
A model project for reproducible papers:
critical temperature for the Ising model on a square lattice

M. Dolfi, J. Gukelberger, A. Hehn, J. Imrǐska, K. Pakrouski, T. F. Rønnow, M. Troyer, I. Zintchenko∗

Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland and
Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

In this paper we present a simple, yet typical simulation in statistical physics, consisting of large
scale Monte Carlo simulations followed by an involved statistical analysis of the results. The purpose
is to provide an example publication to explore tools for writing reproducible papers. The simulation
estimates the critical temperature where the Ising model on the square lattice becomes magnetic to
be Tc/J = 2.26934(6) using a finite size scaling analysis of the crossing points of Binder cumulants.
In an Appendix and as supplementary material we provide the output of the simulations, the source
and binaries of the codes, and Python scripts used to generate all figures and results.

I. INTRODUCTION

The principle that scientific publications have to be
reproducible is a cornerstone of modern science. A the-
oretical paper typically contains all the steps required
to follow the arguments and arrive at the final result.
Experimental papers usually go to great lengths in de-
scribing the most important details and keep track of
workflow in sacrosanct lab notebooks. In computational
science the goal of reproducibility is harder to achieve.
Reasons are the complexity of computer systems, codes,
and analysis procedures and the absence of well estab-
lished community guidelines and wide-spread tools for
reproducibility.

To focus the discussion on comparison of procedures
and tools, we picked one simple, yet representative ex-
ample of a computer simulation in statistical physics.
Calculating the critical temperature of the classical Ising
model. The current manuscript already contains suffi-
cient details, codes, and scripts to reproduce all the pre-
sented numerical results and figures. However, reaching
this level of reproducibility required efforts that went far
beyond simply obtaining the results. Our goal for future
work is to use this paper as an example for a discussion
on how reproducibility can best be achieved.

The total computation time for a small system size is in
the order of several hours on a single core producing sev-
eral MB of raw output data. Including large system sizes
increases the accuracy of the results, but also the runtime
and the amount of data produced and one might need to
use large computer clusters. This allows to explore the
scalability of tools for reproducibility in computational
science.

II. MODEL

The Ising model dates back to 1920 when it was pro-
posed by Wilhelm Lenz as a mathematical model for fer-

∗ All authors contributed equally and are listed in alphabetical
order.

romagnetism and first analytically solved by his student
Ernst Ising in one dimension [1]. We will consider the
two-dimensional Ising model on a square lattice of size
L×L with periodic boundary conditions. It is described
by the Hamiltonian

H = −J
∑
〈i,j〉

σiσj . (1)

where the sum is over nearest neighbours, σi ∈ {−1,+1}
is the spin on site i and J is the coupling strength. In
the following we will focus on the ferromagnetic model
J > 0.

Below a critical temperature Tc the model shows mag-
netic ordering, whereas above Tc it remains unordered.
For the square lattice without an external field Tc is
known analytically [2]

Tc =
2J

ln(1 +
√

2)
≈ 2.269185. (2)

and provides a benchmark for our results.

III. METHODS

A Monte Carlo simulation using Wolff cluster up-
dates [3] is used to construct new system configurations,
employing the MT19937 Mersenne Twister pseudo ran-
dom number generator [4]. For each parameter set more
than 1280000 measurements are performed after discard-
ing 10% additional Wolff updates for thermalization; er-
ror estimates are done with binning analysis.

The critical temperature can be roughly estimated
from the connected susceptibility

〈χ〉β = βL2
(〈
m2
〉
− 〈|m|〉2

)
, (3)

where β = 1
kBT

and kB is the Boltzmann constant. The

average is taken over different configurations. 〈χ〉β has a

peak around Tc [5], which gives a first rough estimate.
The Binder cumulant

U2 = 〈m2〉/〈|m|〉2 (4)

2

2.15 2.20 2.25 2.30 2.35 2.40

Temperature T/J

100

101

102

103
Su

sc
ep

ti
bi

lit
y
χ

L = 8

L = 16

L = 32

L = 64

L = 128

L = 256

FIG. 1. Temperature dependence of the susceptibility for dif-
ferent system sizes L.

provides a more precise technique to extract the critical
temperature. For different system sizes the temperature
dependence of U2 is expected to cross at different points.
The crossing points can be shown to follow

T ∗c (L) = T ∗c +AL−1/ν (5)

where the critical exponent ν = 1 in two dimensions [6].
To extract T ∗c for an infinite system we now fit the posi-
tions of the crossing points between system sizes L and
L/2, respectively, using a least-squares fit weighted with
the size of the error bars at each system size, minimizing
χ2 =

∑
L(TL − T lL)2/ζ2L, where TL is the crossing point

temperature for the systems with sizes L and L/2, ζL is
its standard error, and T lL is the value of the linear fit-
ting function. The fit is then extrapolated to the limit
1/L → 0. A Jacknife analysis with at least 78 bins is
used to estimate the errors of the Binder cumulants and
their crossings.

IV. RESULTS AND DISCUSSION

Figure 1 shows the connected susceptibility defined in
Eq. 3 as a function of temperature for system sizes L =
8, 16, . . . , 256. It peaks around T ≈ 2.275J , which gives
a first estimate for the critical temperature.

Fig. 2 shows the intersections of Binder cumulants U2

defined in Eq. 4 with cubic interpolation between all the
temperature points within each system size. For each
pair of consecutive system sizes we identify the temper-
ature at the crossing point. This temperature is plotted
in Fig. 3 as a function of the larger system size in each
pair.

The scaling law of the Binder cumulant

U2 = F(L1/ν(T − Tc)/Tc), (6)

2.260 2.265 2.270 2.275 2.280

Temperature T/J

1.04

1.06

1.08

1.10

1.12

B
in

de
r

C
um

ul
an

t
U

2

L = 8

L = 16

L = 32

L = 64

L = 128

L = 256

FIG. 2. Temperature dependence of the Binder cumulants for
different system sizes. Vertical line and the grey area around
it indicate our estimate for critical temperature and for the
error respectively. Dashed lines are fits to a cubic polynomial.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1/L

−0.004

−0.003

−0.002

−0.001

0.000

T
∗
−
T
c

FIG. 3. Finite size scaling of the Binder cumulant crossing
points. The dependence can be shown to satisfy T ∗

c (L) =

T ∗
c + AL−1/ν and T ∗

c /J = 2.26934(6) is extracted from a
weighted least-squares fit as described in the text.

where F is a universal function, provides a check for
the estimate of the critical temperature T ∗c . In Fig. 4
we show a data collapse, plotting U2 for different system
sizes versus L1/ν(T − Tc)/Tc. According to finite size
scaling the curves for different sizes L should be on top
of one another in the vicinity of the critical point, as we
can indeed see when using our estimate T ∗c . The reader
is invited to use our scripts to test different values of
T ∗c and ν in the data collapse. Further instructions are
provided in the Appendix.

3

−1.0 −0.5 0.0 0.5 1.0

L1/ν(T − Tc)/Tc

1.00

1.05

1.10

1.15

1.20

1.25
B

in
de

r
C

um
ul

an
t
U

2

L = 8

L = 16

L = 32

L = 64

L = 128

L = 256

FIG. 4. Data collapse of Binder cumulant. T ∗
c is obtained

from Fig. 3.

V. CONCLUSION

Our final result of T ∗c /J = 2.26934(6) is consistent
with the analytically known value, which is a good check
for the correctness of the analysis in this demonstration
paper. Instructions to reproduce all figures and results
are provided in Appendix A.

As one might expect, the effort involved in making
this paper reproducible was much larger than the effort
for creating the first results. An important lesson learned
from this project is that it will be important to develop
best practices and better tools to more easily make sim-
ulations reproducible. This prototypical simulation can
be a good non-trivial but not too complex example as a
test project to explore the capabilities of various tools.

Appendix A: Instructions for reproducing the results

This appendix contains detailed instructions for repro-
ducing the results, both the raw simulation output in
section A 1 and the analysis of the data in section A 2.
Finally, section A 3 suggests possibilities for further sim-
ulations and analysis of the data.

All the analysis scripts, paper and code sources are
available as supplementary material to this paper and
can also be downloaded from to be inserted.

1. Obtaining the raw data

The output of the simulations can either be down-
loaded from our archive, as discussed in section A 1 a,
or it can be reproduced by running the simulations. For
a big project readers would typically download the data

and only redo the evaluation part. To reproduce the data
one needs to obtain the simulation codes, either as pre-
compiled binary or by building them from source (see
section A 1 b) and then perform the simulations (see sec-
tion A 1 c).

a. Downloading the raw data

The raw simulation output is available
from our archive at http://archive.comp-
phys.org/phys.ethz.ch/provenance/data/20131014.tar.
It should be extracted into the data/ directory of the
source tree, to be accessible to the evaluation scripts. A
convenience script getdata.sh is provided to download
and extract the data on Linux, Unix, and MacOS X.
On Windows platforms we recommend to manually
download and extract the data.

b. Obtaining the code

There are three versions of the code that can be used
interchangeably to create the output data:

• ising_single: a single-threaded simulation code

• ising_threaded: a multi-threaded simulation
code. It spawns one thread per set of input pa-
rameters, up to the maximum number of cores of
the machine.

• ising_mpi: an MPI version of the code, using dis-
tributed memory parallelism.

For convenience we provide precompiled binaries of
ising_single and ising_threaded for Linux (version
to be inserted), MacOS X version 10.6 or higher (64-
bit), and Windows 8 (32-bit) at to be inserted.. An
MPI version ising_mpi, compiled for OpenMPI 1.6.5 is
provided only for MacOS X and Linux. Further precom-
piled versions may be obtained from the authors. These
binaries should be placed in the bin/ directory.

Alternatively the binaries can be built from source.
This requires the installation of the ALPS libraries [7]
for parallel Monte Carlo simulations. After setting the
environment variable ALPS_ROOT to the location of the
ALPS installation, the simulation codes can be built
using the CMake files provided in the src/ directory.
The root of the source tree should be specified as the
CMAKE_INSTALL_PREFIX/ to install the executables into
the bin/ directory.

A convenience script buildall.sh is provided for
Unix-based operating systems. On Windows we recom-
mend the precompiled binaries.

http://archive.comp-phys.org/phys.ethz.ch/provenance/data/20131014.tar
http://archive.comp-phys.org/phys.ethz.ch/provenance/data/20131014.tar

4

c. Running the code

The simulation is started by executing one of the ver-
sions (ising_single, ising_threaded or ising_mpi)
with as arguments.

All numerical data can be recreated by running
python simulate_all.py (this will take a few hundred
CPU hours. The simulations up to cluster size L = 64
only require several CPU-hours using and may be per-
formed by python simulate_small.py). By default
these scripts will use the multi-threaded version. The
single-threaded or MPI version can be selected by chang-
ing the variable executable in these scripts.

2. Data analysis

Analyzing the raw data calculates the estimate for Tc
and produces the figures for the paper and text files con-
taining the information in the figures (for easy access to
the numerical values of the data shown).

The data analys requires Python 2.7 and the following
packages:

• PyTables [8]

• numpy

• scipy

• matplotlib

The Python scripts susceptibility.py,
binder_cumulant.py and binder_collapse.py in
the figures directory create all figures needed for the
paper in separate subdirectories . The estimate of
the critical temperature T ∗c us printed to the standard
output by binder_cumulant.py and has to be manually
copied into binder_collapse.py where it is used as
the input; this is not needed if you downloaded the raw
data from our archive – the corresponding value of T ∗c is
already set in binder_collapse.py.

For each figure a corresponding directory is created,
containing a PDF file and further information.

3. Suggestions for further analysis and
modifications to the simulations

a. Modifying simulation parameters

The script simulate_all.py can easily be customised
to calculate different system sizes, improve statistics by
increasing the number of sweeps, or extending the tem-
perature range.

b. Data collapse

It is instructive to explore the data collapse plot in
figure 4. By changing the parameters Tc (and ν) one
can explore the range of values which there is still good
data collapse. That range gives and indication of the
error on Tc. Values of the critical exponent ν and the
critical temperature T ∗c can be changed in the script
binder_collapse.py to explore the data collapse.

5

Appendix B: Overview of the source tree

Project

buildall.sh: build the simulation binaries

getdata.sh: download the data

simulate small.py: run the simulations for small system sizes (L=8,16,32,64)

simulate all.py: run all simulations reported in the paper (L=8,16,32,64,128,256)

bin: simulation executables

data: data and log files (download with get data.sh or recreate with simulate all.py

figures: plots used in the paper

susceptibility.py, binder cumulant.py, binder collapse.py: scripts creating the figures

fig *: one directory per figure

fig *.pdf: figure in pdf-format

fig *.txt: data shown in the figures in plain text format

pytools: auxiliary scripts

*.py

src: source files

CMakeLists.txt: cmake project file for building the simulation binary

ising.cpp, ising.hpp: C++ source code of the Monte Carlo simulation

mpi.cpp: MPI version

threads.cpp: multi-threaded version

runising.py: helper used by simulate all.py

paper: manuscript files

paper.tex: main

paper.bib: bibliography

[1] E. Ising, Zeitschrift für Physik A Hadrons and Nuclei 31, 253 (1925), 10.1007/BF02980577.
[2] L. Onsager, Phys. Rev. 65, 117 (1944).
[3] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
[4] M. Matsumoto and T. Nishimura, ACM Trans. Model. Comput. Simul. 8, 3 (1998).
[5] K. Binder, Zeitschrift für Physik B Condensed Matter 43, 119 (1981), 10.1007/BF01293604.
[6] A. Pelissetto and E. Vicari, Physics Reports 368, 549 (2002).
[7] http://alps.comp-phys.org.
[8] http://www.pytables.org.

http://dx.doi.org/10.1007/BF02980577
http://link.aps.org/doi/10.1103/PhysRev.65.117
http://link.aps.org/doi/10.1103/PhysRevLett.62.361
http://doi.acm.org/10.1145/272991.272995
http://dx.doi.org/10.1007/BF01293604
http://www.sciencedirect.com/science/article/pii/S0370157302002193
http://alps.comp-phys.org
http://www.pytables.org

	A model project for reproducible papers: critical temperature for the Ising model on a square lattice
	Abstract
	Introduction
	Model
	Methods
	Results and Discussion
	Conclusion
	Instructions for reproducing the results
	Obtaining the raw data
	Downloading the raw data
	Obtaining the code
	Running the code

	Data analysis
	Suggestions for further analysis and modifications to the simulations
	Modifying simulation parameters
	Data collapse

	Overview of the source tree
	References

