMSs. This is informed by a
recent survey of users and applications of GDBMSs that we
conducted [7], that indicated that GDBMSs are often used in
practice to support read-heavy applications, instead of primary
transactional stores. As our solution, we describe a tunable
and space-efficient indexing subsystem for GDBMSs that we
call A+ indexes. Our indexing subsystem consists of a primary
index and optional secondary indexes that users can build.
This is similar to relational systems that index relations in a
primary B+ tree index on the primary key columns as well
as optional secondary indexes on other columns. Primary A+
indexes are the default indexes that store all of the edge records
in a database. Unlike existing GDMBSs, users can tune the
primary A+ index of the system by adding arbitrary nested
partitioning of lists into sublists and providing a sorting criterion
per sublist. We store these lists in a nested CSR data structure,
which provides constant time access to vertex neighborhoods
that can benefit a variety of workloads.

We next observe that partitioning edges into adjacency lists
is equivalent to creating multiple materialized views where
each view is represented by a list or a sublist within a list.
Similarly, the union of all adjacency lists can be seen as the
coarsest view, which we refer to as the global view. In existing
systems and primary A+ indexes, the global view is a trivial
view that contains all of the edges in the graph. Therefore, one
way a GDBMS can support an even wider range of workloads
is by indexing other views inside adjacency lists. However
storing and indexing views in secondary indexes results in data
duplication and consumes extra space, which can be prohibitive
for some views.

Instead of extending our system with general view functional-
ity, our next contribution carefully identifies two sets of global
views that can be stored in a highly space-efficient manner
when partitioned appropriately into lists: (i) 1-hop views that
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Fig. 1: Example financial graph.

satisfy arbitrary predicates that are stored in secondary vertex-
partitioned A+ indexes; and (ii) 2- hop views that are stored
in secondary edge-partitioned A+ indexes, which extend the
notion of neighborhood from vertices to edges, i.e., each list
stores a set of edges that are adjacent to a particular edge. These
two sets of views and their accompanying partitioning methods
guarantee that the final lists that are stored in secondary A+
indexes are subsets of lists in the primary A+ index. Based
on this property, we implement secondary A+ indexes by a
technique we call offset lists, which identify each indexed
edge by an offset into a list in the primary A+ index. Due to
the sparsity, i.e., small average degrees, of real-world graphs,
each list in the primary A+ index often contains a very small
number of edges. This makes offset lists highly space-efficient,
taking a few bytes per indexed edge instead of the ID lists
in the primary index that store globally identifiable IDs of
edges and neighbor vertices, each of which are often 8 bytes in
existing systems. Similar to the primary A+ index, secondary
indexes are implemented in a CSR structure that support nested
partitioning, where the lower level is the offset lists. To further
improve the space-efficiency of secondary A+ indexes, we
identify cases when the secondary A+ indexes can share the
partitioning levels of the primary A+ index.

We implemented A+ indexes inside the GraphflowDB in-
memory GDBMS [5]. We describe the modifications we made
to the optimizer and query processor of the system to use our
indexes in query plans. We present examples of highly efficient
plans that our system is able to generate using our indexing
subsystem that do not exist in the plan spaces of existing
systems. We demonstrate the tunability and space efficiency of
A+ indexes by showing how to tune GraphflowDB to be highly
efficient on three different workloads using either primary index
reconfigurations or building secondary indexes with very small
memory overhead. GraphflowDB is a read-optimized system
that does not support transactions but allows non-transactional
updates. Although update performance is not our focus, for
completeness of our work, we report the update performance
of A+ indexes in the longer version of our paper [10].

Figure 1 shows an example financial graph that we use as a
running example throughout this paper. The graph contains ver-
tices with Customer and Account labels. Customer ver-
tices have name properties and Account vertices have city
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Fig. 2: Neo4j Adjacnecy List Indexes.

and accountType(acc) properties. From customers to
accounts are edges with Owns(O) labels and between accounts
are transfer edges with Dir-Deposit(DD) and Wire(W)
labels with amount(amt), currency, and date properties.
We omit dates in the figure and give each transfer edge an ID
such that ti.date < tj .date if i < j.

II. OVERVIEW OF EXISTING ADJACENCY LIST INDEXES
Adjacency lists are accessed by GDBMS’s join operators e.g.,

EXPAND in Neo4j or EXTEND/INTERSECT in GraphflowDB,
that join vertices with neighbours. GDBMSs employ two broad
techniques to provide fast access to adjacency lists while
performing these joins:
(1) Partitioning: GDBMSs often partition their edges first by
their source or destination vertex IDs, respectively in forward
and backward indexes; this is the primary partitioning criterion.

Example 1: Consider the following 2-hop query, written in
openCypher [11], that starts from a vertex with name “Alice”.
Below, ai, cj , and rk are variables for the Account and
Customer query vertices and query edges, respectively.

MATCH c1−[r1]−>a1−[r2]−>a2
WHERE c1.name = ‘Alice ’

In every GDBMS we know of, this query is evaluated in three
steps: (1) scan the vertices and find a vertex with name “Alice”
and match a1, possibly using an index on the name property.
In our example graph, v7 would match c1; (2) access v7’s
forward adjacency list, often with one lookup, to match c1→a1
edges; and (3) access the forward lists of matched a1’s to match
c1→a1→a2 paths.

Some GDBMSs employ further partitioning on each adja-
cency list, e.g., Neo4j [1] partitions edges on vertices and then
by edge labels. Figure 2 showcases a high-level view of Neo4’s
paritioning levels and adjacency list index. Given the ID of a
vertex v, this allows constant time access to: (i) all edges of
v; and (ii) all edges of v with a particular label through the
lower level lists e.g., all edges of v with label Owns.

Example 2: Consider the following query that returns all
Wire transfers made from the accounts Alice Owns:

MATCH c1−[r1:O]−>a1−[r2:W ]−>a2
WHERE c1.name = ‘Alice ’

The “r1:O” is syntactic sugar in Cypher for the r1.label=



Owns predicate. A system with lists partitioned by vertex IDs
and edge labels can evaluate this query as follows. First, find
v7, with name “Alice”, and then access v7’s Owns edges,
often with a constant number of lookups and without running
any predicates, and match a1’s. Finally access the Wire edges
of each a1 to match the a2’s.
(2) Sorting: Some systems further sort their most granular lists
according to an edge property [2] or the IDs of the neighbours
in the lists [4], [12]. Sorting enables systems to access parts of
lists in time logarithmic in the size of lists. Similar to major
and minor sorts in traditional indexes, partitioning and sorting
keeps the edges in a sorted order, allowing systems to use
fast intersection-based join algorithms, such as WCOJs [9] or
sort-merge joins.

Example 3: Consider the following query that finds all 3-edge
cyclical wire transfers involving Alice’s account v1.
MATCH a1−[r1:W ]−>a2−[r2:W ]−>a3, a3−[r3:W ]−>a1
WHERE a1.ID=v1

In systems that implement worst-case optimal join (WCOJ)
algorithms, such as EmptyHeaded [12] or GraphflowDB [4],
this query is evaluated by scanning each v1→a2 Wire edge
and intersecting the pre-sorted Wire lists of v1 and a2 to
match the a3 vertices.

To provide very fast access to each list, lists are often
accessed through data structures that have constant depth, such
as a CSR instead of logarithmic depths of traditional tree-
based indexes. This is achieved by having one level in the
index for each partitioning criterion, so levels in the index are
not constrained to a fixed size unlike traditional indexes, e.g.,
k-ary trees. Some systems choose alternative implementations.
For example Neo4j has a linked list-based implementation
where edges in a list are not stored consecutively but have
pointers to each other, or JanusGraph uses a pure adjacency
list design where there is constant time access to all edges
of a vertex. In our implementation of A+ indexes (explained
in Section III), we use CSR as our core data structure to
store adjacency lists because it is more compact than a pure
adjacency list design and achieves better locality than a linked
list one. Finally, we note that the primary shortcoming of
adjacency list indexes in existing systems is that GDBMSs
adopt fixed system-specific partitioning and possibly sorting
criteria, which limits the workloads that can benefit from their
fast join capabilities.

III. A+ INDEXES
There are three types of indexes in our indexing subsystem:

(i) primary A+ indexes; (ii) secondary vertex-partitioned A+
indexes; and (iii) secondary edge-partitioned A+ indexes. Each
index, both in our solution and existing systems, stores a set of
adjacency lists, each of which stores a set of edges. We refer
to the edges that are stored in the lists as adjacent edges, and
the vertices that adjacent edges point to as neighbour vertices.

A. Primary A+ Indexes
The primary A+ indexes are by default the only available

indexes. Similar to primary B+ tree indexes of relations in
relational systems, these indexes are required to contain each

edge in the graph, otherwise the system will not be able
to answer some queries. Similar to the adjacency lists of
existing GDBMSs, there are two primary indexes, one forward
and one backward, and we use a nested CSR data structure
partitioned first by the source and destination vertex IDs of
the edges, respectively. In our implementation, by default we
adopt a second level partitioning by edge labels and sort the
most granular lists according to the IDs of the neighbours,
which optimizes the system for queries with edge labels and
matching cyclic subgraphs using multiway joins computed
through intersections of lists. However, unlike existing systems,
users can reconfigure the secondary partitioning and sorting
criteria of primary A+ indexes to tailor the system to variety
of workloads, with no or very minimal memory overhead.

1) Tunable Nested Partitioning
A+ indexes can contain nested secondary partitioning criteria

on any categorical property of adjacent edges as well as
neighbour vertices, such as edge or neighbour vertex labels, or
the currency property on the edges in our running example.
In our implementation we allow integers or enums that are
mapped to small number of integers as categorical values.
Edges with null property values form a special partition.

Example 4: Consider querying all wire transfers made
in USD currency from Alice’s account and the destination
accounts of these transfers:

MATCH c1−[r1:O]−>a1−[r2:W ]−>a2
WHERE c1.name = ‘Alice ’ , r2.currency=USD

Here the query plans of existing systems that partition by edge
labels will read all Wire edges from Alice’s account and, for
each edge, read its currency property and run a predicate
to verify whether or not it is in USD.

Instead, if queries with equality predicates on the currency
property are important and frequent for an application, users can
reconfigure their primary A+ indexes to provide a secondary
partitioning based on currency.

RECONFIGURE PRIMARY INDEXES
PARTITON BY eadj .label, eadj .currency
SORT BY vnbr.city

In index creation and modification commands, we use reserved
keywords eadj and vnbr to refer to adjacent edges and
neighbours, respectively. The above command (ignore the
sorting for now) will reconfigure the primary adjacency indexes
to have two levels of partitioning after partitioning by vertex
IDs: first by the edge labels and then by the currency
property of these edges. For the query in Example 4, the
system’s join operator can now first directly access the lowest
level partitioned lists of Alice’s list, first by Wire and then
by USD, without running any predicates.

Figure 3a shows the final physical design this generates as
an example on our running example. We store primary indexes
in nested CSR structures. Each provided nested partitioning
adds a new partitioning level to the CSR, storing offsets to a
particular slice of the next layer. After the partitioning levels, at
the lowest level of the index are ID lists, which store the IDs of



O
ffs

et
 L

is
ts

t1 ... t16 ...

W DDW DD

Level0
on Edge ID

Level1
on Edge labels

P
ar

tit
io

ni
ng

 L
ev

el
s

View: σ                                                                  (E⨝ E)
Sort on vnbr.city

v

W DD

View: E
Sort on vnbr.ID

v3 v2

e5 e4

P
ar

tit
io

ni
ng

 L
ev

el
s

Level2
on Currency

v2

t15

v1 ... v6 ...Level0
on vertex ID

$ € £ $ € £

View: E
Sort on vnbr.city

σvID=1E
σvID=1 & e.label=W E

O
ffs

et
 L

is
ts

ID
 L

is
ts

Level1
on Edge labels

v3 v2

t4 t17

v5

t18

O

NA

v4

t20

Primary A+ Indexes

Secondary Vertex-Partitioned A+ Indexes

Secondary Edge-Partitioned A+ Indexes

eb.date < eadj.date, eb.amt > eadj.amt

(a) Example primary adjacency lists and secondary
vertex-partitioned adjacency lists.

O
ffs

et
 L

is
ts

t1 ... t16 ...

W DDW DD

Level0
on Edge ID

Level1
on Edge labels

P
ar

tit
io

ni
ng

 L
ev

el
s

View: σ                                                                  (E⨝ E)
Sort on vnbr.city

v

W DD

Global View: E
Sort on vnbr.ID

v3 v2

e5 e4

P
ar

tit
io

ni
ng

 L
ev

el
s

Level2
on Currency

v2

t15

v1 ... v6 ...Level0
on vertex ID

$ € £ $ € £

Global View: E
Sort on vnbr.city

σvID=1E
σvID=1 & e.label=W E

O
ffs

et
 L

is
ts

ID
 L

is
ts

Level1
on Edge labels

v3 v2

t4 t17

v5

t18

O

NA

v4

t20

Default A+ Indexes

Secondary VB A+ Indexes

Secondary Edge-Partitioned A+ Indexes

eb.date < eadj.date, eb.amt > eadj.amt

(b) Example secondary edge-partitioned A+ Index.
Fig. 3: Example A+ indexes on our running example.

the edges and neighbour vertices. The ID lists are a consecutive
array in memory that contains a set of nested sublists. For
example, consider the second level partitions of the primary
index in Figure 3a. Let LW , LDD, and L be the list of Wire,
Dir-Deposit, and all edges of a vertex v, respectively. Then
within L, which is the list between indices 0-4, are sub-lists
LW (0-2) and LDD (3-4), i.e., L = LW ∪ LDD.

2) Tunable ID List Sorting
The most granular sublists can be sorted according to one

or more arbitrary properties of the adjacent edges or neighbour
vertices, e.g., the date property of Transfer edges and
the city property of the Account vertices of our running
example. Similar to partitioning, edges with null values on the
sorting property are ordered last. Secondary partitioning and
sorting criteria together store the neighbourhoods of vertices
in a particular sort order, allowing a system to generate WCOJ
intersection-based plans for a wider set of queries.

Example 5: Consider the following query that searches for
a three-branched money transfer tree, consisting of wire and
direct deposit transfers, emanating from an account with vID
v5 and ending in three sink accounts in the same city.

MATCH a1−[:W ]−>a2−[:W ]−>a3 , a1−[:W ]−>a4
a1−[:DD]−>a5−[:DD]−>a6

WHERE a1.ID=v5, a3.city=a4.city=a6.city

If Wire and Dir-Deposit lists are partitioned or sorted
by city, as in the above reconfiguration command, after
matching a1→a2 and a1→a5, a plan can directly intersect two
Wire lists of a1 and a2 and one Dir-Deposit list of a5 in
a single operation to find the flows that end up in accounts in
the same city. Such plans are not possible with the adjacency
list indexes of existing systems.

Observe that the ability to reconfigure the system’s primary
A+ indexes provides more physical data independence. Users
do not have to model their datasets according to the system’s
default physical design and changes in the workloads can be
addressed simply with index reconfigurations.

B. Secondary A+ Indexes
Many indexes in DBMSs can be thought of as data structures

that give fast access to views. In our context, each sublist in the
primary indexes is effectively a view over edges. For example,
the red dashed list in Figure 3a is the σsrcID=v1 &e.label=WireEdge
view while the green dotted box encloses a more selective
view corresponding to σsrcID=1 & e.label=wire & curr=USDEdge. Each
nested sublist in the lowest-level ID lists is a view with one
additional equality predicate. One can also think of the entire
index as indexing a global view, which for primary indexes
is simply the Edge table. Therefore the views that can be
obtained through the system’s primary A+ index are constrained
to views over the edges that contain an equality predicate on
the source or destination ID (due to vertex ID partitioning) and
one equality predicate for each secondary partitioning criterion.

To provide access to even wider set of views, a system
should support more general materialized views and index
these in adjacency list indexes. However, supporting additional
views and materializing them inside additional adjacency list
indexes requires data duplication and storage. We next identify
two classes of global views and ways to partition these views
that are conducive to a space-efficient implementation: (i) 1-
hop views that are stored in secondary vertex-partitioned A+
indexes; and (ii) 2-hop views that are stored in secondary edge-
partitioned A+ indexes. These views and partitioning techniques
generate lists that are subsets of the lists in the primary index,
which allows us to store them in space-efficient offset lists that
exploit the small average-degree of real-world graphs and use
a few bytes per indexed edge. In Sections III-B1 and III-B2
we first describe our logical views and how these views are
partitioned into lists. Similar to the primary A+ index, these lists
are stored in CSR-based structures. Section III-B3 describes
our offset list-based storage and how we can further increase
the space efficiency of secondary A+ indexes by avoiding the
partitioning levels of the CSR structure when possible.

1) Secondary Vertex-Partitioned A+ Indexes: 1-hop Views
Secondary vertex-partitioned indexes store 1-hop views, i.e.,

1-hop queries, that contain arbitrary selection predicates on
the edges and/or source or destination vertices of edges. These
views cannot contain other operators, such as group by’s,



aggregations, or projections, so their outputs are a subset of the
original edges. Secondary vertex-partitioned A+ indexes store
these 1-hop views first by partitioning on vertex IDs (source
or destination) and then by the further partitioning and sorting
options provided by the primary A+ indexes. In order to use
secondary vertex-partitioned A+ indexes, users need to first
define the 1-hop view, and then define the partitioning structure
and sorting criterion of the index.

Example 6: Consider a fraud detection application that searc-
hes money flow patterns with high amount of transfers, say
over 10000 USDs. We can create a secondary vertex-partitioned
index to store those edges in lists, partitioned first by vertices
and then possibly by other properties and in a sorted manner
as before.

CREATE 1−HOP VIEW LargeUSDTrnx
MATCH vs−[eadj ]−>vd
WHERE eadj .currency=USD, eadj .amt>10000
INDEX AS FW−BW
PARTITION BY eadj .label SORT BY vnbr.ID

Above, vs and vd are keywords to refer to the source and
destination vertices, whose properties can be accessed in the
WHERE clause. FW and BW are keywords to build the index
in the forward or backward direction, a partitioning option
given to users. FW-BW indicates indexing in both directions.
The inner-most (i.e., most nested) sublists of the resulting
index materializes a view of the form σsrcID=* & elabel=* & curr=USD

& amount > 10000Edge. If such views or views that correspond to
other levels of the index appear as part of queries, the system
can directly access these views in constant time and avoid
evaluating the predicates in these views.

2) Secondary Edge-Partitioned A+ Indexes: 2-hop Views
Secondary edge-partitioned indexes store 2-hop views, i.e.,

results of 2-hop queries. As before, these views cannot contain
other operators, such as group by’s, aggregations, or projections,
so their outputs are a subset of 2-paths. The view has to
specify a predicate and that predicate has to access properties
of both edges in 2-paths (as we momentarily explain, otherwise
the index is redundant). Secondary edge-partitioned indexes
store these 2-hop views first by partitioning on edge IDs and
then, as before, by the same partitioning and sorting options
provided by the primary A+ indexes. Vertex-partitioned indexes
in A+ indexes and existing systems provide fast access to the
adjacency of a vertex given the ID of that vertex. Instead, our
edge-partitioned indexes provide fast access to the adjacency of
an edge given the ID of that edge. This can benefit applications
in which the searched patterns concern relations between two
adjacent, i.e., consecutive, edges. We give an example:

Example 7: Consider the following query, which is the core
of an important class of queries in financial fraud detection.

MATCH a1−[r1:]−>a2−[r2:]−>a3−[r3:]−>a4
WHERE r1.eID=t13,
r1.date<r2.date & r2.amt<r1.amt<r2.amt+α &
r2.date<r3.date & r3.amt<r2.amt<r3.amt+α

The query searches a three-step money flow path from a transfer
edge with eID t13 where each additional transfer (Wire
or Dir-Deposit) happens at a later date and for a smaller
amount of at most α, simulating some money flowing through
the network with intermediate hops taking cuts.
The predicates of this query compare properties of an edge on a
path with the previous edge on the same path. Consider a system
that matches r1 to t13, which is from vertex v2 to v5. Existing
systems have to read transfer edges from v5 and filter those that
have a later date value than t13 and also have the appropriate
amount value. Instead, when the next query edge to match r2
has predicates depending on the query edge r1, these queries
can be evaluated much faster if adjacency lists are partitioned
by edge IDs: a system can directly access the destination-
forward adjacency list of t13 in constant time, i.e., edges
whose srcID are v5, that satisfy the predicate on the amount
and date properties that depend on t13, and perform the
extension. Our edge-partitioned indexes allow the system to
generate plans that perform this much faster processing. Note
that in an alternative design we can partition the same set
of 2-hop paths by vertices instead of edges. However, this
would store the same number of edges but would be less
efficient during query processing. To see this, suppose a system
first matches r1 to the edge (v2)−[t13]−>(v5) and consider
extending this edge. The system can either extend this edge
by one more edge to r2, which would require looking up the
2-hop edges of v2 and find those that have t13 as the first
edge. This is slower than directly looking up the same edges
using t13 in an edge-partitioned list. Alternatively the system
can extend t13 by two more edges to [r2]−>a3−[r3]−>a4
by accessing the 2-hop edges of v5 but would need to run
additional predicates to check if the edge matching r2 satisfy
the necessary predicates with t13, so effectively processing
all 2-paths of v5 and running additional predicates, which are
also avoided in an edge-partitioned list.

There are three possible 2-paths, →→, →←, and ←←.
Partitioning these paths by different edges gives four unique
possible ways in which an edge’s adjacency can be defined:

1) Destination-FW: vs−[eb]→vd−[eadj ]→vnbr
2) Destination-BW: vs−[eb]→vd←[eadj ]−vnbr
3) Source-FW: vnbr−[eadj ]→vs−[eb]→vd
4) Source-BW: vnbr←[eadj ]−vs−[eb]→vd

eb, for “bound”, is the edge that the adjacency lists will be
partitioned by, and vs and vd refer to the source and destination
vertices of eb, respectively. For example, the Destination-FW
adjacency lists of edge e(s,d) stores the forward edges of d.
To facilitate the fast processing described above for the money
flow queries in Example 7, we can create the following index:

CREATE 2−HOP VIEW MoneyFlow
MATCH vs−[eb]→vd−[eadj ]→vnbr
WHERE eb.date<eadj .date, eadj .amt<eb.amt
INDEX AS PARTITION BY eadj .label SORT BY vnbr.city

The location of the variable eb in the query implicitly
defines the type of partitioning, which in this example
is Destination-FW. This query creates an index that, for



each edge ti, stores the forward edges from ti’s destination
vertex which have a later date and a smaller amount
than ti, partitioned by the labels of their adjacent edges
and sorted by the city property of the neighbouring
vertices, i.e., the vertex that is not shared with ti. Figure
3b shows the lists this index stores on our running example.
The inner-most lists in the index correspond to the view:
σeb.ID=* & eadj .label=* & eb.date < eadj .date & eb.amt > eadj .amt(ρeb(E) ./
ρeadj

(E)). E abbreviates Edge and the omitted join predicate
is eb.dstID=eadj .srcID. Readers can verify that, in presence
of this index, a GDBMS can evaluate the money flow query
from Example 4 (ignoring the predicate with α) by scanning
only one edge. It only scans t13’s list which contains a
single edge t19. In contrast, even if all Transfer edges
are accessible using a vertex-partitioned A+ index, a system
would access 9 edges after scanning t13.

Observe that unlike vertex-partitioned A+ indexes, an edge
e in the graph can appear in multiple adjacency lists in an
edge-partitioned index. For example, in Figure 3b, edge t17
(having offset 2) appears both in the adjacency list for t1
as well as t16. As a consequence, when defining edge-
partitioned indexes, users have to specify a predicate that
accesses properties of both edges in the 2-hop query. This is
because if all the predicates are only applied to a single query
edge, say vs−[eb]→vd, then we would redundantly generate
duplicate adjacency lists. Instead, defining a secondary vertex-
partitioned A+ index would give the same access path to the
same lists without this redundancy.

Consider the following example:

CREATE 2−HOP VIEW Redundant
MATCH vs−[eb]→vd−[eadj ]→vnbr
WHERE eadj .amt<10000

In absence of an INDEX AS command, views are only
partitioned by edge IDs. Consider the account v2 in our running
example graph in Figure 1. For each of the four incoming edges
of v2, namely t5, t6, t15, and t17, this index would contain
the same adjacency list that consists of all outgoing edges of
v2: {t7,t8, t13}, because the predicate is only on a single
edge. Instead, a user can define a vertex-partitioned A+ index
with the same predicate and v2’s list would provide an access
path to the same edges {t7,t8,t13}.

We further note that although we will describe a space-
efficient physical implementation of these indexes momentarily,
the total number of edges in edge-partitioned indexes can
be as large as the sum of the squares of degrees unless
a selective predicate is used, which can be prohibitive for
an in-memory system. In our evaluations, we will assume
a setting where a selective enough predicate is used. For 2-
hop views that do not have selective predicates, a system
should resort to partial materialization of these views to reduce
the memory consumption under user-specified levels. Partial
materialized views is a technique from relational systems that
has been introduced in reference [13], where parts of the view
is materialized and others are evaluated during runtime. We
have left the integration of this technique to future work.

3) Offset List-based Storage of Secondary A+ Indexes
The predominant memory cost of primary indexes is the

storage of the IDs of the adjacent edges and neighbour vertices.
Because the IDs in these lists globally identify vertices and
edges, their sizes need to be logarithmic in the number of
edges and vertices in the graph, and are often stored as 4 to 8
byte integers in systems. For example, in our implementation,
edge IDs take 8 and neighbour IDs take 4 bytes.

In contrast, the lists in both secondary vertex- and edge-
partitioned indexes have an important property, which can be
exploited to reduce their memory overheads: they are subsets
of some ID list in the primary indexes. Specifically, a list Lv
that is bound to vi in a secondary vertex-partitioned index is
a subset of one of vi’s ID lists. A list Le that is bound to
e = (vs, vd) in a secondary edge-partitioned index is a subset
of either vs’s or vd’s primary list, depending on the direction
of the index, e.g., vd’s list for a Destination-FW list. Recall
that in our CSR-based implementation, the ID lists of each
vertex are contiguous. Therefore, instead of storing an (edge
ID, neighbour ID) pair for each edge, we can store a single
offset to an appropriate ID list. We call these lists offset lists.
The average size of the ID lists is proportional to the average
degree in the graph, which is often very small, in the order
of tens or hundreds, in many real world graph data sets. This
important property of real world graphs has two advantages:

1) Offsets only need to be list-level identifiable and can
take a small number of bytes which is much smaller than
a globally identifiable (edge ID, neighbour ID) pair.

2) Reading the original (edge ID, neighbour ID) pairs
through offset lists require an indirection and lead to
reading not-necessarily consecutive locations in memory.
However, because the ID list sizes are small, we still get
very good CPU cache locality.

An alternative implementation design here is to use a bitmap
instead of offset lists. A bitmap can identify whether each edge
in the lists of the primary A+ index is a secondary A+ index.
This design has the shortcoming that it cannot support the cases
when the sorting criterion of secondary A+ indexes is different
than the primary index. However when the sorting criteria are
the same, this is also a reasonable design point. This has the
advantage that when the predicates in the lists are not very
selective, bitmaps can be even more compact than offset lists,
as they require a single bit for each edge. However reading
the edges would now require additional bitmask operations. In
particular, irrespective of the actual number of edges stored
in a secondary index, the system would need to perform as
many bitmask operations as the number of edges in the lists
of the primary index. Therefore as predicates in secondary
indexes get more selective, bitmaps would progressively lose
their storage advantage over offset lists and at the same time
progressively perform worse in terms of access time.

We implement each secondary index in one of two possible
ways, depending on whether the index contains any predicates
and whether its partitioning structure matches the secondary
structure of the primary A+ indexes.



• With no predicates and same partitioning structure: In
this case, the only difference between the primary and
the secondary index is the final sorting of the edges.
Specifically, both indexes have identical partitioning levels,
with identical CSR offsets, and the same set of edges in
each inner-most ID/offset sublists, but they sort these
sublists in a different order. Therefore we can use the
partitioning levels of the primary index also to access the
lists of the secondary index and save space. Figure 3a gives
an example. The bottom offset lists are for a secondary
vertex-partitioned index that has the same partitioning
structure as the primary index but sorts on neighbors’
IDs instead of neighbors’ city properties. Recall that
since edge-partitioned indexes need to contain predicates
between adjacent edges, this storage can only be used for
vertex-partitioned indexes.

• With predicates or different partitioning structure: In
this case, the inner-most sublists of the indexes may
contain different sets of edges, so the CSR offsets in
the partitioning levels of the primary index cannot be
reused and we store new partitioning levels as shown in
Figure 3b.

We give the details of the memory page structures that store
ID and offset lists in Section IV.

IV. IMPLEMENTATION DETAILS
We implemented our indexing subsystem in Graph-

flowDB [4], [5] and describe our changes to the system to
enable the use of A+ indexes for fast join processing.

A. Query Processor, Optimizer and Index Store
A+ indexes are used in evaluating subgraph pattern compo-

nent of queries, which is where the queries’ joins are described.
We give an overview of the join operators that use A+ indexes
and the optimizer of the system. Reference [4] describes the
details of the EXTEND/INTERSECT operator and the DP join
optimizer of the system in absence of A+ indexes.
JOIN OPERATORS: EXTEND/INTERSECT (E/I) is the primary
join operator of the system. Given a query Q(VQ, EQ) and
an input graph G(V,E), let a partial k-match of Q be a set
of vertices of V assigned to the projection of Q onto a set
of k query vertices. We denote a sub-query with k query
vertices as Qk. E/I is configured to intersect z≥1 adjacency
lists that are sorted on neighbour IDs. The operator takes as
input (k-1)-matches of Q, performs a z-way intersection, and
extends them by a single query vertex to k-matches. For each
(k-1)-match t, the operator intersects z adjacency lists of the
matched vertices in t and extends t with each vertex in the
result of this intersection to produce k-matches. If z is one,
no intersection is performed, and the operator simply extends
t to each vertex in the adjacency list. The system uses E/I to
generate plans that contain WCOJ multi-way intersections.

To generate plans that use A+ indexes, we first extended
E/I to take adjacency lists that can be partitioned by edges
as well as vertices. We also added a variant of E/I that we
call MULTI-EXTEND, that performs intersections of adjacency
lists that are sorted by properties other than neighbour IDs and

extends partial matches to more than one query vertex.
Dynamic Programming (DP) Optimizer and INDEX
STORE: GraphflowDB has a DP-based join optimizer that
enumerates queries one query vertex at a time [4]. We extended
the system’s optimizer to use A+ indexes as follows. For each
k=1, ...,m=|VQ|, in order, the optimizer finds the lowest-cost
plan for each sub-query Qk in two ways: (i) by considering
extending every possible sub-query Qk−1’s (lowest-cost) plan
by an E/I operator; and (ii) if Q has an equality predicate
involving z≥2 query edges, by considering extending smaller
sub-queries Qk−z by a MULTI-EXTEND operator. At each
step, the optimizer considers the edge and vertex labels and
other predicates together, since secondary A+ indexes may be
indexing views that contain predicates other than edge label
equality. When considering possible Qk−z to Qk extensions,
the optimizer queries the INDEX STORE to find both vertex- and
edge-partitioned indexes, I1, ..., It, that can be used. INDEX
STORE maintains the metadata of each A+ index in the system
such as their type, partitioning structure, and sorting criterion,
as well as additional predicates for secondary indexes. An
index I` can potentially be used in the extension if the edges
in the lists in a level j of I` satisfy two conditions: (i)
extend partial matches of Qk−z to Qk, i.e., can be bound
to a vertex or edge in Qk−z and match a subset of the query
edges in Qz; and (ii) the predicates p`,j satisfied in these lists
subsume the predicate pQ (if any) that is part of this extension.
We search for two types of predicate subsumption. First is
conjunctive predicate subsumption. If both p`,j and pQ are
conjunctive predicates, we check if each component of p`,j
matches a component of pQ. Second is range subsumption. If
pQ and p`,j or one of their components are range predicates
comparing a property against a constant, e.g., eadj .amt>15000
and eadj .amt>10000, respectively, we check if the range in
p`,j is less selective than pQ.

Then for each possible index combination retrieved, the
optimizer enumerates a plan for Qk with: (i) an E/I or MULTI-
EXTEND operator; and (ii) possibly a FILTER operator if
there are any predicates that are not fully satisfied during
the extension (e.g., if p`,j and pQ are conjunctive but p`,j
does not satisfy all components of pQ). If the Qk−z to
Qk extension requires using multiple indices, so requires
performing an intersection, then the optimizer also checks
that the sorting criterion on the indices that are returned are
the same. Otherwise, it discards this combination. The systems’
cost metric is intersection cost (i-cost), which is the total
estimated sizes of the adjacency lists that will be accessed by
the E/I and MULTI-EXTEND operators in a plan.

We note that our optimizer extension to use A+ indexes is
similar to the classic System R-style approach to enumerate
plans that use views composed of select-project-join queries
directly in a DP-based join optimizer [14], [15]. This approach
also performs a bottom up DP enumeration of join orders of a
SQL query Q and for a sub-query Q′ of Q, considers evaluating
Q′ by joining a smaller Q′′ with a view V . The primary
difference is that GraphflowDB’s join optimizer enumerates
plans for progressively larger queries that contain, in relational



terms, one more column instead of one more table (see
reference [4] for details). Other GDBMSs that use bottom
up join optimizers can be extended in a similar way if they
implement A+ indexes. For example, Neo4j also uses a mix
of DP and greedy bottom up enumerator [1] called iterative
DP, which is based on reference [16]. However, extending the
optimizers of GDBMSs that use other techniques might require
other approaches, e.g., RedisGraph, which converts Cypher
queries into GraphBLAS linear algebra expression [17] and
optimizes this expression.

We also note that we implemented a limited form of predicate
subsumption checking. The literature on query optimization
using views contains more general techniques for logical
implication of predicates between queries and views [15], [18],
[19], e.g., detecting that A > B and B > C imply A > C.
These techniques can enhance our implementation and we have
not integrated such techniques within the scope of our paper.

B. Details of Physical Storage
Primary and secondary vertex-partitioned A+ indexes are

implemented using a CSR for groups of 64 vertices and
allocates one data page for each group. Vertex IDs are assigned
consecutively starting from 0, so given the ID of v, with
a division and mod operation we can access the second
partitioning level of the index storing CSR offsets of v. The
CSR offsets in the final partitioning level point to either ID
lists in the case of the primary A+ indexes or offset lists in the
case of secondary A+ indexes. The neighbour vertex and edge
ID lists are stored as 4 byte integer and 8 byte long arrays,
respectively. In contrast, the offset lists in both cases are stored
as byte arrays by default. Offsets are fixed-length and use the
maximum number of bytes needed for any offset across the
lists of the 64 vertices, i.e. it is the logarithm of the length of
the longest of the 64 lists rounded to the next byte.

C. Index Maintenance
Each vertex-partitioned data page, storing ID lists or offset

lists, is accompanied with an update buffer. Each edge addition
e=(u, v) is first applied to the update buffers for u’s and v’s
pages in the primary indexes. Then we go over each secondary
vertex-partitioned A+ index IV in the INDEX STORE. If IV
indexes a view that contains a predicate p, we first apply p to
see if e passes the predicate. If so, or if IV does not contain a
predicate, we update the necessary update buffers for the offset
list pages of u and/or v. The update buffers are merged into
the actual data pages when the buffer is full. Edge deletions
are handled by adding a “tombstone” for the location of the
deletion until a merge is triggered.

Maintenance of an edge-partitioned A+ index IE is more
involved. For an edge insertion e=(u, v), we perform two
separate operations. First, we check to see if e should be
inserted into the adjacency list of any adjacent edge eb by
running the predicate p of IE on e and eb. For example, if IE
is defined as Destination-FW, we loop through all the backward
adjacent edges of u using the system’s primary index. This
is equivalent to running two delta-queries as described in
references [5], [20] for a continuous 2-hop query. Second, we

create a new list for e and loop through another set of adjacency
lists (in our example v’s forward adjacency list in D) and insert
edges into e’s list.

D. Index Selection
Our work focuses on the design and implementation of a

tunable indexing subsystem so that users can tailor a GDBMS
to be highly efficient on a wide range of workloads. However,
an important aspect of any DBMS is to help users pick indexes
from a space of indexes that can benefit their workloads. Given
a workload W , the space of A+ indexes that can benefit
W can be enumerated by enumerating each 1-hop and 2-
hop sub-query Q′ of each query Q in W and identifying
the equality predicates on categorical properties of these sub-
queries, which are candidates for partitioning levels, and non-
equality predicates on other properties, which are candidates
for sorting criterion (any predicate is also a candidate predicate
of a global view). Given a workload W and possibly a space
budget B, one approach from prior literature to automatically
select a subset of these candidate indices that are within the
space budget B is to perform a “what if” index simulation
to see the effects of this candidate indices on the estimated
costs of plans. For example, this general approach is used in
Microsoft SQL Server’s AutoAdmin [21] tool. We do not focus
on the problem of recommending a subset of these indexes to
users. There are several prior work on index and materialized
view recommendation [21], [22], [23], [24], [25], which are
complementary to our work. We leave the rigorous study of
this problem to future work.

V. EVALUATION
The goal of our experiments is two-fold. First, we demon-

strate the tunability and space-efficiency of A+ indexes on
three very different popular applications that GDBMSs support:
(i) labelled subgraph queries; (ii) recommendations; and (iii)
financial fraud detection. By either tuning the system’s primary
A+ index or adding secondary A+ indexes, we improve
the performance of the system significantly, with minimal
memory overheads. Second, we evaluate the performance and
memory overhead tradeoffs of different A+ indexes on these
workloads. Finally, as a baseline comparison, we benchmark
our performance against Neo4j [1] and TigerGraph [3], two
commercial GDBMSs that have fixed adjacency list structures.
For completeness of our work, we also evaluate the maintenance
performance of our indexes in the longer version of our
paper [10].

A. Experimental Setup
We use a single machine with two Intel E5-2670 @2.6GHz

CPUs and 512 GB of RAM. The machine has 16 physical
cores and 32 logical ones. Table I shows the datasets used.
We ran our experiments on all datasets and report numbers
on a subset of datasets due to limited space. Our datasets
include social, web, and Wikipedia knowledge graphs, which
have a variety of graph topologies and sizes ranging from
several million edges to over a hundred-million edges. A dataset
G, denoted as Gi,j , has i and j randomly generated vertex
and edge labels, respectively. We omit i and j when both



Name #Vertices #Edges Avg. degree

Orkut (Ork) 3.0M 117.1M 39.03
LiveJournal (LJ) 4.8M 68.5M 14.27
Wiki-topcats (WT) 1.8M 28.5M 15.83
BerkStan (Brk) 685K 7.6M 11.09

TABLE I: Datasets used.

are set to 1. We use query workloads drawn from real-world
applications: (i) edge- and vertex-labelled subgraph queries; (ii)
Twitter MagicRecs recommendation engine [26]; and (iii) fraud
detection in financial networks. For all index configurations
(Configs), we report either the index reconfiguration (IR) or
the index creation (IC) time of the newly added secondary
indexes. All experiments use a single thread except the creation
of edge-partitioned indexes, which uses 16 threads.

B. Primary A+ Index Reconfiguration
We first demonstrate the benefit and overhead tradeoff

of tuning the primary A+ index in two different ways: (i)
by only changing the sorting criterion; and (ii) by adding
a new secondary partitioning. We used a popular subgraph
query workload in graph processing that consists of labelled
subgraph queries where both edges and vertices have labels. We
followed the data and subgraph query generation methodology
from several prior work [4], [27]. We took the 14 queries
from reference [4] (omitted due to space reasons), which
contain acyclic and cyclic queries with dense and sparse
connectivity with up to 7 vertices and 21 edges. This query
workload had only fixed edge labels in these queries, for which
GraphflowDB’s default indexes are optimized. We modify this
workload by also fixing vertex labels in queries. We picked
the number of labels for each dataset to ensure that queries
would take time in the order of seconds to several minutes.
Then we ran GraphflowDB on our workload on each of our
datasets under three Configs:

1) D: system’s default configuration, where edges are
partitioned by edge labels and sorted by neighbour IDs.

2) Ds: keeps D’s secondary partitioning but sorts edges first
by neighbour vertex labels and then on neighbour IDs.

3) Dp: keeps D’s sorting criterion and edge label partitioning
but adds a new secondary partitioning on neighbour
vertex labels.

Table II shows our results. We omit Q14, which had very
few or no output tuples on our datasets. First observe that Ds
outperforms D on all of the 52 settings and by up to 10.38x
and without any memory overheads as Ds simply changes the
sorting criterion of the indexes. Next observe that by adding
an additional partitioning level on D, the joins get even faster
consistently across all queries, e.g., SQ13 improves from 2.36x
to 3.84x on Ork8,2, as the system can directly access edges
with a particular edge label and neighbour label using Dp. In
contrast, under Ds, the system performs binary searches inside
lists to access the same set of edges. Even though Dp is a
reconfiguration, so does not index new edges, it still has minor
memory overhead ranging from 1.05x to 1.15x because of the
cost of storing the new partitioning layer. This demonstrates

the effectiveness of tuning A+ indexes to optimize the system
to be much more efficient on a different workload without any
data remodelling, and with no (or minimal) memory overhead.

C. Secondary Vertex-Partitioned A+ Indexes
We next study the tradeoffs offered by secondary vertex-

partitioned A+ indexes. We use two sets of workloads drawn
from real-world applications that benefit from using both the
system’s primary A+ index as well as a secondary vertex-
partitioned A+ index. Our two applications highlight two
separate benefits users get from vertex-partitioned A+ indexes:
(i) decreasing the amount of predicate evaluation; and (ii)
allowing the system to generate new WCOJ plans that are not
possible with only the primary A+ index.

1) Decreasing Predicate Evaluations
In this experiment, we take a set of the queries drawn

from the MagicRecs workload described in reference [26].
MagicRecs was a recommendation engine that was developed
at Twitter that looks for the following patterns: for a given user
a1, it searches for users a2...ak that a1 has started following
recently, and finds their common followers. These common
followers are then recommended to a1. We set k=2,3 and 4.
Our queries, MR1, MR2, and MR3 are shown in Figure 4.
These queries have a time predicate on the edges starting from
a1 which can benefit from indexes that sort on time. MR2,
and MR3 are also cyclic can benefit from the default sorting
order of the primary A+ index on neighbour IDs. We evaluate
our queries on all of our datasets on two Configs. The first
Config consists of the system’s primary A+ index denoted by
D as before. The second Config, denoted by D+VPt adds on
top of D a new secondary vertex-partitioned index VPt in the
forward direction that: (i) has the same partitioning structure
as primary forward A+ index so shares the same partitioning
levels as the primary A+ index; and (ii) sorts the inner-most
lists on the time property of edges. In our queries we set the
value of α in the time predicate to have a 5% selectivity. For
MR3, on datasets LJ and Ork, we fix a1 to 10000 and 7000
vertices, respectively, to run the query in a reasonable time.

Table III shows our results. First observe that despite
indexing all of the edges again, our secondary index has
only 1.08x memory overhead because: (i) the secondary index
can share the partitioning levels of the primary index; and
(ii) the secondary index stores offset lists which has a low-
memory footprint. In return, we see up to 10.6x performance
benefits. We note that GraphflowDB uses exactly the same
plans under both Configs that start reading a1, extends to its
neighbours and finally performs a multiway intersection (except
for MR1, which is followed by a simple extension). The only
difference is that under D+VPt the first set of extensions require
fewer predicate evaluation because of accessing a1’s adjacency
list in VPt, which is sorted on time. Overall this memory
performance tradeoff demonstrates that with minimal overheads
of an additional index, users obtain significant performance
benefits on applications like MagicRecs that require performing
complex joins for which the system’s primary indexes are not
tuned.



SQ1 SQ2 SQ3 SQ4 SQ5 SQ6 SQ7 SQ8 SQ9 SQ10 SQ11 SQ12 SQ13 Mm IR

Ork8,2

D
Ds

Dp

1.68
0.91
(1.85x)
0.68
(2.48x)

5.47
3.12
(1.75x)
2.61
(2.10x)

3.66
2.04
(1.79x)
1.35
(2.71x)

1.30
1.19
(1.09x)
0.97
(1.34x)

1.58
1.05
(1.50x)
0.77
(2.05x)

1.45
1.22
(1.19x)
0.60
(2.44x)

1.73
1.33
(1.30x)
1.30
(1.33x)

2.49
1.51
(1.65x)
1.46
(1.71x)

0.95
0.77
(1.23x)
0.60
(1.25x)

17.74
4.89
(3.63x)
3.89
(4.56x)

7536.9
725.9
(10.38x)
704.9
(10.69x)

54.86
41.92
(1.31x)
28.32
(1.94x)

131.5
55.62
(2.36x)
34.22
(3.84x)

2778
2778
(1.0x)
3106
(1.12x)

-
38.90
-
27.71
-

LJ2,4

D
Ds

Dp

1.47
1.45
(1.01x)
1.04
(1.41x)

7.87
6.22
(1.27x)
5.18
(1.52x)

6.46
5.42
(1.19x)
4.64
(1.39x)

1.69
1.49
(1.13x)
1.09
(1.55x)

1.59
1.51
(1.05x)
0.98
(1.62x)

1.60
1.52
(1.05x)
1.08
(1.48x)

1.91
1.40
(1.36x)
1.07
(1.79x)

3.35
2.39
(1.40x)
1.85
(1.81x)

4.07
2.82
(1.44x)
2.26
(1.80x)

41.54
28.07
(1.48x)
25.86
(1.61x)

807.8
241.2
(3.35x)
235.63
(3.43x)

397.1
268.6
(1.48x)
235.85
(1.68x)

468.8
259.2
(1.81x)
161.82
(2.90x)

1016
1016
(1.0x)
1164
(1.15x)

-
20.83
-
19.92
-

WT4,2

D
Ds

Dp

0.61
0.37
(1.65x)
0.32
(1.91x)

4.59
2.43
(1.89x)
2.09
(2.20x)

5.48
3.50
(1.56x)
3.05
(1.80x)

0.84
0.69
(1.22x)
0.55
(1.53x)

1.17
0.71
(1.65x)
0.59
(1.99x)

0.90
0.65
(1.38x)
0.54
(1.66x)

0.73
0.61
(1.20x)
0.61
(1.21x)

11.25
3.93
(2.87x)
2.86
(3.94x)

2.85
1.36
(2.09x)
1.09
(2.62x)

1116.2
697.9
(1.60x)
639.7
(1.74x)

340.0
77.11
(4.41x)
76.32
(4.45x)

487.8
319.0
(1.53x)
259.1
(1.88x)

767.5
386.8
(1.98x)
235.7
(3.26x)

713
713
(1.0x)
795
(1.12x)

-
8.70
-
6.25
-

TABLE II: Runtime (secs) and memory usage in MBs (Mm) evaluating subgraph queries using three different index
configurations: D, Ds, and Dp introduced in Section V-B. We report index reconfiguration (IR) time (secs).

a1 a2 a3
e1 e2

Pα(e1),Pα(e2)

(a) MR1.

a1

a2

a3

a4

e1

e2

Pα(e1),Pα(e2)

(b) MR2.

a1 a3

a2

a4

a5

e1
e2

e3

Pα(e1),Pα(e2),Pα(e3)

(c) MR3.
Fig. 4: MagicRec (MR) queries. Pα(ei) = ei.time < α

MR1 MR2 MR3 Mm IC

Ork D
D+VPt

29.37
14.36(2.0x)

255.4
166.3(1.5x)

22.65
3.33(6.8x)

2755
2982(1.1x)

-
42.10

LJ D
D+VPt

18.19
8.83(2.1x)

38.17
27.26(1.4x)

842.8
79.72(10.6x)

1689
1820(1.1x)

-
21.79

WT D
D+VPt

6.87
2.69(2.6x)

9.67
5.36(1.8x)

136.5
22.74(6.0x)

700
755(1.1x)

-
9.14

TABLE III: Runtime (secs) and memory usage in MBs (Mm)
evaluating MagicRec queries using Configs: D and D+VPt
introduced in Section V-C1. We report index creation (IC)

time (secs) for secondary indexes.

2) WCOJ Plans
We next evaluate the benefit and overhead tradeoff of

secondary vertex-partitioned indexes when the secondary index
allows the system to generate new WCOJ plans that are not
in the plan space with primary indexes only. We take a set of
queries drawn from cyclic fraudulent money flows reported in
prior literature [28], as well as acyclic patterns that contain
the money flow paths from our running examples. Figure 5
shows our queries MF1, ..., MF5. We focus on MF1 to MF4

here and use MF5 in the next section. These four queries have
equality conditions on the city property of the vertices, so
can benefit from multiway joins computed by intersecting lists
that are presorted on city. We evaluate these queries on two
Configs. The first Config consists of the system’s primary A+
index denoted by D as before. The second Config, denoted by
D+VPc adds on top of D a new secondary vertex-partitioned
index VPc in both forward and backward directions that: (i)
has the same partitioning structure as primary A+ indexes; and
(ii) sorts the inner-most lists on neighbour’s city property.

a1 a2

a3a4

e1
e2

e3

e4

ai.acc=CQ,
a2.city=a4.city

(a) MF1.

a1 a2 a3 a4
e1 e2 e3

a1.city=a2.city,
a2.city=a3.city,
a3.city=a4.city

(b) MF2.

a3a1

a2

a4

a5

e1
e2

e4

e3

a2.city=a4.city, a4.city=a5.city, a3.ID<10000,
ai.acc=CQ, a5.acc=SV , Pf (e2,e3)

(c) MF3.

a1 a2 a3a4a5
e1e3 e2e4

a1.city=β, a2.city=a4.city, a2.acc=CQ, a3.acc=CQ,
a4.acc=SV , a5.acc=SV , Pf (e1,e2), Pf (e3,e4)

(d) MF4.

a1 a2 a3 a4 a5
e1 e2 e3 e4

a1.ID<50000, ai.acc=CQ, Pf (e1,e2),Pf (e2,e3),Pf (e3,e4)

(e) MF5.
Fig. 5: Fraud detection queries. Pf (ei,ej) defined as

ei.date<ej .date, ei.amt>ej .amt, ei.amt<ej .amt+α.

For each dataset, we randomly added each vertex an account
type property from [CQ, SV], a city from 4417 cities, and
to each edge an amount in the range of [1, 1000] and a date
within a 5 year range.

Table IV shows our results (ignore the MF5 column and the
D+VPc+EPc rows for now). Similar to our previous experiment,
despite indexing all of the edges (this time twice), our secondary
index has only 1.17x memory overhead (the increase from 1.08x
is due to double indexing), whereas we see uniform and up
to 24.7x improvements in run time. We note that in all of
these queries, the benefits are solely coming from using new
plans that use WCOJ processing. For example in query MF1,
the D+VPc configuration allows the system to generate a plan



a1 a3 a4

a2

a5

Multi-Extend

a1(e1)→V Pc ∩ e2(e3)→EPc ∩
a1(e4)→V Pc

e2
e1

e4
e3

a1 a3

Extend

a3←(V Pc)

e2
Scan
a3

ID<10000

Fig. 6: WCOJ Plan for MF3 from Figure 5c using two VPc
indexes and one EPc index from Sections V-C2 and V-D.

that: (1) reads a1; (2) uses MULTI-EXTEND to intersect a1’s
forward and backward lists in VPc, which matches a2 and a4;
and (3) uses E/I that intersects a2’s forward and a4’s backward
lists in the primary A+ index to match the a3’s. Such plans
are not possible in absence of the VPc index. Instead for MF1,
under the default configuration D, the system extends a1 to
a2, then to a3 separately, runs a FILTER operator to match the
cities, and then uses E/I to match the a3’s.

D. Secondary Edge-Partitioned A+ Indexes
Finally, we evaluate the tradeoffs of our secondary edge-

partitioned A+ indexes on our financial fraud application. We
add a third Config to our experiment denoted by D+VPc+EPc.
The configuration adds the edge-partitioned index from Exam-
ple 7 in Section III-B2. We change the second-level partitioning
to be on v.adj .acc instead of edge labels and add the predicate
e.b.amt < e.nbr.amt + α. We pick the “intermediate cut” value
α in our examples to have 5% selectivity.

Table IV shows our results. First we observe that the addition
of EPc only allows new plans to be generated for MF3, MF4

and MF5, so we report numbers only for these queries. The
improvements in run time range from 6.14x to up to 72.2x
for a 2.22x memory overhead. Naturally the memory and
performance tradeoff will change with the selectivity of α. What
is more important to note is that the speedups are primarily
due to the system producing significantly more efficient plans
in the presence of the EPc index. For example, the system now
generates a highly complex plan for MF3, shown in Figure 6,
that uses a mix of vertex and edge-partitioned indexes and
performs a 3-way intersection.
E. Neo4j and TigerGraph Comparisons

We next compare GraphflowDB to Neo4j and TigerGraph.
These experiments are provided for completeness only. These
are full-fledged commercial systems that support transactions.
However Neo4j is perhaps the most popular existing GDBMS
and TigerGraph, to the best of our knowledge, is the most
performant one in terms of read performance. Our goal is to
and show that the benefits of A+ indexes reported are on top
of a system that is already competitive with existing GDBMSs.

We report numbers for four of our labelled subgraph queries
SQ1, SQ2, SQ3, and SQ13 on LJ12,2 and WT4,2 on Neo4j and
TigerGraph, using their default Configs and using the D and Dp
configurations from Section V-B for GraphflowDB. Table V
shows our results. We found GraphflowDB to be faster on
all queries on the D configuration except for SQ13 on WT4,2.
In addition, similar to our experiments from Table II, the
Dp configuration makes GraphflowDB even more performant.

TigerGraph was the fastest system on SQ13, which is a long 5-
edge path. We cannot inspect the source code but we suspect for
paths TigerGraph extends each distinct intermediate node only
once and they only report pairs of reachable nodes. However,
note that using the reconfigured index Dp, GraphflowDB
outperforms TigerGraph on LJ12,2 and closes the gap on WT4,2.

We note that system-to-system comparisons should not be
interpreted as one system being superior to another. What is
more important is that neither of these systems has a mechanism
for tuning through index reconfiguration or construction to close
their performance gaps on join-heavy queries.

F. Index Maintenance Performance
We next benchmark the maintenance speed of each type of

A+ index on a micro-benchmark. We report our numbers for
two datasets LJ2,4 and Brk2,2. We load 50% of the dataset
from the MagicRec application and insert the remaining 50%
of the edges one at a time and evaluate the speed of 5 Configs,
each requiring progressively more maintenance work: (i) Ds
has no partitioning and sorts by the the adjacent vertices IDs;
(ii) Dp partitions each adjacency list on adjacent edges label;
(iii) Dps sorts each partition in Dp by the adjacent vertices IDs;
(iv) Dps+VPt creates a secondary adjacency list index on the
time property for Dps; and finally (v) Dps+EPt: an edge bound
adjacency list index with the same partitioning and sorting
as VPt for the query vs−[eb]←vd−[eadj ]→vadj with predicate
eb.time ¡ eadj .time + α that has a 1% selectivity.

We report our numbers for two datasets LJ2,4 and Brk2,2

using a single thread. We were able to maintain the following
update rates per second (reported respectively for LJ2,4 and
Brk2,2): 1.203M and 2.108M for Ds, 1.024M and 1.892M
for Dp, 1.081M and 1.832M for Dps, 706K and 1.691M for
Dps+VPt, and 41K and 110K for Dps+EPt. Our update rate
gets slower with additional complexity but we are able to
maintain insert rates of between 50-100k edges/s for our
edge-partitioned index and between 706K-2.1M for our vertex-
partitioned indexes. Note that our implementation is not write
optimized and these speeds, though we believe is sufficient for
modern applications, can be further improved.

VI. RELATED WORK
View-based Query Processing: Answering queries using
views has been well studied in the context of relational, XML,
or RDF data management. We refer the reader to several surveys
and references on the topic [14], [29], [30]. This extensive
literature studies numerous topics, such as rewriting queries
using a set of views [31], selecting a set of views for a workload
e.g., web databases [32], or the computational complexities
of deciding whether a query can be answered with a given
set of views [33]. In this work, we observed that the lists
that are stored in the adjacency list indexes can be seen as
views and systems provide fast access to these lists/views
through CSR-like data structures. In contrast to prior work, we
explored how to extend the views that can be accessed through
adjacency list indexes in a space-efficient manner. Specifically,
we identified a restricted but still much larger set of views than
existing indexes, that can be stored by either merely tuning



MF1 MF2 MF3 MF4 MF5 Mem(MB) |Eindexed| IC

Ork
D
D+VPc
D+VPc+EPc

73.35
8.99 (8.16x)
—

5.53
2.75 (2.01x)
—

32.85
1.33 (24.7x)
0.56 (58.7x)

71.46
19.03 (3.76x)
0.99 (72.2x)

890.8
—
60.59 (14.7x)

2730
3183 (1.17x)
6000 (2.20x)

117.1M
117.1M
513.2M

-
85.83
288.4

LJ
D
D+VPc
D+VPc+EPc

47.09
11.45 (4.11x)
—

4.24
2.86 (1.48x)
—

84.78
5.12 (16.6x)
2.16 (39.3x)

7.60
3.66 (2.08x)
0.39 (19.5x)

52.04
—
5.79 (8.99x)

1649
1910 (1.16x)
3585 (2.17x)

68.5M
68.5M
276.2M

-
46.43
279.8

WT
D
D+VPc
D+VPc+EPc

20.27
2.29 (8.85x)
—

1.47
1.12 (1.31x)
—

9.02
1.55 (5.82x)
0.50 (18.0x)

0.86
0.53 (1.62x)
0.14 (6.14x)

9.02
—
0.79 (11.4x)

685
796 (1.16x)
1521 (2.22x)

28.5M
28.5M
125.4M

-
21.26
843.5

TABLE IV: Runtime (secs) of GraphflowDB plans and memory usage (Mem) in MB evaluating fraud detection queries using
different Configs: D, D+VPc, and D+VPc+EPc introduced in Section V-C2. The run time speedups and memory usage increase

shown in parenthesis are in comparison to D. We report index creation time (IC) in secs for secondary indexes.

LJ12,2 WT4,2

SQ1 SQ2 SQ3 SQ13 SQ1 SQ2 SQ3 SQ13

D
Dp
TG
N4

0.4
0.4
2.5
29.3

1.4
0.7
11.8
35.3

1.1
0.6
15.2
36.8

31.3
6.0
30.5
TL

0.6
0.3
1.6
1.65k

4.6
2.1
7.1
876

5.5
3.1
10.2
82.9

767.5
235.7
29.5
TL

TABLE V: Runtime (secs) of GraphflowDB on Configs D and
Dp introduced in Section V-B, runtime of TigerGraph (TG),

and runtime of Neo4j (N4). TL indicates >30 mins.

the partitioning schemes of a multi-level CSR data structure
or lightweight offset lists.
Kaskade [34] (KSK) is a graph query optimization framework
that uses materialized graph views to speed up query evaluation.
Specifically, KSK takes as input a query workload Q and an
input graph G. Then, KSK enumerates possible views for Q,
which are other graphs G′ that contain a subset of the vertices
in G and other edges that can represent multi-hop connections
in G. For example, if G is a data provenance graph with job
and file vertices, and there are “consumes” and “produces”
relationships between jobs and files, an example graph view
G′ could store the job vertices and their 2-hop dependencies
through files. KSK materializes its selected views in Neo4j, and
then translates queries over G to appropriate graphs (views)
that are stored in Neo4j, which is used to answer queries.
Therefore, the framework is limited by Neo4j’s adjacency lists.

There are several differences between the views provided
by KSK and A+ indexes. First, KSK’s views are based on
“constraints” that are mined from G’s schema based only on
vertex/edge labels and not properties. For example, KSK can
mine “job vertices connect to jobs in 2-hops but not to file
vertices” constraints but not “accounts connect to accounts in
2-hops with later dates and lower amounts”, which can be
a predicate in an A+ index. Second, because KSK stores its
views in Neo4j, KSK views are only vertex ID and edge label
partitioned, unlike our views which are stored in a CSR data
structure that support tunable partitioning, including by edge
IDs, as well as sorting. Similarly, because KSK uses Neo4j’s
query processor, its plans do not use WCOJs.
Adjacency List Indexes in Graph Analytics Systems: There
are numerous graph analytics systems [35], [36], [37] designed
to do batch analytics, such as decomposing a graph into

connected components. These systems use native graph storage
formats, such as adjacency lists or sparse matrices. Work in this
space generally focuses on optimizing the physical layout of the
edges in memory. For systems storing the edges in adjacency
list structures, a common technique is to store them in CSR
format [8]. To implement A+ indexes we used a variant of
CSR that can have multiple partitioning levels. Reference [37]
studies CSR-like partitioning techniques for large lists and
reference [38] proposes segmenting a graph stored in a CSR-
like format for better cache locality. This line of work is
complementary to ours.
Indexes in RDF Systems: RDF systems support the RDF
data model, in which data is represented as a set of (subject,
predicate, object) triples. Prior work has introduced different
architectures, such as storing and then indexing one large triple
table [39], [40] or adopting a native-graph storage [41]. These
systems have different designs to further index these tables or
their adjacency lists. For example, RDF-3X [39] indexes an
RDF dataset in multiple B+ tree indexes. As another example,
the gStore system encodes several vertices in fixed length bit
strings that captures information about the neighborhoods of
vertices. Similar to the GDBMSs we reviewed, these work
also define fixed indexes for RDF triples. A+ indexes instead
gives users a tunable mechanism to tailor a GDBMS to the
requirements of their workloads.
Indexes for XML Data: There is prior work focusing on
indexes for XML and the precursor tree or rooted graph
data models. Many of this work provides complete indexes,
such as DataGuides [42] or IndexFabric [43], or approximate
indexes [44], [45] that index the paths from the roots of a graph
to individual nodes in the data. These indexes are effectively
summaries of the graph that are used during query evaluation
to prune the search of path expressions in the data. These
indexes are not directly suitable for contemporary GDBMS
which store non-rooted property graphs, where the paths that
users search in queries can start from arbitrary nodes.
Other complex subgraph indexes: Many prior algorithmic
work on evaluating subgraph queries [46], [47], [48] have
also proposed auxiliary indexes that index subgraphs more
complex than edges, such as paths, stars, or cliques. This line
of work effectively demonstrates that indexing such subgraphs
can speed up subgraph query evaluation. Unlike our work,



these subgraphs can be more complex but their storage is not
optimized for space efficiency.

VII. CONCLUSIONS
Ted Codd, the inventor of the relational model, criticized

the GDBMSs of the time as being restrictive because they
only performed a set of “predefined joins” [49], which causes
physical data dependence and contrasts with relational systems
that can join arbitrary tables. This is indeed still true to a good
extent for contemporary GDBMSs, which are designed to join
vertices with only their neighbourhoods, which are predefined
to the system as edges. However, this is specifically the major
appeal of GDBMSs, which are highly optimized to perform
these joins efficiently by using adjacency list indexes. Our
work was motivated by the shortcoming that existing GDBMSs
have fixed adjacency list indexes that limit the workloads that
can benefit from their fast join capabilities. As a solution, we
described the design and implementation of a new indexing
subsystem with restricted materialized view support that can
be stored using a space-efficient technique. We demonstrated
the flexibility of A+ indexes, and evaluated the performance
and memory tradeoffs they offer on a variety of applications
drawn from popular real-world applications.
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ABSTRACT
We revisit column-oriented storage and query processing tech-

niques in the context of contemporary graph database management

systems (GDBMSs). Similar to column-oriented RDBMSs, GDBMSs

support read-heavy analytical workloads that however have funda-

mentally different data access patterns than traditional analytical

workloads. We first derive a set of desiderata for optimizing storage

and query processors of GDBMS based on their access patterns.

We then present the design of columnar storage, compression, and

query processing techniques based on these desiderata. In addition

to showing direct integration of existing techniques from colum-

nar RDBMSs, we also propose novel ones that are optimized for

GDBMSs. These include a novel list-based query processor, which

avoids expensive data copies of traditional block-based processors

under many-to-many joins, a new data structure we call single-

indexed edge property pages and an accompanying edge ID scheme,

and a new application of Jacobson’s bit vector index for compress-

ing NULL values and empty lists. We integrated our techniques

into the GraphflowDB in-memory GDBMS. Through extensive ex-

periments, we demonstrate the scalability and query performance

benefits of our techniques.
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1 INTRODUCTION
Contemporary GDBMSs are data management software such as

Neo4j [47], Neptune [5], TigerGraph [59], and GraphflowDB [32,

41] that adopt the property graph data model [48]. In this model,

application data is represented as a set of vertices and edges, which

represent the entities and their relationships, and key-value prop-

erties on the vertices and edges. GDBMSs support a wide range of

analytical applications, such as fraud detection and recommenda-

tions in financial, e-commerce, or social networks [56] that search

for patterns in a graph-structured database, which require reading
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large amounts of data. In the context of RDBMSs, column-oriented

systems [29, 53, 57, 66] employ a set of read-optimized storage,

indexing, and query processing techniques to support traditional

analytical applications, such as business intelligence and report-

ing, that also process large amounts of data. As such, these tech-

niques are relevant for improving the performance and scalability

of GDBMSs.

In this paper, we revisit columnar storage and query process-

ing techniques in the context of GDBMSs. Specifically, we focus

on an in-memory GDBMS setting and discuss the applicability of

columnar storage and compression techniques for storing different

components of graphs [1, 2, 57, 68], and block-based query pro-

cessing [3, 11]. Despite their similarities, workloads in GDBMSs

and columnar RDBMSs also have fundamentally different access

patterns. For example, workloads in GDBMSs contain large many-

to-many joins, which are not frequent in column-oriented RDBMSs.

This calls for redesigning columnar techniques in the context of

GDBMSs. The contributions of this paper are as follows.

Guidelines and Desiderata:We begin in Section 3 by analyzing

the properties of data access patterns in GDBMSs. For example, we

observe that different components of data stored in GDBMSs can

have some structure and the order in which operators access vertex

and edge properties often follow the order of edges in adjacency

lists. This analysis instructs a set of guidelines and desiderata for

designing the physical data layout and query processor of a GDBMS.

Columnar Storage: Section 4 explores the application of columnar

data structures for storing different data components in GDBMSs.

While existing columnar structures can directly be used for stor-

ing vertex properties and many-to-many (n-n) edges, we observe

that using straightforward edge columns, to store properties of

n-n edges does not guarantee sequential access when reading edge

properties in either forward or backward directions. An alternative,

which we call double-indexed property CSRs, can achieve sequential

access in both directions but requires duplicating edge properties.

We then describe an alternative design point, single-directional prop-
erty pages, that avoids duplication and achieves good locality when

reading properties of edges in one direction and still guarantees ran-

dom access in the other. This requires using a new edge ID scheme

that is conducive to extensive compression when storing them in

adjacency lists without any decompression overheads. Lastly, as

a new application of vertex columns, we show that single cardi-

nality edges and edge properties, i.e. those with one-to-one (1-1),

one-to-many (1-n) or many-to-one (n-1) cardinalities, are stored

more efficiently with vertex columns instead of the structures we

describe for n-n edges.

Columnar Compression: In Section 5, we review existing colum-

nar compression techniques, such as dictionary encoding, that sat-

isfy our desiderata and can be directly applied to GDBMSs. We
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Figure 1: Running example graph.

next show that existing techniques for compressing NULL values

in columns from references [1, 2] by Abadi et al. lead to very slow

accesses to arbitrary non-NULL values. We then review Jacobson’s

bit vector index [30, 31] to support constant time rank queries,

which has found several prior applications e.g., in a range filter

structure in databases [64], in information retrieval [21, 44] and

computational geometry [14, 45]. We show how to enhance one of

Abadi’s schemes with an adaptation of Jacobson’s index to provide

constant-time access to arbitrary non-NULL values, with a small

increase in storage overhead compared to prior techniques.

List-based Processing: In Section 6, we observe that traditional

block-based processors or columnar RDBMSs [3, 67] process fixed-

length blocks of data in tight loops, which achieves good CPU and

cache utility but results in expensive data copies under n-n joins.

To address this, we propose a new block-based processor we call

list-based processor (LBP), which modifies traditional block-based

processors in two ways to tailor them for GDBMSs: (i) Instead of

representing the intermediate tuples processed by operators as a

single group of equal-sized blocks, we represent them as multiple

factorized groups of blocks. We call these list groups. LBP avoids

expensive data copies by flattening blocks of some groups into

single values when performing n-n joins. (ii) Instead of fixed-length

blocks, LBP uses variable length blocks that take the lengths of

adjacency lists that are represented in the intermediate tuples. Be-

cause adjacency lists are already stored in memory consecutively,

this allows us to avoid materializing adjacency lists during join

processing, improving query performance.

We integrated our techniques into GraphflowDB [32].We present

extensive experiments that demonstrate the scalability and per-

formance benefits (and tradeoffs) of our techniques both on mi-

crobenchmarks and on the LDBC and JOB benchmarks against a

row-based Volcano-style implementation of the system, an open-

source version of a commercial GDBMSs, and two column-oriented

RDBMSs. Our code, queries, and data are available here [25].

2 BACKGROUND
In the property graph model, vertices and edges have labels and

arbitrary key value properties. Figure 1 shows a property graph that

will serve as our running example, which contains vertices with

PERSON and ORGANIZATION (ORG) labels, and edges with FOLLOWS,
STUDYAT and WORKAT labels.

There are three storage components of GDBMSs: (i) topology,

i.e., adjacencies of vertices; (ii) vertex properties; and (iii) edge

properties. In every native GDBMS we are aware of, the topology

a

SCAN JOIN jo1

a b

FILTER
a.age  
> 50 

FILTER
d.name  

= “UW”

JOIN jo2

b c

JOIN jo2

c d

List Group 1 List Group 2 List Group 3

a

Scan ListExtend

a b

Filter
a.age  
> 50 b c

ColumnExtend

c d

ListExtend

a

Scan Join

a b

Filter

a.age  > 22 

Filter

b.estd < 2015

Figure 2: Query plan for the query in Example 1.

is stored in data structures that organize data in adjacency lists [12],
such as in compressed sparse row (CSR) format. Typically, given

the ID of a vertex 𝑣 , the system can in constant-time access 𝑣 ’s

adjacency list, which contains a list of (edge ID, neighbour ID) pairs.

Typically, the adjacency list of 𝑣 is further clustered by edge label

which enables efficient traversal of the neighbourhood of 𝑣 , given

a particular label. Vertex and edge properties can be stored in a

number of ways. For example, some systems use a key-value store,

such as DGraph [15] and JanusGraph [6], and some use a variant

of interpreted attribute layout [9], where records consist of variable-
sized key-value properties. Records can be located consecutively in

disk or memory or have pointers to each other, as in Neo4j.

Queries in GDBMSs consist of a subgraph pattern 𝑄 that de-

scribes the joins in the query (similar to SQL’s FROM) and optionally

predicates on these patterns with final group-by-and-aggregation

operations. We assume a GDBMS with a query processor that uses

variants of the following relational operators, which is the case in

many GDBMSs, e.g., Neo4j [47], Memgraph [40], or GraphflowDB:

Scan: Scans a set of vertices from the graph.

Join (e.g. Expand in Neo4j andMemgraph, Extend in GraphflowDB):
Performs an index nested loop join using the adjacency list index

to match an edge of 𝑄 . Takes as input a partial match 𝑡 that has

matched 𝑘 of the query edges in 𝑄 . For each 𝑡 , Join extends 𝑡 by
matching an unmatched query edge 𝑞𝑣𝑠→𝑞𝑣𝑑 , where 𝑞𝑣𝑠 or 𝑞𝑣𝑑 has

already been matched. For example if 𝑞𝑣𝑠 has already been matched

to data vertex 𝑣𝑖 , then the operator produces one (𝑘 + 1)-match for

each edge-neighbour pair in 𝑣𝑖 ’s forward adjacency list
1
.

Filter: Applies a predicate 𝜌 to a partial match 𝑡 , reading any

necessary vertex and edge properties from storage.

Group By And Aggregate: Performs a standard group by and

aggregation computation on a partial match 𝑡 .

Example 1. Below is an example query written in the Cypher
language [19]:

MATCH (a:PERSON)−[e:WORKAT]→(b:ORG)
WHERE a.age > 22 AND b.estd < 2015 RETURN *

The query returns all persons 𝑎 and their workplaces 𝑏, where 𝑎 is
older than 22 and 𝑏 was established before 2015. Figure 2 shows a
typical plan for this query.

3 GUIDELINES AND DESIDERATA
We next outline a set of guidelines and desiderata for organizing the

physical data layout and query processor of GDBMSs. We assume

edges are doubly-indexed in forward and backward adjacency lists,

as in every GDBMS we are aware of. We will not optimize this

duplication as this is needed for fast joins from both ends of edges.

Guideline 1. Edge and vertex properties are read in the same
order as the edges appear in adjacency lists after joins.
1
GraphflowDB can perform an intersection of multiple adjacency lists if the pattern is

cyclic (see reference [41]).
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Observe that JOIN accesses the edges and neighbours of a ver-

tex 𝑣𝑖 in the order these edges appear in 𝑣𝑖 ’s adjacency list 𝐿𝑣𝑖 =

{(𝑒𝑖1, 𝑣𝑖1)..., (𝑒𝑖ℓ , 𝑣𝑖ℓ )}. If the next operator also needs to access the

properties of these edges or vertices, e.g., Filter in Figure 2, these

accesses will be in the same order. Our first desiradata is to store

the properties of 𝑒𝑖1 to 𝑒𝑖ℓ sequentially in the same order. Ideally,

a system should also store the properties 𝑣𝑖 𝑗 sequentially in the

same order but in general this would require prohibitive data repli-

cation because while each 𝑒𝑖 𝑗 appears in two adjacency lists, each

𝑣𝑖 𝑗 appears in as many lists as the degree of 𝑣𝑖 𝑗 .

Desideratum 1. Store and access the properties of edges sequen-
tially in the order edges appear in adjacency lists.

Guideline 2. Access to vertex properties will not be to sequential
locations and many adjacency lists are very small.
Guideline 1 implies that we should expect random accesses in mem-

ory when an operators access vertex properties. In addition, real-

world graph data with n-n relationships have power-law degree

distributions [37]. So, there are often many short adjacency lists

in the dataset. For example, the FLICKR, WIKI graphs that we use,
have single edge labels with average degrees of only 14 and 41,

and the Twitter dataset used in many prior work on GDBMSs [33]

has a degree of 35. Therefore when processing queries with two

or more joins, reading different adjacency lists will require itera-

tively reading a short list followed by a random access. This implies

that techniques that require decompressing blocks of data, say a

few KBs, to only read a single vertex property or a single short

adjacency list can be prohibitively expensive.

Desideratum 2. If compression is used, decompressing arbitrary
data elements in a compressed block should happen in constant time.

Guideline 3. Graph data often has partial structure.
Although the property graph model is semi-structured, data in

GDBMSs often have some structure. One reason for this is because

the data in GDBMSs sometimes comes from structured data from

RDBMSs as observed in a recent user survey [56]. In fact, several

vendors and academics are actively working on defining a schema

language for property graphs [13, 27]. Common structure are:

(i) Edge label determines source and destination vertex labels. For
example, in the popular LDBC social network benchmark (SNB),

KNOWS edges exist only between vertices of label PERSON.

(ii) Label determines vertex and edge properties. Similar to attributes

of a relational table, properties on an edge or vertex and their

datatypes can often be determined by the label. For example,

this is the case for every vertex and edge label in LDBC.

(iii) Edges with single cardinality. Edges might have cardinality con-

straints: 1-n (single cardinality in the backward edges), n-1 (sin-

gle cardinality in the forward edges), 1-1, and n-n. An example

of 1-n cardinality from LDBC SNB is that each organization
has one isLocatedIn edge.

We refer to edges that satisfy properties (i) and (ii) as structured edges
and properties that satisfy property (ii) as structured vertex/edge
property. Other edges and properties will be called unstructured.
The existence of such structure in some graph data motivates our

third desideratum:

Desideratum 3. Exploit structure in the data for space-efficient
storage and faster access to data.

Table 1: Columnar data structures and data components
they are used for. V-Column stands for vertex column.

Data Columnar data structure
Vertex Properties V-Column

Edge Properties

V-Column: of src when n-1, of dst when

1-n, of either src or dst when 1-1

Single-indexed prop. pages when n-n

Fwd Adj. lists V-Column when 1-1 and n-1, CSR o.w.

Bwd Adj. lists V-Column when 1-1 and 1-n, CSR o.w.

e1,p2 e9,p4 e7,p3 e11,p4 e2,p1 e5,p2 e3,p4 ...

FOLLOWS STUDYAT WORKAT

e4,o1 e12,o2 e8,o2 ... e10,o2 ...

p1 p2 p3 ...p1 p2 p3 ... p1 p2 p3 ...

Figure 3: Example forward adjacency lists implemented as
a 2-level CSR structure for the example graph.

4 COLUMNAR STORAGE
We next explore using columnar structures for storing data in

GDBMSs to meet the desiderata from Section 3. For reference, Ta-

ble 1 presents the summary of the columnar structures we use and

the data they store. We start with directly applicable structures and

then describe our new single-indexed property pages structure and

its accompanying edge ID scheme to store edge properties.

4.1 Directly Applicable Structures
4.1.1 CSR for n-n Edges. CSR is an existing columnar structure

that is widely used by existing GDBMSs to store edges. A CSR,

shown in Figure 3, effectively stores a set of (vertex ID, edge ID,

neighbour ID) triples sorted by vertex ID, where the vertex IDs are

compressed similar to run-length encoding. In this work, we store

the edges of each edge label with n-n cardinality in a separate CSR.

As we discuss next, we can store the edges with other cardinalities

more efficiently than a CSR by using vertex columns.

4.1.2 Vertex Columns for Vertex Properties, Single Cardinality Edges
and Edge Properties. With an appropriate vertex ID scheme, columns

can be directly used for storing structured vertex properties in a

compact manner. Let 𝑝𝑖,1, 𝑝𝑖,2, ...𝑝𝑖,𝑛 be the structured vertex prop-

erties of vertices with label 𝑙𝑣𝑖 . We have a vertex column for each

𝑝𝑖, 𝑗 , that stores 𝑝𝑖, 𝑗 properties of vertices in consecutive locations.

Then we can adopt a (vertex label, label-level positional offset) ID

scheme and ensure that offsets with the same label are consecutive.

As we discuss in Section 5.2, this ID scheme also can be compressed

by factoring out vertex labels.

Similarly, we can store single cardinality edges, i.e., those with

1-1, 1-n, or n-1 constraints, and their properties directly as a prop-
erty of source or destination vertex of the edges in a vertex column

and directly access them using a vertex positional offset. As we

momentarily discuss, this is more efficient both in terms of storage

and access time than the structures we cover for storing properties

of n-n edges (Desideratum 3). Figure 4 shows single cardinality
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...

name
STRING

gender
STRING

age
INT 

0

1

2

3

vertex properties

... ... ...

STUDYAT
EDGE

STUDYAT

doj
INT 

...

WORKAT

 peter

jenny

bob

alice

54

17

45

23 F

F

M

M

2019

2014

2006

...

WORKAT
EDGE

doj
INT 

...

1980

2006

Figure 4: Example vertex columns storing vertex properties
and single-cardinality edges and their properties.

STUDYAT and WORKAT edges from our example and their prop-

erties stored as vertex column of PERSON vertices.

4.2 Single-indexed Edge Property Pages for
Properties of n-n Edges

Recall Desideratum 1 that access to edge properties should be in

the same order of the edges in adjacency lists. We first review

two columnar structures, edge columns and double-indexed property
CSRs, the former of which has low storage cost but does not satisfy

Desideratum 1 and the latter has high storage cost but satisfies

Desideratum 1. We then describe a new design, which we call single-
indexed property pages, which has low storage cost as edge columns

and with a new edge ID scheme can partially satisfy Desideratum 1,

so dominates edge columns in this design space.

Edge Columns: We can use a separate edge column for each prop-

erty 𝑞𝑖, 𝑗 of edge label 𝑙𝑒𝑖 . Then with an appropriate edge ID scheme,

such as (edge label, label-level positional offset), one can perform a

random access to read the 𝑞𝑖, 𝑗 property of an edge 𝑒 . This design has

low storage cost and stores each property once but does not store

the properties according to any order. In practice, the order would

be determined by the sequence of edge insertions and deletions.

Double-Indexed Property CSRs. An alternative is to mimic the

storage of adjacency lists in the CSRs in separate CSRs that store

edge properties. For each vertex 𝑣 we can store 𝑞𝑖, 𝑗 twice in forward
and backward property lists. This design provides sequential read of

properties in both directions, thereby satisfying Desideratum 1, but

also requires double the storage of edge columns. This can often

be prohibitive especially for in-memory systems, as many graphs

have orders of magnitude more edges than vertices.

A natural question is: Can we avoid duplicate storage of double-
indexed property CSRs but still achieve sequential reads? We next

show a structure that with an appropriate edge ID scheme obtains

sequential reads in one direction, so partially satisfying Desidera-

tum 1. This structure therefore dominates edge columns in design.

Single-indexed property pages: A first natural design uses only

one property CSR, say forward. We call this structure single-indexed
property CSR. Then, properties can be read sequentially in the for-

ward direction. However, reading a property in the other direction

quickly, specifically with constant time access, requires a new edge

ID scheme. To see this suppose a system has read the backward

adjacency lists of a vertex 𝑣 with label 𝑙𝑒𝑖 , {(𝑒1, 𝑛𝑏𝑟1), ..., (𝑒𝑘 , 𝑛𝑏𝑟𝑘 )},
and needs to read the 𝑞𝑖, 𝑗 property of these edges. Then given say

p1

  e3(p3,p4)       e13(p4,p2)       e5(p3,p2)       e2(p3,p1)

p2

since INT

   e1(p1,p2)        e7(p2,p3)        e9(p1,p4)       e11(p2,p4)

2015 20112012 1992

2003 20062009 1999

Figure 5: Single-indexed property pages for since property
of FOLLOWS edges in the example graph. 𝑘 = 2.

𝑒1, we need to be able to read 𝑒1’s 𝑞𝑖, 𝑗 property from the forward

property list 𝑃𝑛𝑏𝑟1 of 𝑛𝑏𝑟1. With a standard edge ID scheme, for

example one that assigns consecutive IDs to all edges with label

𝑙𝑒𝑖 , the system would need to first find the offset 𝑜 of 𝑒1 in forward

adjacency list of 𝑛𝑏𝑟1, 𝐿𝑛𝑏𝑟1 , which may require scanning the entire

𝐿𝑛𝑏𝑟1 , which is not constant time.

Instead, we can adopt a new edge ID scheme that stores the

following: (edge label, source vertex ID, list-level positional offset)
2
.

With this scheme a system can: (i) identify each edge, e.g., perform

equality checks between two edges; and (ii) read the offset 𝑜 directly

from edge IDs, so reading edge properties in the opposite direction

(backward in our example) can now be constant time. In addition,

this scheme can be more space-efficient than schemes that assign

consecutive IDs to all edges as its first two components can often

be compressed (see Section 5.2). However, single-indexed property

CSR and this edge ID scheme has two limitations. First access to

properties in the ‘opposite direction’ requires two random accesses,

e.g., first access obtains the 𝑃𝑛𝑏𝑟1 list using 𝑛𝑏𝑟1’s ID and the second

access reads a 𝑞𝑖, 𝑗 property from 𝑃𝑛𝑏𝑟1 . Second, although we do not

focus on updates in this paper, using edge IDs that contain positional

offsets has an important consequence for GDBMSs. Observe that

positional offsets that are used by GDBMSs are explicitly stored in

data structures. Therefore, when deletions happen, we need to leave

gaps in adjacency lists and recycle them when insertions happen.

This may leave many gaps in adjacency lists because to recycle a

list-level offset, the system needs to wait for another insertion into

the same adjacency list, which may be infrequent.

Our single-indexed property pages addresses these two issues

(Figure 5). We store 𝑘 property lists (by default 128) in a property

page. In a property page, properties of the same list does not have to

be consecutively. However, because we use a small value of 𝑘 , these

properties are stored in close-by memory locations. We modify the

edge ID scheme above to use page-level positional offsets. This

has two advantages. First, given a positional offset, the system

can directly read an edge property (so we avoid the access to read

𝑃𝑛𝑏𝑟1 ). Second, the system can recycle a page-level offset whenever

any one of the k lists get a new insertion. For reference, Figure 5

shows the single-indexed property pages in the forward direction

for since property of edges with label FOLLOWS when 𝑘=2.

5 COLUMNAR COMPRESSION
Compression and query processing on compressed data are widely

used in columnar RDBMSs. We start by reviewing techniques that

apply directly to GDBMSs and are not novel. We then discuss the

2
If we use the backward property CSR, the second component would instead be the

destination vertex ID.
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cases when we can compress the new vertex and edge ID schemes

from Section 4. Finally, we review existing NULL compression

schemes from columnar RDBMSs [1, 2] and enhance one of them

with Jacobson’s bit vector index to make it suitable for GDBMSs.

5.1 Directly Applicable Techniques
Recall our Desideratum 2 that because access to vertex properties

cannot be localized and because many adjacency lists are very

short, the compression schemes that are suitable for in-memory

GDBMSs need to either avoid decompression completely or support

decompressing arbitrary elements in a block in constant time. This

is only possible if the elements are encoded in fixed-length codes
instead of variable-length codes.We review dictionary encoding and

leading 0 suppression, which we integrated in our implementation

and refer readers to references [2, 20, 36] for details of other fixed-

length schemes, such as frame of reference.

Dictionary encoding: This is perhaps the most common encoding

scheme to be used in RDBMSs [2, 63, 68].This schememaps a domain

of values into compact codes using a variety of schemes [2, 23, 68],

some producing variable-length codes, such as Huffmann encoding,

and others fixed-length codes [2]. We use dictionary encoding to

map a categorical edge or vertex property 𝑝 , e.g., gender property

of PERSON vertices in LDBC SNB dataset, that takes on 𝑧 different

values to ⌈𝑙𝑜𝑔2(𝑧)/8⌉ bytes (we pad 𝑙𝑜𝑔2(𝑧) bits with 0s to have a

fixed number of bytes).

Leading 0 Suppression: This scheme omits storing leading zero

bits in each value of a given block of data [9]. We adopt a fixed-

length variant of this for storing components of edge and vertex IDs,

e.g., if the maximum size of a property page is 𝑡 , we use ⌈𝑙𝑜𝑔2(𝑡 )/8⌉
many bytes for the page-level positional offset of edge IDs.

5.2 Factoring Out Edge/Vertex ID Components
Our vertex and edge ID schemes from Sections 4 decompose the

IDs into many small components, which can be factored out when

the data depicts some structure (Desideratum 3). This allows com-

pression without the need to decompress while scanning. Recall

that the ID of an edge 𝑒 is a triple (edge label, source/destination

vertex ID, page-level positional offset) and the ID of a vertex 𝑣 is

a pair (vertex label, label-level positional offset). Recall also that

GDBMSs store (edge ID, neighbour ID) pairs in adjacency lists. First,

the vertex IDs inside the edge ID can be omitted because this is the

neighbour vertex ID, which is already stored in the pairs. Second

edge labels can be omitted because we cluster our adjacency lists

by edge label. The only components that need to be stored are: (i)

positional offset of the edge ID; and (ii) vertex label and positional

offset of neighbour vertex ID. When the data depicts some structure,

we can further factor out some of these components as follows:

• Edges do not have properties: Often, edges of a particular label
do not have any properties and only represent the relationships

between vertices. For example, 10 out of 15 edge labels in LDBC

SNB do not have any properties. In this case, edges need not be

identifiable, as the system will not access their properties. We

can therefore distinguish two edges by their neighbour ID and

edges with the same IDs are simply replicas of each other. Hence,

we can completely omit storing the positional offsets of edge IDs.

• Edge label determines neighbour vertex label. Often, edge labels
in the graph are between a single source and destination vertex

edge e

Do not store 
positional offsets 

Store positional 
offsets 

single 
cardinality ?

has 
properties ?

no yes

yes no

Figure 6: Decision tree for storing page-level positional
offsets of edges in adjacency lists.

label, e.g., Knows edges in social networks are between Person
nodes. In this case, we can omit storing the vertex label of the

neighbour ID.

• Single cardinality edges: Recall from Section 4.1.2 that the proper-

ties for single cardinality edges can be stored in vertex columns.

So we can directly read these properties by using the source

or destination vertex ID. So, the page-level positional offsets of

these edges can be omitted.

Figures 6 shows our decision tree to decide when to omit storing

the page-level positional offsets in edge IDs.

5.3 NULL and Empty List Compression
Edge and vertex properties can often be quite sparse in real-world

graph data. Similarly, many vertices can have empty adjacency

lists in CSRs. Both can be seen as different columnar structures

containing NULL values. Abadi in reference [1] describes a design

space of optimized techniques for compressing NULLs in columns.

All of these techniques list non-NULL elements consecutively in a

‘non-NULL values column’ and use a secondary structure to indicate

the positions of these non-NULL values. The first technique in

Abadi’s paper, lists positions of each non-NULL value consecutively,

which is suitable for very sparse columns, e.g., with > 90% NULLs.

Second, for dense columns, lists non-NULL values as a sequence of

pairs, each indicating a range of positions with non-NULL values.

Third, for columns with intermediate sparsity, uses a bit vector to

indicate if each location is NULL or not. The last technique is quite

compact and requires only 1 extra bit per each element in a column.

However, none of these techniques are directly applicable to

GDBMSs as they do not allow constant-time access to non-NULL

values (Desideratum 2). To support constant-time access to a non-

NULL value at position 𝑝 , the secondary structure needs to support

two operations in constant time: (i) check if 𝑝 is NULL or not; and

(ii) if it is non-NULL, compute the rank of 𝑝 , i.e., the number of

non-NULL values before 𝑝 .

Abadi’s third design, that uses a bit vector, already supports

checking if the value at 𝑝 is NULL. To support rank queries, we

enhance this design with a simplified version of Jacobson’s bit

vector index [30, 31]. Figure 7 shows this design. In addition to

the array of non-NULL values and the bit-string, we store prefix

sums for each 𝑐 (16 by default) elements in a block of a column,

i.e., we divide the block into chunks of size 𝑐 . The prefix sum holds

the number of non-NULL elements before the current chunk. We

also maintain a pre-populated static 2D bit-string-position-count
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finding value at 9 :
... ... ... ...

0 1 1 2

0 0 1 2

0 1 2 3

... ... ... ...

Prefix sum-based NULL Compressed block

notNull values

bitStrings

prefix sums

0100b 0111b 0110b 0011b

0 1 4 6

7 6 3 2 8 11 2 3

Uncompressed block
9876543210 10 11 12 13 14 15

...

7 6 3 2 8 11 2 3 5

0101b
0110b
0111b

0 1 2 3

chunkIdx = 2
position of element in chunk (i) = 1

position in notNull values array = 4 + 0 = 4 Bit position to index Map

Figure 7: NULL compression using a simplified Jacobson’s
bit vector rank index with chunk size 4.

map 𝑀 with 2
𝑐 ∗ 𝑐 cells. 𝑀[𝑏, 𝑖] is the number of 1s before the

𝑖’th bit of a c-length bit string 𝑏. Let 𝑝 be the offset which is non-

NULL and 𝑏 the c-length bit string chunk in the bit vector that 𝑝

belongs to, and 𝑝𝑠 the array storing prefix sums in a block. Then

rank(𝑝) = 𝑝𝑠[𝑝/𝑐] +𝑀[𝑏, 𝑝 mod 𝑐].

The choice of 𝑐 affects how big the pre-populated map is. A

second parameter in this scheme is the number of bits𝑚 used for

each prefix sum value, which determines how large a block we are

compressing and the overhead this scheme has for each element.

For an arbitrary𝑚,𝑐 , we require: (i) 2𝑐 ∗𝑐 ∗ ⌈log(𝑐)/8⌉ byte size map,

because the map has 2
𝑐 ∗𝑐 cells and needs to store a log(𝑐)-bit count

value in each cell; (ii) we can compress a block of size 2
𝑚
; and (iii)

we store one prefix sum for each 𝑐 elements, so incur a cost of𝑚/𝑐

extra bits per element. By default we choose𝑚 = 16, 𝑐 = 16. We

require 2
𝑐 ∗ 𝑐 ∗ 1 = 1MB-size map, can compress 2

𝑚
= 64K blocks,

and incur𝑚/𝑐 = 1 extra bit overhead for each element, so increase

the overhead of reference [1]’s scheme from 1 to only 2 bits per

element (but provide constant time access to non-NULL values).

6 LIST-BASED PROCESSING
We next motivate our list-based processor by discussing limitations

of traditional Volcano-style tuple-at-a-time processors and block-

based processors of columnar RDBMSs when processing n-n joins.

Example 2. Consider the following query. P, F, S, and O abbreviate
PERSON, FOLLOWS, STUDYAT, and ORGANISATION.

MATCH (a:P)−[:F]→(b:P)−[:F]→(c:P)−[:S]→(d:O)
WHERE a.age > 50 and d.name = "UW" RETURN *

Consider a simple plan for this query shown in Figure 8, which is

akin to a left-deep plan in an RDBMS, on a graphwhere FOLLOWS are
n-n edges and STUDYAT edges have single cardinality. Volcano-style
tuple-at-a-time processing [22], which someGDBMSs adopt [41, 47],

is efficient in terms of how much data is copied to the intermediate

tuple. Suppose the scan matches a to 𝑎1 and 𝑎1 extends to 𝑘1 many

b’s, 𝑏1 . . . 𝑏𝑘1 , and each 𝑏𝑖 extends to 𝑘2 many c’s to 𝑏𝑖𝑘2 ..., 𝑏(𝑖+1)𝑘2
(let us ignore the d extension for now). Although this generates

𝑘1 × 𝑘2 tuples, the value 𝑎1 would be copied only once to the tuple.

a

SCAN JOIN jo1

a b

FILTER
a.age  
> 50 

FILTER
d.name  

= “UW”

JOIN jo2

b c

JOIN jo2

c d

List Group 1 List Group 2 List Group 3

a

Scan ListExtend

a b

Filter
a.age  
> 50 b c

ColumnExtend

c d

ListExtend

Figure 8: Query plan for the query in Example 2.

This is an important advantage for processing n-n joins. However,

Volcano-style processors are known to achieve low CPU and cache

utility as processing is intermixed with many iterator calls.

Column-oriented RDBMSs instead adopt block-based proces-

sors [10, 29], which process an entire block at a time in operators.

Block sizes are fixed length, e.g. 1024 tuples [11, 17]. While pro-

cessing blocks of tuples, operators read consecutive memory lo-

cations, achieving good cache locality, and perform computations

inside loops over arrays which is efficient on modern CPUs. How-

ever, traditional block-based processors have two shortcomings for

GDBMSs. (1) For n-n joins, block-based processing requires more

data copying into intermediate data structures than tuple-at-a-time

processing. Suppose for simplicity a block size of 𝑘2 and 𝑘1<𝑘2.

In our example, the scan would output an array 𝑎 : [𝑎1], the first

join would output 𝑎 : [𝑎1, ..., 𝑎1], 𝑏 : [𝑏1, ..., 𝑏𝑘1 ] blocks, and the sec-

ond join would output 𝑎 : [𝑎1, ..., 𝑎1], 𝑏 : [𝑏1, ..., 𝑏1], 𝑐 : [𝑐1, ..., 𝑐𝑘2 ],

where for example the value 𝑎1 gets copied 𝑘2 times into intermedi-

ate arrays. (2) Traditional block-based processors do not exploit the

list-based data organization of GDBMSs. Specifically, the adjacency

lists that are used by join operators are already stored consecutively

in memory, which can be exploited to avoid materializing these

lists into blocks.

We developed a new block-based processor called list-based pro-
cessor (LBP), which we next describe. LBP uses factorized represen-
tation of intermediate tuples [8, 51, 52] to address the data copying

problem and uses block sizes set to the lengths of adjacency lists in

the database, to exploit list-based data storage in GDBMSs.

6.1 Intermediate Tuple Set Representation
Traditional block-based processors represent intermediate data as a

set of flat tuples in a single group of blocks/arrays. In our example

we had three variables a, b, and c corresponding to three arrays.

The values at position 𝑖 of all arrays form a single tuple. Therefore

to represent the tuples that are produced by n-n joins, repetitions

of values are necessary. To address these repetitions we adopt a

factorized tuple set representation scheme [52]. Instead of flat tuples,

factorized representation systems represent tuples as unions of

Cartesian products. For example, the 𝑘2 flat tuples [(𝑎1, 𝑏1, 𝑐1) ∪
(𝑎1, 𝑏1, 𝑐2) ∪ ... ∪ (𝑎1, 𝑏1, 𝑐𝑘2 )] from above can be represented more

succinctly in a factorized form as: [(𝑎1) × (𝑏1) × (𝑐1 ∪ ... ∪ 𝑐𝑘2 )].

To adopt factorization in block-based processing, we instead use

multiple groups of blocks, which we call list groups, to represent

intermediate data. Each list group has a curIdx field and can be in

one of two states:

• Flat: If curIdx ≥ 0, the list group is flattened and represents a

single tuple that consists of the curIdx’th values in the blocks.

• Unflat list of tuples: If curIdx =−1, the list groups represent as
many tuples as the size of the blocks it contains.

We call the union of list groups intermediate chunk, which repre-

sents a set of intermediate tuples as the Cartesian product of each

tuple that each list group represents.
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a1 a2 ... a1024
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c.ID
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mask
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mask

List Group 1 List Group 2 List Group 3
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a.ID

a.age
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c.ID

d.ID
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curIdx = 0

curIdx = 1

curIdx = -1

Figure 9: Intermediate chunk for the query in Example 2.
The first two list groups are flattened to single tuples, while

the last one represents 𝑘2 many tuples.

Example 3. Figure 9 shows an intermediate chunk, that consists
of three list groups. The first two groups are flattened and the last
is unflat. In its current state, the intermediate chunk represents 𝑘2
intermediate tuples as: (𝑎1, 51) × (𝑏2) × ((𝑐1, 𝑑1) ∪ ... ∪ (𝑐2, 𝑑2)).

In addition, instead of using fixed-length blocks as in existing

block-based processors, the blocks in each group can take different

lengths, which are aligned to the lengths of adjacency lists in the

database. Aswe shortly explain, this allows us to avoidmaterializing

adjacency lists into the blocks.

6.2 Operators
We next give a description of the main relational operators we

implemented to process intermediate chunks in LBP.

Scan: Scans are the ame as before and read a fixed size (1024 by

default) nodeIDs into a block in a list group.

ListExtend and ColumnExtend: In contrast to a single Join oper-

ator that implements index nested loop join algorithm using the

adjacency list indices, such as Expand of Neo4j, we have two joins.

ListExtend is used to perform joins from a node, say, 𝑎 to nodes

𝑏 over 1-n or n-n edges 𝑒 . The input list group 𝐿𝐺𝑎 that holds the

block of 𝑎 values can be flat or unflat. If 𝐿𝐺𝑎 is not flat, ListExtend
first flattens it, i.e., sets the curIdx field of the list group to 0. It

then loops through each 𝑎 value, say, 𝑎ℓ , and extends it to the set of

𝑏 and 𝑒 values using 𝑎ℓ ’s adjacency list𝐴𝑑 𝑗𝑎ℓ . The blocks holding 𝑏

and 𝑒 values are put to a new list group, 𝐿𝐺𝑏 . This allows factoring

out a list of 𝑏 and 𝑒 values for a single 𝑎 value. The lengths of all

blocks in 𝐿𝐺𝑏 , including those storing 𝑏 and 𝑒 as well as blocks

that may be added later, will be equal to the length of 𝐴𝑑 𝑗𝑎ℓ . This

contrasts with fixed block sizes in existing block-based processors.

In addition, we exploit that 𝐴𝑑 𝑗𝑎ℓ already stores 𝑏 and 𝑒 values as

lists, and do not copy these to the intermediate chunk. Instead, the

𝑏 and 𝑒 blocks simply points to 𝐴𝑑 𝑗𝑎ℓ .

ColumnExtend is used to perform 1-1 or n-1 joins. We call the

operator ColumnExtend because recall from Section 4.1.2 that we

store such edges in vanilla vertex columns. Suppose now that each

𝑎 can extend to at most one 𝑏 node. ColumnExtend expects a block

of unflat 𝑎 values. That is, it expects 𝐿𝐺𝑎 to be unflat and adds

two new blocks into 𝐿𝐺𝑎 , for storing 𝑏 and 𝑒 , that are of the same

length as 𝑎’s block (so unlike ListExtend does not create a new

list group). Inside a for loop, ColumnExtend copies the matching 𝑒

and 𝑏 of each 𝑎 from the vertex column to these two blocks. Note

that because each 𝑎 value has a single 𝑏 and 𝑒 value, these values

do not need to be factored out.

Filter: LBP requires a more complex filter operator than those in

existing block-based processors. In particular, in traditional block

based processors, binary expressions, such as a comparison expres-

sion, can always assume that their inputs are two blocks of values.

Instead, now binary expressions need to operate on three possi-

ble value combinations: two flat, two lists or one list and one flat,

because any of the two blocks can now be in a flattened list group.

Group By And Aggregate: We omit a detailed description here

and refer the reader to our code base [25]. Briefly, similar to Filter,
Group By And Aggregate needs to consider whether the values

it should group by or aggregate are flat or not, and performs a

group by and aggregation on possibly multiple factorized tuples.

Factorization allows LBP to sometimes perform fast group by and

aggregations, similar to prior techniques that compute aggrega-

tions on compressed data [2, 60]. For example, count(*) simply

multiplies the sizes of each list group to compute the number of

tuples represented by each intermediate chunk it receives.

Example 4. Continuing our example, the three list groups in Fig-
ure 9 are an example intermediate chunk output by the ColumnExtend
operator in the plan from Figure 8. In this, the initial Scan and
Filter have filled the 1024-size 𝑎 and 𝑎.𝑎𝑔𝑒 blocks in 𝐿𝐺1. The first
ListExtend has: (i) flattened 𝐿𝐺1 to tuple (𝑎1, 51); and (ii) filled a
block of 𝑘1 𝑏 values in a new list group 𝐿𝐺2. The second ListExtend
has (i) flattened 𝐿𝐺2 and iterated over it once, so its curIdx field is 1,
and 𝐿𝐺2 now represents the tuple (𝑏2); and (ii) has filled a block of 𝑘2
𝑐 values in a new list group 𝐿𝐺3. Finally, the last ColumnExtend fills
a block of 𝑘2 𝑑 values, also in 𝐿𝐺3, by extending each 𝑐 𝑗 value to one
𝑑 𝑗 value through the single cardinality STUDY_AT edges.

7 UPDATES AND QUERY OPTIMIZATION
Although we do not focus on handling updates and query opti-

mization within the scope of this paper, these components require

further considerations in a complete integration of our techniques.

As in columnar RDBMSs, the columnar storage techniques we cov-

ered are read-optimized and necessarily add several complexities to

updates [60]. First recall from Section 4.1.1 that CSR data structure

for storing adjacency list indexes are effectively sorted structures

that are compressed by run-length encoding. So handling deletions

or insertions requires resorting the CSRs and recalculating the CSR

offsets. Insertion of edge properties in single-directional property

pages are append only and do not require any sorting. Insertions to

vertex columns are also simple as these too are unsorted structure.

However, deletions of nodes or edges, require leaving gaps in ver-

tex columns and single-directional property pages. This requires

keeping track of these gaps and reusing them for new insertions.

Note that this is also how node deletions are handled in Neo4j [46].

Finally, the null compression scheme we adopted requires three

updates upon insertion and deletions: (i) changing the bit values

in the bitstrings; (ii) re-calculating prefix sum values for prefixes

after the location of update; and (iii) shifting the non-NULL ele-

ments array. These added complexities are an inherent trade off

when integrating read-optimized techniques and can be mitigated

by several existing techniques, like bulk updates or keeping a write-

optimized second storage that keeps track of recent writes, which

are not immediately merged. Positional delta trees [28] or C-Store’s

write-store are examples [57] of the latter technique.

Two of our techniques also require additional considerations

whenmodifying the optimizer. First, our use of factorized list groups

changes the size of tuples that are passed between operators, as the

intermediate tuples are now compressed. When assigning costs to
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plans, the compressed sizes, instead of the flattened sizes of these

tuples should be considered. In addition, scans of properties that

are stored in, say forward single-directional property pages, behave

differently when the properties are scanned in the forward direction

(e.g., after a join that has used the forward adjacency lists) vs the

backward direction. The former leads to sequential reads while the

latter to random reads. The optimizer should assign costs based on

this criterion as well. We leave a detailed study of how to handle

updates and optimize queries under our techniques to future work.

8 EVALUATIONS
We integrated our columnar techniques into GraphflowDB, an in-

memory GDBMS written in Java. We refer to this version of Graph-

flowDB as GF-CL (Columnar List-based). We based our work on the

publicly available version here [24], which we will refer to as GF-RV
(Row-oriented Volcano). GF-RV uses 8 byte vertex and edge IDs

and adopts the interpreted attribute layout to store edge and vertex

properties. GF-RV also partitions adjacency lists by edge labels and

stores the (edge ID, neighbour ID) pairs inside a CSR. We present

both microbenchmark experiments comparing GF-RV and GF-CL
and baseline experiments against Neo4j, MonetDB, and Vertica

using LDBC and JOB benchmarks. Due to space constraints our

experiment demonstrating benefits of vertex columns for single

cardinality edges appears in the longer version of our paper [26].

8.1 Experimental Setup
Hardware Setup: For all our experiments, we use a single machine

that has two Intel E5-2670 @ 2.6GHz CPUs and 512 GB of RAM.

We only use one logical core. We set the maximum size of the JVM

heap to 500 GB and keep JVM’s default minimum size.

Datasets: Our LBP is designed to yield benefits under join queries

over 1-n and n-n relationships. Our storage compression techniques

exploit some structure in the dataset and NULLs. These techniques

are not designed for datasets that do not depict structure, e.g., a

highly heterogenous knowledge graph, such as DBPedia.We choose

the following datasets and queries that satisfy these requirements:

LDBC:We generated the LDBC social network data [18] using scale

factors 10 and 100, which we refer to as LDBC10 and LDBC100,

respectively. In LDBC, all of the edges and edge and vertex proper-

ties are structured but several properties and edges are very sparse.

LDBC10 contains 30M vertices and 176.6M edges while LDBC100

contains 1.77B edges and 300M vertices. Both datasets contain 8

vertex labels, 15 edge labels and 34 (29 vertex, 5 edge) properties.

JOB:Weused the IMDbmovie database and the JOB benchmark [35].

Although the workload has originally been created to study opti-

mizing join order selection, the dataset contains several n-n, 1-n,

and 1-1 relationships between entities, like actors, movies, and com-

panies, and structured properties, some of which contain NULLs.

This makes it suitable to demonstrate the benefits from our storage

and compression techniques. JOB also contains join queries over

n-n relationships, making it suitable to demonstrate benefits of LBP.

We created a property graph version of this database and workload

as follows. IMDb contains three groups of tables: (i) entity tables
representing entities, such as actors (e.g., name table), movies, and

companies; (ii) relationship tables representing n-n relationships

between the entities (e.g., the movie_companies table represents
relationships between movies and companies); and (iii) type tables,

which denormalize the entity or relationship tables to indicate the

types of entities or relationships. We converted each row of an

entity table to a vertex. Let 𝑢 and 𝑣 be vertices representing, re-

spectively, rows 𝑟𝑢 and 𝑟𝑣 from tables 𝑇𝑢 an 𝑇𝑣 . We added two sets

of edges between 𝑢 and 𝑣 : (i) a foreign key edge from 𝑢 to 𝑣 if the

primary key of row 𝑟𝑢 is a foreign key in row 𝑟𝑣 ; (ii) a relationship
edge between 𝑢 to 𝑣 if a row 𝑟ℓ in a relationship table 𝑇ℓ connects

row 𝑟𝑢 and 𝑟𝑣 . The final dataset can be found in our codebase [25].

FLICKR and WIKI: To enhance our microbenchmarks further, we use

two additional datasets from the popular Konect graph sets [33] cov-

ering two application domains: a Flickr social network (FLICKR) [42]
and a Wikipedia hyperlink graph between articles of the German

Wikipedia (WIKI) [34]. Flickr graph has 2.3M nodes and 33.1M

edges while Wikipedia graph has 2.1M nodes and 86.3M edges.

Both datasets have timestamps as edge properties.

In each experiment, we ran our queries 5 times consecutively

and report the average of the last 3 runs. We did not observe large

variances in these experiments. Across all of the LDBC and JOB

benchmark queries we report, the median difference between the

minimum and maximum of the 3 runs we report was 1.02% and the

largest was 25%, which was a query in which the maximum run

was 24ms while the minimum was 19ms.

8.2 Memory Reduction
We first demonstrate the memory reduction we get from the colum-

nar storage and compression techniques we studied using LDBC100

and IMDb.We start with GF-RV and integrate one additional storage
optimization step-by-step ending with GF-CL:

(i) +COLS: Stores vertex properties in vertex columns, edge proper-

ties in single-directional property pages, and single cardinality

edges in vertex columns (instead of CSR).

(ii) +NEW-IDS: Introduces our new vertex and edge ID schemes and

factors out possible ID components (recall Section 5.2).

(iii) +0-SUPR: Implements leading 0 suppression in the components

of vertex and edge IDs in adjacency lists.

(iv) +NULL: Implements NULL compression of empty lists and vertex

properties based on Jacobson’s index.

Table 2a shows how much memory each component of the sys-

tem as well as the entire system take after each optimization. On

LDBC, we see 2.96x and 2.74x reduction for storing forward and

backward adjacency lists, respectively. We reduce memory signifi-

cantly by using the new ID scheme that factors out components,

such as edge and vertex labels, and using small size integers for

positional offsets. We also see a 1.58x reduction by storing vertex

properties in columns, which, unlike interpreted attribute layout,

saves on storing the keys of the properties explicitly. The modest

memory gains in +COLS for storing adjacency lists is due to the fact

that 8 out of 15 edge labels in LDBC SNB are single cardinality and

storing them in vertex columns is cheaper than in CSRs, as we do

not need CSR offsets. We see a reduction of 3.82x when storing edge

properties in single-directional property pages. This is primarily

because GF-RV stores a pointer for each edge, even if the edges with

a particular label have no properties. GF-CL stores no columns for

these edges, so incurs no overheads and avoids storing the keys

of the properties explicitly. We see modest benefits in NULL com-

pression since empty adjacency lists are infrequent in LDBC100
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Table 2: Memory reductions after applying one more
optimization on top of the configuration on the left.

(a) LDBC100
GF-RV +COLS +NEW-IDS +0-SUPR +NULL GF-CL

Vertex

Props.

31.40 19.87 19.87 19.87 19.28 -
+1.58x - - +1.03x 1.62x

Edge

Props.

7.92 2.07 2.07 2.07 2.05 -
+3.82x - - +1.01x 3.87x

F. Adj.

Lists

31.93 28.95 20.67 11.41 10.78 -
+1.10x +1.40x +1.81x +1.06x 2.96x

B. Adj.

Lists

31.29 31.07 24.93 13.10 11.41 -
+1.01x +1.25x +1.90x +1.15x 2.74x

Total (GB)

102.56 81.97 67.55 46.45 43.54 -
+1.25x +1.21x +1.45x +1.07x 2.36x

(b) IMDb
GF-RV +COLS +NEW-IDS +0-SUPR +NULL GF-CL

Vertex

Props.

2.54 1.98 1.98 1.98 1.96 -
+1.28x - - +1.01x 1.29x

Edge

Props.

2.81 1.63 1.63 1.63 0.90 -
+1.72x - - +1.83x 3.14x

F. Adj.

Lists

1.13 1.02 0.65 0.41 0.36 -
+1.10x +1.57x +1.57x +1.15x 2.96x

B. Adj.

Lists

1.10 1.10 0.76 0.50 0.49 -
+1.00x +1.45x +1.51x +1.01x 2.20x

Total (GB)

7.57 5.74 5.02 4.53 3.72 -
+1.32x +1.14x +1.11x +1.22x 2.03x

and 26 of 29 vertex properties and all of the edge properties con-

tain no NULL values. Overall, we obtained a reduction of 2.36x on

LDBC100, reducing the memory cost from 102.5GB to 43.5GB.

The reductions on IMDb are shown in Table 2b and are broadly

similar to LDBC. For example, we see 2.96x and 2.2x reduction

factors in forward and backward lists, which is comparable to that

of LDBC. However, there are two main differences. First, we save

more by compressing the edge properties using NULL compression,

because 7 of 12 edge properties in IMDb have more than 50% null

values. Second, instead of a 3.82x reduction by storing edge proper-

ties using single directional property columns and single cardinality

edges in vertex columns (+COLS column of Edge Props row), the
factor is now 1.72x. This is because all of the edge properties in

LDBC are 4-byte integers. Instead, IMDb has primarily string edge

properties (8 out of 12 of the edge properties), so these take more

space compared to integers. Hence, the storage savings per byte of

actual data is higher in case of LDBC. Overall, the total reduction

factor is 2.03x reducing the memory overheads from 7.57G to 3.72G.

8.3 Single-Directional Property Pages
We next demonstrate the query performance benefits of storing

edge properties in single-directional property pages. We configure

GraphflowDB in two ways: (i) EDGE COLS: Stores edge properties

in an edge column in a randomized way as edges are given random

edge IDs; (ii) PROP PAGES: Edge properties are stored in forward-

directional property pages with 𝑘=128 . In the longer version of

our paper [26], we test sensitivity of 𝑘 that demonstrates read

performance from property pages in our datasets are similar until

𝑘=512 and slows down for larger value of 𝑘 .

Table 3: Runtime (in secs) of k-hop (H) queries when using
property pages (PAGE𝑃 ) vs edge columns (COL𝐸 ).

LDBC100 WIKI FLICKR

1H 2H 1H 2H 1H 2H

P𝐹

COL𝐸 0.55 65.22 2.97 42.92 1.88 888.30

PAGE𝑃
0.16 34.22 0.96 16.48 0.42 189.39

3.4x 1.9x 3.1x 2.6x 4.5x 4.7x

P𝐵

COL𝐸 1.23 131.01 6.33 99.28 2.40 1009.84

PAGE𝑃
1.29 134.43 6.10 91.75 2.25 1183.14

0.9x 1.0x 1.0x 1.1x 1.1x 0.9x

We use LDBC100, WIKI, and FLICKR datasets. As our workload,
we use 1- and 2-hop queries, i.e., queries that enumerate all edges

and 2-paths, with predicates on the edges. For LDBC, the paths

enumerate Knows edges (WIKI and FLICKR contain only one edge

label). 1-hop query compares the edge’s timestamp for WIKI and

FLICKR and the creationDate property for LDBC to be greater

than a constant. 2-hop query compares the property of each query

edge to be greater than the previous edge’s property. Since WIKI
contains prohibitivelymany 2-hopswe put a predicate on the source

and destination nodes tomake queries finish within reasonable time.

For each query and configurations, we consider two plans: (i) the

forward plan that matches vertices from left to right in forward

direction; (ii) the backward plan that matches in reverse order.

Forward plans perform sequential reads of properties under

PROP-PAGES, achieving good CPU cache locality. Therefore, they

are expected to be more performant than backward plans under

PROP-PAGES as well as both the plans plans under EDGE COLS,
which all lead to random reads. We also expect backward plans

to behave similarly under both configurations. Table 3 shows our

results. Observe that forward plans under PROP-PAGES is between

1.9x to 4.7x faster than the forward plans under EDGE COLS and are
also faster than the backward plans under PROP-PAGES. In contrast,

the performance of both backward plans are comparable. This is

because neither edge columns nor forward-directional property

pages provide any locality for accessing properties in order of

backward adjacency lists. This confirms our claim in Section 4.2

that PROP-PAGES is a better design than using vanilla edge columns.

8.4 Null Compression
We demonstrate the memory/performance trade-off of our NULL

compression scheme on sparse vertex property columns. We create

multiple versions of the LDBC100, with the creationDate prop-

erty of Comment vertices containing different percentage of NULL
values. LDBC100 contains 220M Comment vertices, so our column

has 220M entries. We use the following 1-hop query: MATCH

(a:Person)−[e:Likes]→(b:Comment) RETURN b.creationDate. This
query is evaluated with a simple plan that scans a, extends to

b, and then a sink operator that reads b.creationDate. We com-

pare the query performance and the memory cost of storing the

creationDate column, when it is stored in three different ways:

(i) J-NULL compresses the column using Jacobson’s bit index with

default configuration (m=16, c=16); (ii) Vanilla-NULL is the vanilla
bit string-based scheme from reference [1]; and (ii) Uncompressed
stores the column in an uncompressed format. In the longer ver-

sion of our paper [26], we demonstrate a sensitivity analysis for
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Figure 10: Query performance and memory consumption
when storing a vertex property column as uncompressed,
compressed with Jacobson’s scheme, and the vanilla bit
string scheme from Abadi, under different density levels.

J-NULL running under different m and c values. This experiment

shows that read performance is insensitive to these parameters.

The memory overhead increases as𝑚 increases, albeit marginally.

So a reasonable choice is picking𝑚 = 𝑐 = 16, which incurs 1 bit

extra overhead per element for storing prefix sums.

Figure 10 shows thememory usage and query performance under

three different configurations. Recall that with default configuration

J-NULL requires slightly more memory than Vanilla-NULL, 2 bits
per element instead of 1 bit. As expected the performance of J-NULL
is slightly slower than Uncompressed, between 1.19x and 1.51x,

but much faster than Vanilla-NULL, which was >20x slower than

J-NULL and is therefore omitted in Figure 10. Interestingly, when

the column is sparse enough (with >70% NULL values), J-NULL can
even outperform Uncompressed. This is because when the column

is very sparse, accesses are often to NULL elements, which takes

one access for reading the bit value of the element. When the bit

value is 0, iterators return a global NULL value which is likely to be

in the CPU cache. Instead, Uncompressed always returns the value

at element’s cell, which has a higher chance of a CPU cache miss.

8.5 List-based Processor
We next present experiments demonstrating the performance ben-

efits of LBP against a traditional Volcano-style tuple-at-a-time pro-

cessor, which are adopted in existing systems, like Neo4j [47] or

MemGraph [40]. LBP has three advantages over traditional tuple-at-

a-time processor: (1) all primitive computations over data happen

inside loops as in block-based operators; (2) the join operator can

avoid copies of edge ID-neighbour ID pairs into intermediate tuples,

exploiting the list-based storage; and (3) we can perform group-by

and aggregation operations directly on compressed data.We present

two separate sets of experiments that demonstrate the benefits from

these three factors. To ensure that our experiments only test dif-

ferences due to query processing techniques, we integrated our

columnar storage and compression techniques into GF-RV (recall
that this is GraphflowDB with row-based storage and Volcano-style

processor). We call this version GF-CV, for Columnar Volcano.
We use LDBC100, Wikipedia, and Flickr datasets. In our first

experiment, we take 1-, 2-, and 3-hop queries (as in Section 8.3,

we use the Knows edges in LDBC100), where the last edge in the

path has a predicate to be greater than a constant (e.g., e.date >

𝑐). For both GF-CV and GF-CL, we consider the standard plan that

Table 4: Runtime (ms) of GF-RV and GF-CL (LBP) plans.

1-hop 2-hop 3-hop

LDBC100

FILTER
GF-CV 24.6 1470.5 40252.4

GF-CL
7.7 116.2 2647.3

3.2x 12.7x 15.2x

COUNT(*)
GF-CV 13.4 241.9 6947.3

GF-CL
4.2 18.9 357.9

3.2x 12.8x 19.4x

FLICKR

FILTER
GF-CV 32.6 1300.0 14864.0

GF-CL
12.2 95.3 1194.7

2.7x 13.7x 12.4x

COUNT(*)
GF-CV 35.3 519.2 4162.5

GF-CL
16.9 23.4 51.7

2.1x 21.4x 80.6x

WIKI

FILTER
GF-CV 35.8 4500.2 236930.2

GF-CL
11.9 1192.5 20329.3

2.9x 3.8x 11.7x

COUNT(*)
GF-CV 32.7 1745.2 109000.2

GF-CL
19.0 27.6 120.4

1.7x 63.2x 905.1x

scans the left most node, extends right to match the entire path,

and a final Filter on the date property of the last extended edge.

A major part of the work in these plans happen at the final join

and filter operation, therefore these plans allow us to measure the

performance benefits of performing computations inside loops and

avoiding data copying in joins. Our results are shown in the FILTER

rows of Table 4. We see that GF-CL outperforms GF-CV by large

margins, between 2.7x and 15.2x.

In our second experiment, we demonstrate the benefits of per-

forming fast aggregations over compressed intermediate results.

We modify the previous queries by removing the predicate and

instead add a return value of count(*). We use the same plans as

before except we change the last Filter operator with a GroupBy
operator. Our results for aggregation are shown in the COUNT(*)

rows of Table 4. Observe that the improvements are much more sig-

nificant now, up to close to three orders of magnitude on Wiki (by

905.1x). The primary advantage of GF-CL is now that the counting

happens on compressed intermediate results.

8.6 Baseline System Comparisons
In our final experiment, we compare the query performance of

GF-CL against GF-RV, Neo4j, which is another row-oriented and

Volcano style GDBMSs, and two columnar RDBMSs, MonetDB and

Vertica, which are not tailored for n-n joins. Our primary goal is

to verify that GF-CL is faster than GF-RV also on an independent

end-to-end benchmark. We also aim to verify that GF-RV, on which

we base our work, is already competitive with or outperforms other

baseline systems on workloads containing n-n joins. We used the

SNB on LDBC10 and JOB, both of which contain n-n join queries.

We used the community version v4.2 of Neo4j GDBMS [47],

the community version 10.0 of Vertica [61] and MonetDB 5 server

11.37.11 [43]. We note that our experiments should not be inter-

preted as one system being more efficient than another. It is difficult

to meaningfully compare completely separate systems, e.g., all base-

line systems have many tunable parameters, and some have more
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Figure 11: Relative speedup/slowdown of the different
systems in comparison to GF-RV on LDBC10. The boxplots

show the 5th, 25th, 50th, 75th, and 95th percentiles.

efficient enterprise versions. For all baseline systems, we map their

storage to an in-memory filesystem, set number of CPUs to 1 and

disable spilling intermediate files to disk. We maintain 2 copies

of edge tables for Vertica and MonetDB, sorted by the source and

destination vertexIDs, respectively. For GF-RV and GF-CL, we use
the best left-deep plan we could manually pick, which was obvi-

ous in most cases. For example, LDBC path queries start from a

particular vertex ID, so the best join orders start from that vertex

and iteratively extend in the same direction. For Vertica, MonetDB,

and Neo4j, we use the better of the systems’ default plans and the

left-deep that is equivalent to the one we use in GF-RV and GF-CL.

8.6.1 LDBC. We use the LDBC10 dataset. GraphflowDB is a proto-

type system that implements parts of the Cypher language relevant

to our research, so lack several features that LDBC queries exercise.

The system currently has support for select-project-join queries

and a limited form of aggregations, where joins are expressed as

fixed-length subgraph patterns in the MATCH clause. We modified

the Interactive Complex Reads (IC) and Interactive Short Reads (IS)

queries from LDBC [18] in order to be able to run them. Specifically

GraphflowDB does not support variable length queries that search

for joins between a minimum and maximum length, which we set

to the maximum length to make them fixed-length instead, and

shortest path queries, which we removed from the benchmark. We

also removed predicates that check the existence or non-existence

of edges between nodes and the ORDER BY clauses. Our exact

queries can be found in the longer version of our paper [26].

Figure 11a shows the relative speedup/slowdown of the different

systems in comparison to GF-RV. We report individual runtime

numbers of all the queries in the longer version of our paper [26].

As expected, GF-CL is broadly more performant than GF-RV on

LDBC with a median query improvement factor of 2.6x. With the

exception of one query, which slows down a bit, the performance

of every query improves between 1.3x to 8.3x. The improvements

come from several optimizations but primarily from LBP and our

columnar storage. In GF-RV, scanning properties requires checking

equality on property keys, which are avoided in columnar storage,

so we observed large improvements on queries that produce large

intermediate results and perform filters, such as IC05. IC05 has 4 n-

n joins starting from a node and extending in the forward direction

and a predicate on the edges of the third join. GF-CL has several

advantages that become visible here. First, GF-CL’s LBP, unlike
GF-RV, does not copy any edge and neighbour IDs to intermediate

tuples. More importantly, LBP performs filters inside loops and

GF-CL’s single-indexed property pages provides faster access to the
edge properties that are used in the filter than GF-RV’s row-oriented
format. On this query, GF-RV takes 8.9s while GF-CL takes 1.6s.

As we expected, we also found other baseline systems to not be

as performant as GF-CL or GF-RV. In particular, Vertica, MonetDB,

and Neo4j have median slowdown factors of 13.1x, 22.8x, and 46.1x

compared to GF-RV. Although Neo4j performed slightly worse than

other baselines, we also observed that there were some queries

in which it outperformed Vertica and MonetDB (but not GF-RV or
GF-CL) by a large margin. These were queries that started from

a single node, had several n-n joins, but did not generate large

intermediate results, like IS02 or IC06. On such queries, GDBMSs,

both GraphflowDB and Neo4j, have the advantage of using join

operators that use the adjacency list indices to extend a set of partial

matches. This can be highly efficient if the partial matches that are

extended are small in number. For example, the first join of IC06

extends a single Person node, say 𝑝𝑖 , to its two-degree friends. In

SQL, this is implemented as joining a Person table with a Knows
table with a predicate on the Person table to select 𝑝𝑖 . In Vertica or

MonetDB, this join is performed using merge or hash joins, which

requires scanning both Person and Knows tables. Instead, Neo4j

and GraphflowDB only scan the Person table to find 𝑝𝑖 and then

extend 𝑝𝑖 to its neighbours, without scanning all Knows edges. For

this, GF-RV, GF-CL, and Neo4j take 333ms, 113ms, and 515ms, while

Vertica and MonetDB take 4.7s and 2.7s, respectively. We also found

that all baseline systems, including Neo4j, degrade in performance

on queries with many n-n joins that generate large intermediate

results. For example, on IC05 that we reviewed before, Vertica take

1 minute, MonetDB 3.25 minutes, while Neo4j took over 10 minutes.

8.6.2 JOB. JOB queries come in four variants and we used their

first variant. We converted the JOB queries to their Cypher equiv-

alent following our conversion of the dataset. Many of the JOB

queries returned aggregations on strings, such as min(name), where
name is a string column. Since Graphflow supports aggregations

only on numeric types, we removed these aggregations. Our final

queries can be found in the longer version of our paper [26].

Figure 11b shows the relative performance of different systems

in comparison to GF-RV. The individual runtime numbers of each

query can be found in the longer version of our paper [26]. Similar

to our LDBC results, we see GF-CL to improve the performance,

now by 3.1x. Again similar to LDBC, with the exception of one

query, we see consistent speed ups across all queries between 1.5x

and 28.8x. Different from LDBC, we also see queries on which

the improvement factors are much larger, i.e, >20x. In LDBC, the

largest improvement factor was 8.3x. This is expected as most of

the queries in JOB perform star joins while LDBC queries contained

path queries that start from a node with a selective filter. On path

queries, our plans start from a single node and extend in one direc-

tion, in which case only the last extension can truly be factorized,

so be in unflat form. This is because each ListExtend that we use

first flattens the previously extended node. Whereas on star queries,

multiple extensions from the center node can remain unflattened.

Therefore GF-CL’s plans can benefit more from LBP as they can

compress their intermediate tuples more. We also see that similar

to LDBC, GF-RV is more performant than the columnar RDBMSs.
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However, these systems are now more competitive. We noticed that

one reason for this is that on star queries, these systems’s default

plans are often bushy plans (27 out of 33 for MonetDB and 26 out

of 33 for Vertica), which produce fewer intermediate tuples than

GF-RV, which does not benefit from factorization and uses left-deep

plans. So these systems now benefit from bushy plans which they

did not in LDBC. In contrast, on LDBC, these systems would also

primarily use left-deep plans (only 2 out of 18 for MonetDB and 4

out of 18 for Vertica were bushy) because on these path queries, it is

better to start from a single highly filtered node table and join iter-

atively in a left-deep plan to match the entire path. Finally, similar

to LDBC, Neo4j is again least competitive of these baselines.

9 RELATEDWORK
Column stores [29, 57, 66, 67] are designed primarily for OLAP

queries that perform aggregations over large amounts of data. Work

on them introduced a set of storage and query processing tech-

niques which include use of positional offsets, schemes for com-

pression, block-based query processing, late materialization and

operations on compressed data, among others. A detailed survey

of these techniques can be found in reference [60]. This paper aims

to integrate some of these techniques into in-memory GDBMSs.

Existing GDBMSs and RDF systems usually store the graph topol-

ogy in a columnar structure. This is done either by using a variant of

adjacency list or CSR. Instead, systems often use row-oriented struc-

tures to store properties, such as an interpreted attribute layout [9].

For example, Neo4j [47] represents the graph topology in adjacency

lists that are partitioned by edge labels and stored in linked-lists,

where each edge record points to the next. Properties of each ver-

tex/edge are stored in a linked-list, where each property record

points to the next and encodes the key, data type, and value of the

property. JanusGraph too [6] stores edges in adjacency lists parti-

tioned by edge labels and properties as consecutive key-value pairs

(a row-oriented format). These native GDBMSs adopt Volcano-style

processors. In contrast, our design adopts columnar structures for

vertex and edge properties and a block-based processor. In addition,

we compress edge and vertex IDs and NULLs.

There are also several GDBMSs that are developed directly on

top of an RDBMS or another database system [54], such as IBM Db2

Graph [58], Oracle Spatial and Graph [54] and SAP’s graph data-

base [55]. These systems can benefit from the columnar techniques

in the underlying RDBMS, which are however not optimized for

graph storage and queries. For example, SAP’s graph engine uses

SAP HANA’s columnar-storage for edge tables but these tables do

not have CSR-like structures for storing edges.

GQ-Fast [38] implements a limited SQL called relationship queries

that support joins of tables similar to path queries, followed with

aggregations. The system stores n-n relationship in tables with CSR-

like indices and heavy-weight compression of lists and has a fully

pipelined query processor that uses query compilation. Therefore,

GQ-Fast studies how some techniques in GDBMSs, specifically joins

using adjacency lists, can be done in RDBMS. In contrast, we focus

on studying how some techniques from columnar RDBMSs can be

integrated into GDBMSs. We intended to but could not compare

against GQ-Fast because the system supports a very limited set of

queries (e.g., none of the LDBC queries are supported).

Several RDF systems also use columnar structures to store RDF

data. Reference [4] uses a set of columns, where each column store

is a set of (subject, object) pairs for a unique predicate. However,

this storage is not as optimized as the storage in GDBMSs, e.g.,

the edges between entities are not stored in native CSR or adja-

cency list format. Hexastore [62] improves on the idea of predicate

partitioning by having a column for each RDF element (subject,

predicate or object) and sorting it in 2 possible ways in B+ trees.

This is similar but not as efficient as double indexing of adjacency

lists in GDBMSs. RDF-3X [50] is an RDF system that stores a large

triple table that is indexed in 6 B+ tree indexes over each column.

Similarly, this storage is not as optimized as the native graph stor-

ages found in GDBMSs. Similar to our Guideline 3, reference [49]

also observes that graphs have structure, and certain predicates in

RDF databases co-exist together in a node. This is similar to the

property co-occurrence structure we exploit, and is exploited in the

RDF 3-X system for better cardinality estimation.

Several novel storage techniques for storing graphs are opti-

mized for write-heavy workloads, such as streaming. These works

propose data structures that try to achieve the sequential read ca-

pabilities of CSR while being write-optimized. Examples of this

include LiveGraph [65], Aspen [16], and LLAMA [39]. We focus

on a read-optimized system setting and use CSR to store the graph

topology but these techniques are complementary to our work.

Our list groups represent intermediate results in a factorized

form. Prior work on factorized representations in RDBMSs, specif-

ically FDB [7, 8], represents intermediate data as tries, and have

operators that transform tries into other tries. Unlike traditional

processors, processing is not pipelined and all intermediate results

arematerialized. Instead, operators in LBP are variants of traditional

block-based operators and perform computations in a pipelined

fashion on batches of lists/arrays of data. This paper focuses on

integration of columnar storage and query processing techniques

into GDBMSs and does not studies how to integrate more advanced

factorized processing techniques inside GDBMS.

10 CONCLUSIONS
Columnar RDBMSs are read-optimized analytical systems that have

introduced several storage and query processing techniques to im-

prove the scalability and performances of RDBMSs. We studied

the integration of such techniques into GDBMSs, which are also

read-optimized analytical systems. While some techniques can be

directly applied to GDBMSs, adaptation of others can be signifi-

cantly sub-optimal in terms of space and performance. In this paper,

we first outlined a set of guidelines and desiderata for designing the

storage layer and query processor of GDBMSs, based on the typical

access patterns in GDBMSs which are significantly different than

the typical workloads of columnar RDBMSs. We then presented

our design of columnar storage, compression, and query processing

techniques that are optimized for in-memory GDBMSs. Specifically,

we introduced a novel list-based query processor, which avoids

expensive data copies of traditional block-based processors and

avoids materialization of adjacency lists in blocks, a new data struc-

ture we call single-indexed property pages and an accompanying

edge ID scheme, and a new application of Jacobson’s bit vector

index for compressing NULL and empty lists.
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processing of graph data at scale. My Ph.D. thesis focused on graph analytical workloads,
which involve relational queries containing complex many-to-many joins that lead to an ex-
plosion in the size of intermediate relations. Traditional analytical DBMSs, were not optimized
for complex many-to-many joins. My thesis argues that DBMSs that optimize for graph ana-
lytical workloads need to integrate a suite of modern techniques, most important of which are:
(i) novel worst-case-optimal join algorithms; (ii) factorized query processing; and (iii) a flexible in-
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