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Abstract MicroRNAs (miRNAs) are small non-coding

RNAs that post-transcriptionally regulate gene expression

by altering the translation efficiency and/or stability of

targeted mRNAs. In vertebrates, more than 50 % of all

protein-coding RNAs are assumed to be subject to miRNA-

mediated control, but current high-throughput methods that

reliably measure miRNA–mRNA interactions either re-

quire prior knowledge of target mRNAs or elaborate

preparation procedures. Consequently, experimentally

validated interactions are relatively rare. Furthermore, in

silico prediction based on sequence complementarity of

miRNAs and their corresponding target sites suffers from

extremely high false positive rates. Apparently, sequence

complementarity alone is often insufficient to reflect the

complex post-transcriptional regulation of mRNAs by

miRNAs, which is especially true for animals. Therefore,

combined analysis of small non-coding and protein-coding

RNAs is indispensable to better understand and predict the

complex dynamics of miRNA-regulated gene expression.

Single-nucleotide polymorphisms (SNPs) and alternative

polyadenylation (APA) can affect miRNA binding of a

given transcript from different individuals and tissues, and

especially APA is currently emerging as a major factor that

contributes to variations in miRNA–mRNA interplay in

animals. In this review, we focus on the influence of APA

and SNPs on miRNA-mediated gene regulation and discuss

the computational approaches that take these mechanisms

into account.
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Introduction

Among the diverse classes of functional small non-coding

RNA (small ncRNA), microRNAs (miRNAs) represent

important regulators of gene expression that are expressed in

plants, fungi, animals, and unicellular eukaryotes as well as

viruses [1–6]. The typically 18–26 nucleotide long miRNAs

primarily target messenger RNAs (mRNAs), but binding

sites are also present in ncRNAs that can act as competing

endogenous RNAs (ceRNAs) [7]. MiRBase represents the

most comprehensive database that provides access to ge-

nomic miRNA annotations and underlying sequence data

along with crosslinks to databases of predicted target genes.

The current version (v21) comprises *28,600 miRNA en-

tries from 223 different species, including more than 1800

human loci [8–11]. In general, translation of targeted

mRNAs is repressed followed by deadenylation and mRNA

decay [12–14]. However, in specific cellular conditions such

as cell cycle arrest, miRNA binding was also shown to me-

diate translational up-regulation of target mRNAs [15].

Canonical miRNA biogenesis in plants and animals is a

two-step process that initiates with primary miRNA (pri-

miRNA) transcription by RNA polymerase II (Pol-II). All

pri-miRNAs have a stem-loop structure that is co-
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transcriptionally recognized by the Microprocessor com-

plex in animals [16] or by DCL1 (endoribonuclease Dicer-

like Dicer-like1) and its paralogs in plants [17]. The Mi-

croprocessor is mainly composed of the RNase III Drosha

and the double-stranded RNA-binding protein DGCR8

(DiGeorge syndrome critical region 8 gene; also Pasha).

DGCR8 recognizes the RNA substrate, while Drosha

functions as an endonuclease that generates *70 nu-

cleotide long precursor miRNAs (pre-miRNAs) with

hairpin structures in a process termed cropping [18, 19].

The pre-miRNA hairpins are subsequently exported to the

cytoplasm by Exportin-5 [20], where the second RNase III

Dicer mediates cleavage (dicing) of pre-miRNAs into short

miRNA duplexes [21, 22]. Only one strand out of the

miRNA duplexes (the guide strand) is stably incorporated

into the miRNA-induced silencing complex (miRISC)

afterwards (Fig. 1a). Subsequent to loading of the duplex

into one of four Argonaute subfamily proteins (AGO1-4)

that form the core of each miRISC, the passenger strand

(miRNA*) is degraded [23]. Canonical miRNA maturation

in plants is also completed by loading of an argonaute

complex in the cytoplasm, but the miRNA duplexes are

released directly from DCL1 and subsequently exported to

the cytoplasm by HASTY [24]. In contrast to mammalian

cells, where miRNAs are loaded without much dis-

crimination between different Argonaute subfamily

proteins, plant AGO proteins show preferences for specific

small RNA classes that are produced by distinct biogenesis

pathways [23]. Mirtrons represent a widespread class of

intron-derived miRNAs in animals that are generated by a

Fig. 1 Canonical miRNA biogenesis and generation of intron-

derived miRNAs (mirtrons) in animals. a Canonical miRNAs are

transcribed independently by Pol-II into pri-miRNAs. Subsequent

microprocessing of pri-miRNAs is mediated by the DGCR8/

DROSHA complex and produces pre-miRNAs that are exported into

the cytoplasm. b Mirtrons are transcribed together with a host gene

and produced by refolding of debranched intron lariats during mRNA

splicing. After export into the cytoplasm, miRNA/miRNA* duplexes

are generated by cleavage of the loop via Dicer. The duplexes are

loaded into RISC, where only the mature miRNA strand of the duplex

is retained, whereas the passenger strand is degraded. In general,

partially complementary base pairing of a miRNA seed region with a

target mRNA induces translational repression, while perfect base

pairing results in siRNA-induced endonucleolytic cleavage
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non-canonical biogenesis pathway which bypasses the pri-

miRNA processing step by Drosha [25, 26]. Instead of

cropping, pre-miRNA-like RNAs are directly produced by

refolding of debranched intron lariats during mRNA

splicing (Fig. 1b). Since putative mirtrons were also iden-

tified by deep sequencing of small ncRNAs in A. thaliana

and rice, mirtron production is likely to occur also in

plants, although to a much lesser extent [27, 28].

Tools for prediction of novel miRNAs from small RNA

sequencing data rely on the recognition of a specific read

pattern subsequent to mapping to a reference genome [29].

The pattern reflects dicing as the last step of miRNA pro-

cessing (Fig. 2). Two distinct clusters of accumulated reads

cover the miR/miR* loci, separated by a short interval

without overlapping reads. This region corresponds to the

loop, which is cropped by Dicer and consequently not se-

quenced. The identified patterns are used for prediction and

evaluation of the secondary structure from potential

miRNA precursors. The precursors that comply with user-

defined criteria are then returned as predicted novel

miRNAs.

Partially complementary Watson–Crick base pairing of

the miRNA seed region (nucleotides 2–8 from the 50 end)
to a target mRNA typically induces translational repres-

sion, while perfect base pairing of the miRNA results in

siRNA-induced endonucleolytic cleavage that is mediated

by AGO2 in vertebrates [30, 31] or by AGO1 and 10 along

with other AGO paralogs in plants [32]. Generally, plant

miRNAs show perfect or near-perfect complementarity to

their mRNA targets, and consequently, the number of di-

rect targets is lower by at least one order of magnitude

compared to animal miRNAs [33]. Canonical plant miRNA

target sites are found within the 50 and 30 untranslated re-

gion (UTR) as well as the coding sequence of mRNAs,

suggesting that miRNA-directed regulation in plants is not

restricted to a specific RNA context [34]. Against this

backdrop, prediction of miRNA targets in plants requires

less elaborate algorithms that mostly rely on sequence

complementarity of a given miRNA [35]. Although

miRNA binding sites in mammalian cells are also found

across the entire mRNA, imperfect ‘seed’ pairing in 30

UTRs is considered to mediate post-transcriptional silenc-

ing more efficiently than pairing within the 50 UTR or

coding sequence [33, 36, 37]. Consequently, 30 UTR

heterogeneity caused by SNPs or alternative polyadenyla-

tion (APA) strongly impacts miRNA-mediated post-

transcriptional regulation and has to be taken into account

for prediction of miRNA target sites within these cells. In

humans, 30 UTR associated SNPs have been linked to

disease susceptibility [38], but the subsets of polymor-

phisms that have a functional role in regulating gene

expression are yet to be defined. Polymorphisms within

miRNA binding sites harbor the potential to disrupt

miRNA binding or even to introduce novel binding sites in

30 UTRs, and the biological relevance of these polymor-

phisms is currently being examined in large case–control

studies [39]. APA is a common regulatory mechanism of

gene expression that generates mRNAs with distinct 30

UTRs as well as coding sequences (Fig. 3). More than

70 % of human genes encode primary transcripts that

contain multiple polyadenylation sites (PA sites) [40, 41],

and a systematic examination of 30 UTRs produced by

APA in murine cells revealed that approximately half of all

miRNA target sites are located downstream of the first

poly(A) site [42].

In this review we focus on the impact of SNPs and

especially APA on miRNA target binding, and furthermore

discuss bioinformatical approaches that account for these

mechanisms in animals. Quantitative information on APA

site usage can be used to extend current prediction algo-

rithms with information on binding site availability to

estimate actual interaction efficiencies.

Fig. 2 Mapping pattern of

miRNAs. Removal of the pre-

miRNA loop by Dicer leads to

two separated clusters of reads

mapped to the reference

genome. The figure is based on

http://nbn-resolving.de/urn:nbn:

de:bsz:15-qucosa-112876
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Alternative polyadenylation and miRNA-mediated
post-transcriptional gene regulation

The process of nuclear polyadenylation along with the

underlying regulation mechanisms in eukaryotes is sum-

marized in this section. Furthermore, experimental

methods for detection of genome-wide APA events are

described, and the impact of APA on miRNA binding is

discussed based on the data that was generated by these

techniques.

Polyadenylation of nascent mRNAs and regulation

of PA site usage

Addition of poly(A) tails to the 30 end of nascent mRNAs in

eukaryotic cells occurs as a two-step, co-transcriptional process

and depends on the presence of defined poly(A) signals within

the pre-mRNA [43, 44]. In mammalian cells, the canonical

poly(A) signal AAUAAA is recognized and subsequently

bound byCPSF (cleavage and polyadenylation specific factor).

Initiation of 30 end formation is further stimulated by

cooperative binding of CstF (cleavage stimulation factor) to a

less definedU/GU-rich downstream element. CFIm, the first of

two necessary cleavage factors, additionally assists in

poly(A) signal recognition by binding to a third element with

the consensusUGUA[45]. Subsequent recruitment of poly(A)-

polymerase (PAP) and CFIIm results in endonucleolytic

cleavage of the nascent RNA, followed by addition of

adenosines to the newly formed30 endof theupstreamcleavage

product via PAP [46]. Together with Symplekin and the

C-terminal domain of Pol-II, these proteins constitute the core

of the pre-mRNA 30-end processing machinery [47]. In total,

however, *90 proteins contribute to or directly interact with

the pre-mRNA 30-end processing machinery in human cells

[48], and some of the corresponding mRNAs are found to be

differentially expressed in a context-dependent manner.

A screening of genome-wide APA events in prolif-

erative and arrested human cell lines revealed

downregulation of the mRNAs encoding CPSF and CstF,

accompanied by global lengthening of 30 UTRs, during

transition from the proliferative to the arrested state [49].

Increased expression of these genes in proliferating cells

Fig. 3 Alternative polyadenylation (APA) results in formation of

distinct mRNA isoforms that are derived from one and the same pre-

mRNA. Terminal exons that contain 30 UTRs with multiple PA sites

can give rise to mRNA isoforms that differ in UTR length only

(shown on top). The length of these tandem UTRs depends on

recognition of promotor-proximal PA sites that are linked to shortened

30 UTR formation or distal PA sites that result in transcription of

(nearly) full-length UTRs. Additionally, APA occurs in a splicing-

dependent context that comprises the incorporation of alternative

terminal exons into the mature mRNA (shown at the bottom). In

contrast to formation of splicing-independent tandem UTRs, 30 exon
switching affects both the sequence as well as the length of a given 30

UTR. Shortened or mutually exclusive 30 UTRs contain different

miRNA recognition and protein binding sites that affect the stability,

localization, and translation efficiency of an mRNA. Evasion of

miRNA-mediated post-transcriptional regulation due to the lack of

miRNA binding sites either caused by shortening of tandem UTRs or

through incorporation of alternative 30 terminal exons is typically

coupled to increased translation and protein synthesis. Figure adapted

from [52]
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was shown to be driven by an enhanced expression of E2F

transcription factors, and tightly linked to an increased

utilization of proximal PA sites. In contrast, knockdown of

CFIm25 resulted in 1450 transcripts with shortened 30

UTRs in HeLa cells [50]. Decreased expression of

CFIm68, another subunit from the CFIm complex,

similarly resulted in globally shortened 30 UTRs [51].

These findings are in line with previous reports of APA

events associated with variations in the abundance of core

polyadenylation factors (reviewed in [52]), and confirm

that altered CFI levels influence PA site usage.

Apart from varying abundances of core members of the

30-end processing machinery and the presence of cis-acting

RNA elements, such as the poly(A) signal, the U/GU-rich

downstream element or auxiliary sequences, trans-acting

factors like splicing factors and RNA-binding proteins are

also involved in the regulation of APA. The U1 small

nuclear ribonucleoprotein (U1 snRNP) is usually impli-

cated in mRNA splicing, but was also shown to play a role

in APA regulation, where it globally suppresses the usage

of distal PA sites [53]. Moderately decreased U1 snRNP

levels led to significantly enlarged fractions of mRNAs

with proximal PA sites in human, murine and Drosophila

cells [54]. Di Giammartino and colleagues provide de-

scriptions for several other splicing factors that influence

APA including Nova2, PTB (polypyrimidine tract binding

protein), hnRNP H (heterogeneous nuclear Ribonu-

cleoprotein H), SRm160 and U2AF65. Besides trans-acting

factors, increasing evidence suggests that APA is regulated

on the epigenetic level by DNA methylation, nucleosome

positioning and posttranslational histone modifications

[52]. A systematic analysis of human nucleosome occu-

pancy patterns revealed that highly used proximal PA sites

exhibit higher upstream nucleosome levels and Pol-II ac-

cumulation than lowly used sites, indicating that the

nucleosomes positioned upstream of proximal PA sites

influence recognition of these sites by decelerated tran-

scription [55].

Experimental methods for genome-wide

identification of PA sites

Techniques that allow for global detection of novel APA

events include 30 end sequencing approaches like

Poly(A) site sequencing (PAS-Seq [56]), PolyA-seq [57],

poly(A)-position profiling by sequencing (3P-Seq [58]),

massive analysis of cDNA ends (MACE [59]), as well as

the more recently published 30 region extraction and deep

sequencing (30READS) protocol [60]. In comparison to

RNA-Seq, these methods generate exactly one read out of

the 30 end of each mRNA, which allows for accurate 30

UTR isoform quantification. PolyA-seq, PAS-seq, and

MACE produce oligo(dT)-primed reads proximal to

(0–400 nucleotides) or even overlapping the poly(A) tail.

In contrast, 3P-Seq and 30READS circumvent conventional

oligo(dT) priming during library preparation, because oli-

go(dT)-based reverse transcription is prone to inadvertent

priming of homopolymeric adenosine stretches within the

mRNAs. Both, 3P-Seq and 30READS produce reads that

are directly adjacent to the poly(A) tail, and thus allow for

filtering of those reads with at least one or two non-ge-

nomic 30-terminal adenine bases (termed poly(A) site

supporting reads) for further analysis. In fact, 3P-Seq

identified more than 8500 30 UTR isoforms in C. elegans

that were missed by standard oligo(dT)-based methods,

while 30READS from different mouse tissues revealed

more than 5000 PA sites that were overlooked because of

flanking homopolymeric adenosine stretches. Based on

30READS, the number of murine mRNAs known to exhibit

APA increased to almost 80 %.

Although library preparation via MACE relies on oli-

go(dT)-based reverse transcription, mispriming events

during library preparation are minimized by hot priming of

the mRNAs [61]. Instead of sequential denaturation and

reverse transcription as specified for the PolyA-seq or PAS-

seq protocol, hybridization of the oligo(dT) primer and

subsequent cDNA synthesis are both performed at elevated

temperatures, and without temporary cooling of the sam-

ples. The comparison of murine APA events either detected

by MACE or by 3P-seq, which is not affected by internal

priming, revealed a large overlap between high-confidence

PA sites detected by the two methods (83 % for MACE

and 85 % for 3P-seq). The proportionally similar percent-

ages of PA sites exclusively detected by one of the two

methods indicate an efficient exclusion of false positive PA

sites arising from internal priming, and confirm the re-

liability of MACE alongside 3P-seq and 30READS for PA

site detection.

Impact of APA on miRNA-mediated gene regulation

Transcription of mRNA isoforms with distinct 30 UTRs

modulates the post-transcriptional fate of these mRNAs

through inclusion or exclusion of miRNA binding sites

(Fig. 3) [62]. Additionally, miRNA-mediated post-tran-

scriptional regulation is affected by the altered accessibility

of miRNA binding sites in shorter/longer 30 UTRs due to

secondary structure variations, and by the varying prox-

imity to the translation machinery [36]. In different cell

types from zebrafish, approximately ten percent of the

predicted miRNA–mRNA interactions are influenced by

APA [63]. While the shortest 30 UTR isoforms are present

in the ovaries, a significantly more prevalent use of distal

PA sites is found in brain tissues. Globally shortened 30

UTRs were furthermore identified in early mouse embry-

onic stem cells [64]. Reprogramming of somatic to induced
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pluripotent stem cells is associated with a trend towards

shortened 30 UTRs, whereas reprogramming of spermato-

gonial cells is linked to 30 UTR lengthening [65]. Together

with the globally lengthened 30 UTRs in proliferative hu-

man cell lines described by Elkon and colleagues [40],

these findings reflect that vertebrate cells with an increased

proliferative potential generally harbor shorter 30 UTRs.
Several studies emphasized the implications of APA in

human diseases. Deregulated expression of the gene en-

coding brain-derived neurotrophic factor (BDNF) is

associated with several neurodegenerative diseases, such as

Huntington’s disease [66]. Reduced BDNF levels have

been observed in corresponding cell models as well as

genetic mouse models, and are likely to contribute to the

clinical manifestations of the disease [67]. The UTR of the

BDNF gene harbors two PA sites: one distal (*3 KB from

UTR start, BDNF-L) and one proximal (*350 bps from

UTR start, BDNF-S) site [41]. The BDNF-L isoform con-

tains ten potential miRNA binding sites, predicted by at

least four algorithms, whereas BDNF-S only contains six of

these. Luciferase reporter assays in human embryonic

kidney 293 cells (HEK-293) confirmed the direct interac-

tion of miR-1, miR-10b, miR-155 and miR-191 with

BDNF-L, while BDNF-S interacted only with miR-1 and

miR-10b [68]. This is consistent with the observation that

the short BDNF transcript isoform neither carries a miR-

155 nor a miR-191 binding site. Furthermore, after trans-

fection with the miR-1 precursor, luciferase activity was

significantly lower for the BDNF-L isoform that carries

three predicted binding sites for this miRNA, compared to

BDNF-S, which carries only a single miR-1 binding site

[68]. The protein level of BDNF, thus, largely depends on

PA site usage associated with altered post-transcriptional

regulation of the encoding mRNA by miRNAs.

In 2009, Mayr and Bartel hypothesized that APA might

represent a mechanism for genes to escape miRNA-medi-

ated post-transcriptional repression in cancer [69]. Based

on Northern blot analysis of the 30 UTR isoforms from six

alternatively polyadenylated target genes in 27 cancer cell

lines compared to corresponding normal tissues and non-

transformed cell lines, they concluded that 30 UTR short-

ening is indeed associated with cancerogenesis. Most

cancer cell lines expressed significantly shorter APA iso-

forms, and across all six genes and all 27 cell lines,

25–70 % of the elevated protein-expression levels could be

attributed to a loss of post-transcriptional regulation via

miRNAs due to 30 UTR shortening. In *30 % of the cell

lines, this regulatory loss could even explain all changes in

protein levels. Using the dataset published by Sandberg and

colleagues [42], Mayr and Bartel confirmed this trend to be

a global mechanism on a genome-wide scale. Moreover,

the cancer cell lines showed significantly shorter 30 UTRs
than immortalized cell lines despite a comparable

proliferative potential, indicating that shorter 30 UTRs are
not only associated with increased proliferation but also

with malignant transformation [69]. By transfection of

NIH3T3 cells with retroviral vectors harboring either the

shortest 30 UTR or the full-length isoform of proto-onco-

gene IGF2BP1, they showed that expression of the short

isoform greatly promoted cell transformation. An in-depth

analysis of the 30 UTR isoforms of IGF2BP1 discloses nine

functional PA sites in human HLF cancer cell lines, and

reveals a varying number of lacking miRNA binding sites

in shortened isoforms (Fig. 4). As shown by Mayr and

Bartel, these shortened 30 UTRs positively affect mRNA

stability and result in increased amounts of encoded protein

product.

Experimental approaches for detection
of miRNA–mRNA interactions

Since the discovery of the first miRNAs in C. elegans [70–

72], several techniques that allow for identification of

miRNA target sites have been established. While miRNA–

mRNA interactions in plants are readily detected by iden-

tification of degraded target intermediates, experimental

methods in animals remain laborious and mostly focused

on a predefined set of targets [73]. This section summarizes

the current experimental techniques for detection/valida-

tion of miRNA–mRNA interactions in plants and animals.

Genome-wide experimental identification of miRNA

binding sites in plants

Among the techniques for genome-wide analysis of

miRNA-mediated mRNA degradation in plants, the most

established approaches are termed parallel analysis of RNA

ends (PARE) [74], genome-wide mapping of uncapped and

cleaved transcripts (GMUCT) [75], and degradome se-

quencing [76]. In all three protocols, total RNA isolates are

enriched for polyadenylated transcripts followed by 50

adaptor ligation of an RNA oligonucleotide (GMUCT and

PARE) or DNA–RNA hybrid (degradome sequencing).

Since capped transcripts are not subject to 50 adaptor li-

gation, only uncapped RNA fragments are subsequently

reverse-transcribed and amplified. Following sequencing of

these RNA fragments, miRNA-mediated cleavage sites are

identified by alignment of the 50 ends of the generated

reads to respective reference mRNAs.

The first application of PARE revealed a widespread

presence of miRNA target sites across all annotated genes

in A. thaliana and detected most previously validated tar-

gets along with nearly all previously predicted but non-

validated targets. Stringent analysis of the potential

cleavage sites even allowed for identification of putative
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cleavage sites that were previously unknown, and further

validation of some of these targets by 50 RACE confirmed

their presence. At the same time, the first genome-wide

screening of miRNA cleavage sites in A. thaliana tissues

via degradome sequencing resulted in identification of

completely novel targets and confirmed previously

validated and predicted cleavage sites. To date, genome-

wide miRNA–mRNA interaction profiles have been gen-

erated for a wide variety of plants including legumes and

other important food crops [77, 78]. Additionally, adapted

pipelines have been developed that provide tailored com-

putational algorithms for detection of cleaved miRNA

targets from degradome data [79, 80]. Only recently, two

further developed protocols were published that provide

step-by-step instructions for streamlined library preparation

for degradome sequencing on Illumina platforms [81, 82].

Together with the adapted pipelines, these techniques

provide reliable approaches to globally profile miRNA-

mediated cleavage sites also in non-model plants.

Experimental methods for validation

of miRNA–mRNA interactions and identification

of novel miRNA binding sites in animals

A variety of experimental methods have been developed to

detect miRNA–mRNA interactions in animals. The trans-

fection of cell lines with mimic miRNAs or miRNA

inhibition by antagomiRs is widely used to measure the

effect on mRNA levels within the cells [83, 84]. Even

though this technique provides a global profile of changes

in mRNA levels via transcriptome profiling by RNA-Seq or

similar techniques, direct interactions must be distin-

guished from indirect interactions and stress responses of

the cells have to be discriminated from true responses to

miRNA elevation/repression [85]. Reporter assays, on the

other hand, allow for identification of direct interactions

between a given miRNA and specific mRNA targets [86].

However, these assays are usually limited to a fixed set of

interactions, and therefore promising candidate interactions

Fig. 4 Visualization of the 30 UTR from the human IGF2BP1

transcript by APADB. Nine PA sites (I) detected by clustering of end-

coordinates of polyA-tail positive NGS reads (III) are present in

human HLF liver cancer cell lines. Except for one site (IGF2BP1.3)

each PA site is associated with a closely upstream (*20 BPs) PA

signal (II). Only the longest 30 UTR isoform harbors all predicted

TargetScan binding sites (IV), while the isoform with the shortest 30

UTR (IGF2BP1.9) does not carry a single predicted miRNA binding

site
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have to be defined in advance either based on additional

experimental data or by in silico prediction of potential

miRNA target genes.

Genome-wide methods for detection of miRNA binding

sites are based on UV cross-linking in vivo followed by

immunoprecipitation of AGO-bound miRNA–mRNA

complexes in vitro. HITS-CLIP [87], PAR-CLIP [88], and

CLASH [89] represent the most recent approaches in this

field, and their adaption to immunoprecipitation of AGO

proteins allows for simultaneous identification of miRNAs

along with mRNA targets and corresponding binding sites.

In all three protocols, interactions between DNA and RNA-

binding proteins and their respective targets are initially

fixed by UV cross-linking. Following precipitation and

purification of AGO(s) as the RNA-binding protein(s) of

interest, cross-linked and co-immunoprecipitated RNAs are

partially digested and subsequently released by proteinase

digestion. The remaining RNA fragments are adaptor-li-

gated, reverse-transcribed into cDNA, amplified and finally

subjected to next-generation sequencing (NGS). While

HITS-CLIP and PAR-CLIP provide distinct sets of reads

that are either derived from miRNAs or target mRNAs,

CLASH involves an additional ligation step subsequent to

partial digestion of protein-bound RNA and prior to

adaptor ligation. This additional intramolecular ligation

results in generation of chimeric reads that comprise a re-

spective miRNA sequence along with the targeted mRNA.

Using this approach, interaction sites of the RNA mole-

cules that gave rise to a chimeric read can be identified by

in silico folding. The localization of protein RNA-binding

sites within sequencing data from CLIP experiments is

based on identification of cross-linking induced mutation

sites (CIMS). Reads generated by HITS-CLIP are screened

for cross-linking induced deletions that originate during

reverse transcription of RNAs with amino-acid-RNA

adducts [90]. In contrast to substitutions or insertions, these

deletions are highly site-specific and permit identification

of interaction sites at single-nucleotide resolution. Like-

wise, reads generated by PAR-CLIP are screened for CIMS

to identify binding regions. Since PAR-CLIP aims to

maximize cross-linking efficiency by random incorporation

of photoactivatable nucleoside analogues into nascent

RNAs, CIMS are represented by specific substitutions

within the sequenced reads. Feeding of cultured cells with

4-thiouridine, for instance, results in thymidine to cytidine

transitions in the cross-linked RNA. Once the binding re-

gions have been defined by target CIMS, miRNA–mRNA

interactions can be deduced by comparison of corre-

sponding regions between the miRNA and mRNA reads

from HITS-CLIP or PAR-CLIP experiments.

Using PAR-CLIP, *3500 canonical miRNA target inter-

actions could be identified in MCF-7 cells and the combined

analysis of thesewith gene expressionprofiles from individual

breast cancer patients revealed a significant correlation be-

tween expression levels of miR-182 targeted mRNAs and

overall patient survival [91]. MiR-218 is significantly down-

regulated in human medulloblastoma and a recent screening

for corresponding target sites via HITS-CLIP identified more

than 600 target genes including both previously known and

completely novel targets [92]. Since miRNA–mRNA inter-

actions are directly preserved within chimeric reads, CLASH

provides a quantitative basis for analysis of such interactions.

The chimeric reads from human cell cultures confirmed that

mRNAs represent the principal binding partner of miRNAs

(*70 % of the identified interactions). The remaining bind-

ing partners comprised pseudogenes, long intergenic

ncRNAs, ribosomal RNAs, transfer RNAs, small nuclear

RNAs, as well as ceRNAs, such as the circular RNA sponge

for miR-7 (ciRS-7). In addition to the quantitative aspects of

CLASH, miRNA–mRNA base pairing patterns can be de-

duced from chimeric reads without prior knowledge of targets

or binding modes.

In silico analysis of miRNA-mRNA interactions
in animals

As previously outlined, experimental methods for identi-

fication of miRNA–mRNA interactions in animals often

require highly sophisticated bioinformatical analyses and/

or precedent knowledge of promising candidate interac-

tions. Consequently, computational methods have to be

constantly improved and modulated depending on the

available experimental data. Current computational ap-

proaches for in silico prediction of miRNA targets are

discussed in this section with special emphasis on methods

that combine data from mRNA and miRNA quantification

experiments.

In silico prediction methods and interaction

databases

To date, several algorithms for in silico prediction of

miRNAs and their target genes have been developed.

Prominent tools comprise TargetScan [93], miRanda [94,

95], PITA [96] and PicTar [97], which rely on sequence

complementarity of the 30 UTRs from potential mRNA

targets with the seed region of a given miRNA. Addition-

ally, these algorithms account for the secondary structure

of the miRNA and/or respective target sites (e.g. free en-

ergy of the miRNA–mRNA union: DG or costs to unfold

the secondary structure of the target site DDG), the number

of potential binding sites within one transcript, and if ap-

plicable, conservation of the miRNA and/or the target site

across mammals (assuming that conservation increases the

likelihood of a functional site) [36, 98, 99].

F. Afonso-Grunz, S. Müller

123



To avoid computationally intensive re-calculation of

target predictions, the results of several of the tools are also

available from database resources (Table 1). These

databases include all predicted interactions between known

30 UTRs of selected organisms and known miRNAs from

miRBase [9]. Nevertheless, most of them are not updated

regularly and none of them takes into account that 30 UTR
length of one and the same transcript is highly variable

between different biological conditions due to APA [100].

This heterogeneity in 30 UTR length represents one of the

major reasons for the relatively high false positive rate of

available predictions in databases, which is estimated to

reach up to 70 % [101], and consequently complicates

reliable predictions for interactions in a given tissue.

The overlaps between prediction results of different

tools/databases are very low and range from 5 to 70 %. For

that reason, databases such as miRwalk [102] or miRo

[103] only list interactions that are commonly identified by

several tools to increase the likelihood of predicting true

interactions. However, even those databases that apply a

combination of algorithms and tools for prediction are not

capable of taking into account specific biological charac-

teristics of a given sample. More recently published

database tools try to account for these by including co-

expression information into the prediction algorithm.

MirCoX [104] and miRConnect [105] take advantage of

the fast growing number of miRNA and mRNA sequencing

data in publicly available repositories, and use the data to

calculate significant negative correlations between mRNA

and miRNA expression values under various biological

conditions such as disease or stress states.

Databases that summarize experimentally validated in-

teractions comprise miRecords [106], that provides 2705

records of interactions between 644 miRNAs and 1901

target genes in nine animal species, as well as TarBase

[107], the largest manually curated database, indexing

more than 65,000 validated interactions in 21 species. The

validated interactions summarise the results from reporter

assays and high-throughput experiments. However, with

*200,000 estimated interactions occurring only in humans

[108], these databases remain a relatively limited resource

for miRNA target identification.

Combining quantitative expression data

with sequence-based predictions

The attempt to use quantitative mRNA expression profiles

from appropriately designed experiments for improvement

of in silico miRNA target predictions has led to the de-

velopment of several computational models that improve

sequence-based predictions with experimental data [109–

112]. These models combine mRNA and miRNA expres-

sion profiles from a particular experiment with information

about predicted miRNA–mRNA interactions. The under-

lying frameworks are based on finding significant negative

correlations between the expression of a miRNA and its

potential target gene in the present experimental setup to

increase the likelihood of a true interaction (Fig. 5). Sev-

eral web services like omiRas [113], CPSS [114] or ncPRo-

seq [115] provide the possibility to quantify and compare

miRNA expression from raw sequencing libraries of two

biological conditions, such as healthy and diseased

Table 1 Overview of commonly used miRNA target databases

Database URL Last update MiRBase #Species Expression

profiles

Validated

targets

Predicted

targets

miRTarBase http://mirtarbase.mbc.nctu.edu.tw 2013 V20 18 T T

TarBase http://microrna.gr/tarbase 2013 NA 21 T

miRecords http://mirecords.biolead.org 2013 NA 9 T T

miRNAMap http://mirnamap.mbc.nctu.edu.tw 2007 V9.2 12 T T

TargetScanS http://targetscan.org 2012 V17 5 T

microRNA.org http://microrna.org 2010 V15 5 T

miRDB http://mirdb.org 2012 V18 5 T

miRGator http://genome.ewha.ac.kr/miRGator 2007 V10 2 T T

PicTar http://pictar.mdc-berlin.de 2007 V9.2 4 T T

RNA22 http://cm.jefferson.edu/rna22v2.0 2012 V18 2 T

DIANA MicroT http://microrna.gr/microT-CDS 2012 V18 16 T

MicroInspector http://mirna.imbb.forth.gr 2012 V17 141 T

miRo http://ferrolab.dmi.unict.it/miro 2009 V12 1 T T

The name of each tool and its web address is listed along with the year of the last update. Additionally, the table comprises the respective

miRBase version of the current release, the number of contained species as well as Booleans, which indicate if expression profiles of miRNAs are

available and if the database also contains validated and/or predicted targets. NA indicates missing information of the respective database about

the underlying miRBase version
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individuals. Furthermore, this quantitative data can be used

to infer miRNA targets among differentially expressed

genes between the same conditions, incorporating target

predictions from various target databases. However, these

models are solely focused on interactions with perfect seed

matches resulting in post-transcriptional degradation of

target mRNAs. Translational inhibition due to imperfect

seed matches does not alter mRNA abundance and is

therefore undetectable by correlation analysis. High-

throughput measurement of protein levels could help

overcome this limitation, but reliable and reproducible

measurements of these is currently only achieved for a

subset of proteins [116].

Including APA information into interaction

predictions

Even though these approaches allow for considering the

respective biological conditions under investigation, 30

UTR heterogeneity remains disregarded. 30 UTR shorten-

ing by APA can result in the absence of miRNA binding

sites within a predicted target and consequently give rise to

false positive predictions. Against this backdrop,

incorporation of information from 30 end sequencing data

into target prediction algorithms would significantly im-

prove the prediction of interaction efficiency [117], and

thus provide biologically more relevant results. To date,

TargetScan Web service (http://targetscan.org/) represents

the only miRNA–mRNA interaction database that includes

according data into its prediction results. The predicted

interactions for zebrafish miRNAs are available for each 30

UTR isoform detected by 3P-Seq [58]. However, the

abundance of specific isoforms is not taken into account to

rank the interaction efficiencies. The upcoming version of

TargetScan is going to include the fractions of mRNAs

with a specific miRNA target site into the predictions for

human, mouse and zebrafish, but these fractions will still

not be tissue-specific.

Nam and colleagues were the first that introduced a re-

vised prediction model, which weights prediction scores for

amiRNA and its target site by the percentage of PA isoforms

in each cell type that carry this interaction site [117]. On

average, this model outperforms previous models by 50 %,

thus indicating a new strategy inmiRNA–mRNA interaction

algorithm development. The growing number of global and

tissue-specific APA profiles in databases such as APADB

Fig. 5 Integration of experimental expression data into target

prediction. In order to predict miRNA–mRNA interactions, a matrix

for each miRNA-mRNA pair is generated (top). Potential miRNA–

mRNA interactions exhibit a significant negative correlation (circles).

Furthermore, interactions gain support by sequence complementarity

(S), as visualized at the left bottom, and by the observed expression of

miRNAs and mRNAs in each biological replicate (dots in the

scatterplot at the bottom)
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(http://tools.genxpro.net/apadb/) provides the necessary re-

source for a significant improvement of miRNA–mRNA

interaction predictions in diseased and stressed tissues.

Predicting the effect of SNPs on miRNA–mRNA

interactions

Single-nucleotide polymorphisms can influence miRNA

binding by two distinct mechanisms. On the one hand, SNPs

can alter the seed region of a miRNA or mRNA binding site,

which is linked to increased/decreased binding efficiencies.

On the other, SNPs can interrupt or create novel PA signals

that lead to transcript isoforms with altered miRNA binding

site availability. A screening of human SNPs indicates that a

substantial fraction of SNPs harbor the potential to create or

disrupt APA signals, and this type of SNPs has been defined

as APA-SNPs [118]. Many APA-SNPs are associated with

shortened transcripts and increased gene expression due to

reduced miRNA binding site availability, especially in dis-

ease. Moreover, these SNPs do not only affect PA site usage

by altering canonical PA signals. An APA-SNP located in

the U/GU-rich downstream element of the second PA signal

of the human ATP1B1 gene was shown to be associated with

higher blood pressure in a European–American population

[119]. This APA-SNP is linked to an increased usage of the

second PA site due to increased CstF binding efficiency. The

resulting transcript isoform exhibits increased translation

efficiency and consequently yields a larger amount of protein

product.

Recently, several databases that account for the impact of

SNPs within 30 UTRs onmiRNA binding have been released

[120–123]. Most of these rely on simple modifications of

known algorithms like TargetScan or miRanda to detect the

effects of a given SNP on miRNA binding stability [124].

However, these databases only rely on known SNPs from

public resources like DBSNP and are therefore restricted to a

predefined subset of SNPs [125]. To determine the influence

of novel variations, mrSNP [126] calculates the impact of

user supplied SNPs based on different criteria. Most im-

portantly, these criteria comprise the distance in the

alignment to the seed region of a miRNA, and the changes in

the energy of the alignment compared to an alignment

without the mutation. Currently, limited data for evaluation

is available, but mrSNP correctly predicted disrupted bind-

ing for 69 % (11/16) of the SNPs with experimentally

verified effect on miRNA binding.

Concluding remarks and perspectives

The functional fraction of the human genome remains a

widely discussed topic and naturally depends on the

definition of functionality. While the ENCODE sequencing

project revealed that more than 80 % of the human genome

codes for RNA, recent analysis that takes evolutionary

conservation into account estimates 7.1–9 % of the human

genome to be functional [127]. However, only a small

fraction of these functional sites (1 % of the genome) is

protein-coding. Comparative analyses between mouse and

human tissues suggest that most, but not all, non-coding

RNAs have short-lived lineage-specific functionality,

which is especially true for long non-coding RNAs. In

contrast, miRNA precursors and in particular, seed regions

of mature miRNAs are highly conserved between mam-

mals which underline their role as important post-

transcriptional regulators.

The advent of NGS methods that allow for global in-

vestigation of the miRNAome across several tissues and

disease states along with corresponding gene expression

profiles provides the basis for a deeper understanding of the

post-transcriptional regulation of biological pathways.

Experimental methods such as CLASH permit a reliable

detection and even quantification of direct miRNA–mRNA

target interactions on a global scale. This trend is going to

further extend the overwhelmingly large amount of se-

quencing data in respective databases, and consequently

more efficient algorithms and data-mining tools are needed.

The resulting gain of knowledge will likely improve

therapeutic options for treatments of serious diseases such

as cancer. In 2013, the first clinical study based on a

miRNA mimic was initiated and more miRNAs, currently

published as biomarkers with unknown function, are

waiting in line for potential clinical use. To accelerate this

process, the underlying molecular mechanisms of these

miRNAs, and especially their condition and tissue-specific

target genes, need further investigation. APA is one of the

major reasons for 30 UTR heterogeneity, and consequently,

identification of condition and tissue-specific PA isoforms

represents the next necessary step to fill this gap in

knowledge. With the growing number of 30 end sequencing

data that is available in public databases, regulatory models

can be further improved not only in the context of human

diseases, but also for other animals and cellular processes.
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