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ABSTRACT. Data confidentiality has become a major concern for individuals as well as for 
companies and administrations. In a classical client-server setting, the access control 
management is performed on the server, relying on the assumption that the server is a trusted 
party. However, this assumption no longer holds given the increasing vulnerability of 
database servers facing a growing number of external and even internal attacks. This paper 
studies different alternatives exploiting cryptographic techniques and/or tamper-resistant 
hardware to fight against these attacks. The pros and cons of each alternative are analyzed in 
terms of security, access control granularity and preserved database features (performance, 
query processing, volume of data). Finally, this paper sketches a hybrid approach mixing 
data encryption, integrity control and secured hardware that could pave the way for future 
highly secured DBMS.    
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1. Introduction 

Safeguarding data confidentiality has become a primary concern for citizens and 
administrations. The need to gather, share and analyze personal data is manifold: 
increasing the quality of care thanks to Electronic Health Record (EHR) systems, 
simplifying administrative procedures and increasing their efficiency, personalizing 
the services delivered by a wide collection of smart objects in an ambient intelligent 
surrounding (cell phones, home networks, consumer electronics, etc) and even 
increasing the security of states by tracking suspect individuals (e.g., building 
personal profiles from government and commercial databases to fight against 
terrorism [EFF]). While processing personal data usually serves a societal purpose, 
it introduces an unprecedented threat on user’s privacy1.  

All around the world, governments enact specific laws to regulate the processing 
of personal data, like the Federal Privacy Act in the US [Pri74] and the Data 
Protection Directive in the EU [Eur85]. However, translating law statements into 
convincing technology means is a rather difficult task. According to the Computer 
Security Institute and the FBI, the attacks on database servers are increasing every 
year despite tighter security practices, and worse, almost half of the attacks are 
conducted by insiders [CSI04]. This demonstrates the vulnerability of traditional 
security features provided by database servers. 

Database security encompasses three main properties: confidentiality, 
integrity and availability [KrT]. Roughly speaking, the confidentiality property 
guarantees that a protected data can never be accessed by an unauthorized 
person or program. The integrity property guarantees that the data cannot be 
corrupted in an invisible way. Finally, the availability property protects the 
system against denial of service attacks. In this paper, we concentrate on the 
data confidentiality issue. However, data integrity will also be discussed every 
time data tampering can lead to an information leakage (e.g., data tampering is 
performed with the objective to mislead the DBMS access control). Preserving 
the data confidentiality amounts to enforce the access control policies defined on 
the DBMS. An access control policy, that is to say a set of authorizations, can take 
different forms depending on the underlying data model. For example, an 
authorization in a relational database is usually expressed as the grant to execute a 
given action (e.g., Select) on a relational table or view (i.e., a virtual table computed 
by a SQL query) [MeS93].  An authorization on an XML document is usually 
expressed as a composition of positive (resp. negative) rules selecting authorized 
(resp. forbidden) sub-trees in the document thanks to XPath expressions [BCF01, 
GaB01, DDP02]. Another dimension of the access control model is the way by 
which authorizations are administered, following either a Discretionary (DAC) 
[HRU76], Role-Based (RBAC) [SCF+96] or Mandatory (MAC) approach [BeL76]. 
                             
1 Note that data confidentiality is also an important concern for companies willing to protect 
their data (business strategy, know-how, customer data, etc) against industrial and 
commercial spying. 
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In this paper, we do no assumption on the way authorizations are actually expressed 
and administered, except for illustrative purposes.  

Whatever the access control model, the authorizations enforced by the database 
server can be bypassed in a number of ways. An intruder can infiltrate the 
information system and try to mine the database footprint on disk. Another source of 
threats comes from the fact that many databases are today outsourced to Database 
Service Providers (DSP). Then, data owners have no other choice than trusting 
DSP’s arguing that their systems are fully secured and their employees are beyond 
any suspicion, an assumption frequently denied by facts [HIM02]. Finally, a 
database administrator has enough privileges to tamper the access control definition 
and to spy on the DBMS behavior. While this later situation is neither new nor 
specific to electronic databases systems2, it must be considered with a particular 
care.  

The objective of this paper is to study alternatives to fight against these sources 
of attacks. The resort to cryptographic techniques and tamper-resistant hardware to 
complement and reinforce the access control has recently received much attention 
from the database community (e.g., [BoP02, HIL+02, PBV+01, VMS02]). In this 
paper, we analyze and compare different ways to combine data encryption, hashing, 
signatures and secured operating environments in order to increase the confidence 
put in database systems to preserve data confidentiality. Then, we draw from this 
study important research perspectives. 

 The paper is organized as follows. Section 2 introduces background material 
related to the classification of attacks and attackers and to the cryptographic and 
secured hardware techniques of interest. Section 3 studies to which extent data 
encryption participates to the preservation of data confidentiality. Section 4 deals 
with the protection of data embedded into secured hardware devices. Section 5 
focuses on approaches mixing data encryption and secured hardware. Section 6 
shows that the preceding approaches could be made more general at the price of 
more complex integrity controls and sketches interesting open issues. Finally, 
Section 7 concludes. 

2. Attacks, attackers and cryptographic instruments 

This section gives a classification for the different attacks threatening data 
confidentiality and for the attackers who may conduct them. It then presents usual 
instruments based on cryptographic and secured hardware techniques to counter 
these attacks.  

                             
2 For example, a rule specifying that "the doctor is the only person to get full access to her 
patients’ medical folder", is actually translated in a paper-based archive by "the doctors and 
the archive employees has full access to the patient's folder". 
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2.1. A classification of attacks and attackers 

As stated in the introduction, this paper focuses on attacks threatening data 
confidentiality, that is to say attacks trying to read unauthorized data. However, 
attacks trying to modify unauthorized data must also be considered when they aim at 
abusively altering the user’s authorizations. This can be achieved by tampering the 
view definitions, the privilege table or the data participating in the computation of a 
granted view. This leads to consider four classes of attacks:  

• Data Snooping: an attacker examines the data and deduces an unauthorized 
information 

• Data Altering: an attacker deletes or modifies (even randomly) a data 
• Data Substituting: an attacker replaces a valid data by another valid data  
• Data Replaying: an attacker replaces a valid data by one of its older version  

Note that these attacks can be directed either against the data at rest (i.e., on 
disk), against the data being processed by the database system (including the 
server's main memory content) and against the data exchanged on the 
communication link between the client and the server.  

These attacks can be conducted by different categories of attackers. We 
distinguish three classes of attackers according to their initial granted privileges: 

• Intruder: a person with no database privilege, who infiltrates a computer system 
and tries to extract valuable information from the database footprint on disk. 
[App03, Eru01] state that the majority of computer attacks are targeting the data 
at rest. 

• Insider: a person properly identified by the database server (i.e., a registered 
user) who tries to get information exceeding her own privileges. The owned 
privileges give her more abilities than the intruder to tamper the system and to 
deduce valuable unauthorized content. [CSI04] reported that around 50% of 
information theft comes from internal attacks. 

• Administrator: a person who has enough (usually all) privileges to administer a 
computer system (System Administrator) or a DBMS (Database Administrator 
or DBA). These privileges give her the opportunity to access the database files 
and to spy on the DBMS behavior (e.g., main memory monitoring).  
The intersection between these classes can be non-empty, considering for 

example that a talented intruder may be able to usurp the identity of an 
administrator. Actually, the objective of this classification is to attach a name to 
categories of threats of increasing dangerousness. 
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2.2. Cryptographic and secured hardware instruments 

This section describes some instruments used in the literature for enforcing data 
confidentiality. These instruments are based on cryptographic techniques or on 
specific secured hardware and constitute the building blocks for tamper-resistant 
database systems.  

• Encryption: the purpose of encryption is to ensure data opacity (protection 
against snooping attacks) by keeping the information hidden to any unauthorized 
persons (e.g., intruders). The plaintext version of an encrypted data cannot be 
recovered from the ciphertext without the decryption key. In general, and more 
specifically in the database context, care should be taken about the chosen 
encryption mode to prevent an attacker to analyze repetitive patterns in the 
encrypted text. Figure 1 exemplifies this concern with a 3-DES encryption of a 
picture using the ECB (each block is encrypted individually) or the CBC mode 
(the result of the encryption of a block depends on all previous encrypted 
blocks).  

Figures taken from José Rolim and F. Schutz courses at http://cui.unige.ch/tcs/cours/crypto. 

   
(a) Original (b) 3-DES-ECB encryption (c) 3-DES-CBC encryption 

Fig. 1. Encryption opacity. 

• Cryptographic hash functions (CHF): a CHF is a mathematical operation which 
takes as input a data of arbitrary length and computes a hash value, i.e., a fixed 
size digest of that data, that is used afterwards to detect any modification in the 
input data. A CHF ensures that it is computationally infeasible to recover any 
input of the hash function given its digest output, or to find two distinct inputs 
having the same digest output. Popular CHF include Message Digest 5 (MD5) 
[Riv92] and Secure Hash Algorithm 1 (SHA-1) [NIS95]. The result of a hash 
function used to detect whether the data has been tampered is called a 
Modification Detection Code (MDC). A MDC acts like a sensor mesh coating 
the data, which breaks as soon as an attacker updates a single bit of the data. 

• Origin authentication [MOV97]: when a hash function is associated to a secret 
key, its output is called a Message Authentication Code (MAC). Checking the 
MAC allows to prove that a data has been originated by a key owner. 
Combining CHF and asymmetric encryption allows proving the origin of a data 
(i.e., digital signature) and thus, provides the non-repudiation property. New 
cryptographic algorithms have been devised to achieve both encryption and 
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authentication. EAX [BRW04] is a representative example of this class of 
algorithms. 

• Transaction authentication [MOV97]: while MDC, MAC and digital signatures 
may be used to establish that data was generated by a specified party at some 
time in the past, they provide no inherent timeliness guarantee. Therefore, these 
techniques alone cannot deal with data replaying attacks. Transaction 
authentication denotes data authentication augmented with a timeliness 
guarantee. The timeliness guarantee is typically provided by an appropriate use 
of time-variant parameters (TVP) such as random numbers in challenge-
response protocols, sequence numbers and timestamps.  

• Merkle hash trees [Mer90]: a Merkle hash tree is a virtual tree computed 
dynamically over encrypted data blocks (at the leaves of the tree) to attest the 
integrity of any granule (block or group of blocks) according to the current root 
hash value. As pictured in Figure 2, each intermediate hash value results from 
the hash of the concatenation of its children hashes. Each leaf hash value is 
obtained by hashing the corresponding encrypted data block. To check the 
integrity of a retrieved encrypted data block, the trusted party has to retrieve 
some hashes to re-compute the root hash value and compare it to the expected 
one. In the example of Figure 2, when retrieving the ciphertext C4, hash values 
H3, H9 and H14 are also retrieved to compute the hash value H15’=H (H14||H 
(H9||H (H3||H(C4))) and compare it with H15. Note that when the data contains 
some timeliness information, the tree additionally guarantees that the accessed 
data has not been replayed.  
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Fig. 2. Merkle Hash Tree. 

• Tamper-Resistant Hardware: hardware protected devices guarantee that the 
embedded data and programs cannot be tampered. Secure co-processors and 
smart cards are today the most widely used hardware protected devices. They 
provide a very high level of security protecting their content against any form of 
snooping and tampering. For example, in smart cards, layers of metal are 
covering the chip and detect any invasion attempt, the embedded algorithms are 
proved secure against software attacks, the radiations produced by the processor 
during normal operations are limited, the power consumption is maintained 
roughly constant as well as the chip’s temperature, fault generation is avoided 
thanks to on-chip sensors (low frequency and/or voltage alarms) that detect 
abnormal input signals and then disable the chip. Thus, the data/programs 
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downloaded on such devices are stored/ran as expected and are destroyed if 
hacked.  

3. Data encryption approaches 

Traditional database security policies rely on user authentication, 
communication encryption and server-enforced access controls [BPS96]. 
Unfortunately, these mechanisms are inoperative against most of the attacks 
identified in Section 2. Several attempts have been made recently to strengthen 
server-based database security policies thanks to database encryption. In this 
section, we discuss different techniques proposed by DBMS manufacturers and 
academic researchers to increase the security level of traditional client/server 
DBMS. These strategies have the benefit to keep the existing DBMS kernels 
unaffected by simply adding a security layer on top of them.  
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(a) Encryption at the server side. (b) Encryption at the client side. 

Fig. 3.  DBMS architectures exploiting data encryption. 

The main DBMS manufacturers provide cryptographic toolkits to encrypt the 
database tuples. DB2 UDB includes encryption functions for string data with a 
column granularity [IBM03]. Oracle provides the Oracle Obfuscation Toolkit as a 
PL/SQL package to encrypt string and binary data [Ora01, Ora02]. Finally, 
Microsoft SQL Server 2000 supplies encryption for the network traffic and for 
metadata (e.g., views definitions). This leads to the functional architecture pictured 
in Figure 3.a. The encryption of the data at rest prevents intruder attacks. However, 
the data is decrypted on the server at runtime (encryption keys must be transmitted 
or kept on the server side) and then the protection against administrator attacks is 
rather weak. In this context, the server memory and the keys storage are assumed to 
be trusted, i.e. a pirate cannot gain access to keys nor data currently in memory. 

In the same spirit, the study presented in [IMM+04] assumes that the server is 
trusted enough to proscribe performing a memory dump. Thus, the authors focus on 
protecting secondary storage using encryption, minimizing the degradation of the 
overall system performance. A new storage model inspired by PAX [ADH+01] is 
devised for an efficient evaluation of the result, vertically decomposing the database 
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tuples stored in each disk page and encrypting each (confidential) column 
separately. Other studies address the query response time overhead induced by data 
decryption and propose order-preserving encryption techniques to evaluate range 
selection predicates [AKS+04, DCP+04] directly on the encrypted data. These 
encryption strategies reduce the amount of data to be decrypted during the query 
evaluation, improving the performance. However, this solution suffers from the 
same security breach as commercial DBMSs. 

Solutions complementary to database encryption have been recently investigated 
to guard the DBMS from the DBA. Protegrity [Mat04] introduces a clear distinction 
between the role of the DBA, administering the database resources, and the role of 
the SA (Security Administrator), administering user privileges, encryption keys and 
other related security parameters. This distinction is also made effective at the 
system level by separating the database server from the security server. The gain in 
confidence comes from the fact that an attack requires a conspiracy between DBA 
and SA. This solution can adapt to most DBMS products (Oracle, IBM DB2, SQL 
Server, Sybase). However, one must keep in mind that the data is still decrypted by 
the server at query execution time.  

To circumvent this weakness, some academic proposals assume the decryption 
be performed on the client rather than on the server side [HIL+02, HIM02, HIM04, 
HIM05, OSC03, DDJ+03]. This leads to the functional architecture pictured in 
Figure 3.b. Thus, the cryptographic layer (and the associated keys) as well as (part 
of) the query processing module are shift on the client side. The query issued by the 
user is split on the client into two sub-queries. The first one is evaluated on the 
server, directly on the encrypted data, and the second one is processed on the client 
after decryption of the result of the first sub-query. On the server side, the 
processing is made possible thanks to additional fuzzy indexing information added 
to the encrypted database. These fuzzy indices are used by the server to select the 
superset of the encrypted database required to compute the final result. The client 
then decrypts the data and completes the query evaluation. Note that the more 
precise the indices on the server side, the more efficient the overall execution 
process. However, the precision of the indices also increases the risk of data 
snooping (by comparing indices, the attacker may deduce some information). A 
study balancing the efficiency allowed by the precision of the indices and the 
confidentiality of the encrypted data is conducted in [DDJ+03].  

Although these solutions provide valuable protections against some 
confidentiality attacks (e.g., intruder attacks), their limit is twofold. First, the 
relationship between indices and data gives means to the attackers to infer some 
information (e.g., data distribution). Moreover, a pirate obtaining a single 
information on the database content would easily deduce many others by disclosure 
propagation. Data snooping attacks could thus bypass the protection settled by 
encryption. Second, these solutions either do not prevent administrator attacks 
(Figure 3.a) or proscribes data sharing among users having different privileges (or at 
least makes it rather difficult to organize). Indeed, in this latter case, the privileges 
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of each user have to be hardcoded by the encryption process (Figure 3.b). Despite 
these drawbacks, these solutions are efficient and have the main advantage of being 
adaptable to existing database servers. 

4. Secured hardware approaches 

A drastic solution to enforce the security of the DBMS code and of the database 
consists in embedding them into a Secured Operating Environment (SOE), with the 
objective to inherit from the SOE its intrinsic security. Smart cards are good 
examples of SOE and exhibit a very high security level for the on-board data, 
protecting them against all the forms of attacks identified in Section 2 [ABP03b]. 
Embedding the DBMS code as well into the secured hardware prevents from any 
information disclosure at query processing time. Figure 4 pictures a secured DBMS 
architecture relying on secured hardware. 

Smartcard
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Query
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Storage
Mgr

Rights
Mgr

Data

Data

Data

 
Fig. 4. DBMS architecture exploiting secured hardware. 

However, secured hardware devices are usually highly limited in terms of 
resources to cope with strong security constraints. To illustrate this, smart card 
microcontrollers must fit in 25 mm². Consequently, CPU, RAM and stable storage 
compete on the same silicium die. This generally leads to scarce RAM resources 
(because of the low density of RAM cells) and to high density electronic stable 
memory (e.g., EEPROM, Flash) that exhibit fast read time but very slow write time. 
The peculiarities of these environments compel to deeply revisit existing DBMS 
techniques (e.g., storage and indexation models, query execution strategies). This 
section presents state of the art works in this domain, and then discusses the 
limitations induced by this approach. 

The first attempt towards a DBMS embedded in a smart card is ISOL’s SQLJava 
Machine [Car99] and the ISO standard for smart card database language, SCQL 
[ISOp7]. Both are addressing generation of smart cards endowed with 8 kilobytes of 
stable memory. SQLJava Machine and SCQL design are limited to mono-relation 
queries. This limitation has an impact on the possible target applications, reducing 
the access rights powerfulness and thus the sharing capabilities. However, this 
proposal exemplified the interest for dedicated smart card DBMS.  
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A full-fledged on-chip DBMS called PicoDBMS has been more recently 
designed [PBV+01] and prototyped [ABB+01], taking advantage of the increasing 
computing and storage resources of advanced smart card platforms. The DBMS 
kernel acts as a doorkeeper that authenticates the users and solely delivers the data 
corresponding to their privileges. In a relational DBMS, the powerfulness of the 
access control is directly determined by the complexity of the views that can be 
built. To be able to provide fine grain privileges, PicoDBMS supports complex 
query processing including select, project, join and aggregate operators. This study 
raises specific design rules required to build a full-fledged DBMS kernel complying 
with the smart card's constraints. Following these rules, the technical solution relies 
on highly compact storage structures (attributes are stored in domains, acting as a 
compression by dictionary), on ad-hoc compact indexation techniques (attributes 
possibly engaged in selections and joins are linked by rings of pointers), and on a 
pure pipeline query execution model consuming a minimal (bounded) amount of 
RAM. A mini-benchmark has also been settled [Anc04] for smart card DBMS. The 
metrics is comparable to those used for traditional storage device, expressed in 
capacity (number of storable tuples), latency (time to return the first result) and 
transmission rate (number of results delivered per second).  

A recent study proposes specific storage techniques to manage data in Flash 
memory on a smart card [BSS+03]. The design is limited to mono-relation queries 
and is strongly impacted by the physical characteristics of the target smart card 
architecture. Indeed, the database is stored in NOR Flash memory generally 
dedicated to store programs as ROM replacement. Since updates in NOR Flash 
memory are very costly (updating a single data induces large and costly block 
erasure), the techniques are driven by update cost minimization (deleted bit and 
dummy records). While this study shows the impact of hardware characteristics on 
the DBMS internals, it does not address complex query processing, mandatory to 
express fine grain authorizations. 

The initial application target of smart card DBMS was the management of 
secured personal folders (e.g., healthcare, scholarship, insurance, etc.). While this is 
still an important application domain and deserves a growing attention from major 
industrial actors (e.g., MasterCard’s Open Data Store [Mas02]), the introduction of 
secured chips in usual computing infrastructures paves the way for new large-scale 
applications. First, tamper-resistant chips should be integrated soon in any PC 
platforms [TCP] and consumer appliances [Sma] to prevent piracy and enforce 
Digital Right Management. Second, ambient intelligence is flooding many aspects 
of our everyday life with smart objects gathering information about our habits and 
preferences, threatening the citizen’s elementary right to privacy. Therefore, 
embedding data management techniques in secured chips can be the mean by which 
each individual can preserve the expected control on her own data. 

To conclude, this approach provides an unequalled security level protecting the 
database against all the attacks depicted in Section 2. This security level is obtained 
thanks to (i) hardware protection and (ii) database self-administration. However, the 
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volume of protected data as well as the DBMS code footprint (and thus the database 
functionalities) are bounded by the hardware constraints. To illustrate this, the most 
advanced smart card prototypes are endowed with 1 megabyte of stable storage. In 
addition, data sharing can only be obtained by physically sharing the smart card 
thereby limiting the applicability of the approach. In the long term, these constraints 
will be alleviated, allowing embedding larger and more powerful DBMS that could 
even be acting as servers connected to the network. However, such an evolution 
would inevitably conduct to administrate the database, and then would reintroduce 
the threat of administrator attacks. 

5. Mixing encryption and secured hardware 

This section discusses a hybrid approach relying on database encryption at the 
server and on a secured processing environment at the client side. This combination 
of instruments allows data sharing among several users (and devices) while 
protecting the database from administrator attacks.  

Chip-Secured Data Access (C-SDA) [BoP02] is a client-based security 
component acting as an incorruptible mediator between a user and an encrypted 
database. At query execution time, C-SDA checks whether the user has enough 
privileges to issue the query. In the positive case, it participates to the query 
evaluation in collaboration with the server, decrypts the data and externalizes the 
authorized result to the client terminal.  This component is embedded into a smart 
card to prevent any tampering to occur at the client side. This cooperation of 
hardware and software security components allows reestablishing the orthogonality 
between access control management and data encryption. The architecture of this 
solution is pictured in Figure 5. 

Rights
Mgr

Query
Mgr

User

DataDataData

Data

Data Data Data

Query
Mgr

Smartcard
 

Fig. 5. Architecture mixing encryption and secured hardware. 

While the proposed architecture is attractive, it seems difficult to instantiate it on 
current smart cards given their limited resources. Indeed, the hardware constraints 
would lead to poor performance when decrypting and processing large amounts of data 
(limited bandwidth, working memory and CPU). To tackle this issue, [BoP02] delegates 
to the server the part of the query processing that can be done directly on the encrypted 
data. The decryption and the remaining part of the processing must be done in the client 
tamper-resistant device in a pipeline fashion (to prevent memory overflow).  
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The proposed solution uses a specific encryption scheme allowing delegating 
projections, equi-selections, equi-joins, and grouping to the server: each column 
value is encrypted separately using an ECB mode algorithm (e.g., triple DES) 
applied on clear text values. Therefore, the equality property is preserved among 
encrypted data. [BoP02] shows that, thanks to this property, any SQL query can be 
split in two parts, the first one dealing with equality predicates on the encrypted data 
and the second part being calculable in a pure pipeline fashion. Optimizations based 
on a multi-stage cooperation between the smart card and the server have been 
proposed to minimize the amount of processed data and the transmission, decryption 
and CPU costs. 

The limitations of this solution are the following. First, by preserving the 
equality among the encrypted data (a necessary requirement to cope with current 
smart card constraints), the encryption process provides a limited opacity. Thus, 
snooping attacks are possible using statistical analysis on the encrypted data. 
Second, this solution assumes no collusion between the client and the server. 
Indeed, to gain access to unauthorized data, a malicious client could try to modify 
the data on the server, even if encrypted, using substitution, random modification, 
etc. Thus, the system is not protected against altering, substituting and replaying 
attacks.  

This approach is however promising. The volume of storable data is unbounded, 
the solution provides data sharing and a reasonable level of performance and 
functionality can be obtained. New techniques have to be devised in order to ensure 
a higher security level while delegating part of the processing to a potentially 
untrusted server. 

6. Integrity control add-on: a step toward broader solutions 

This section builds on the previous ones and adds integrity verifications within 
the secure operating environment to ensure that the accessed data is the original one 
and has not been altered, substituted or replayed by a malicious user (e.g., an 
insider). We first introduce a generic architecture where the server is assumed to be 
hosted in an untrusted environment. We then present two approaches exploiting 
encryption, secured hardware and integrity control techniques to protect from all the 
attacks of Section 2. These two approaches are however restricted in terms of query 
processing capabilities. Finally, as an introduction to future research directions, we 
sketch a possible approach allowing performing complex query processing while 
keeping the same security level.  

6.1. Generic architecture 

The reference architecture depicted in Figure 6 includes three elements, each 
with a different level of security assigned to it. The Secure Operating Environment 
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(SOE) is the unique element of trust. Within the SOE, processing and data are 
trusted, secured and hidden to any attacker. Conversely, the Untrusted Operating 
Environment (UOE) may be the focus of attackers. The UOE does not offer any 
security guarantee on the data it holds, neither on the processing it does, thus 
requiring encryption and integrity instruments (see Section 2). Finally, the 
Rendering Terminal (RT) is the mean by which the query result is delivered to the 
user. Thus, the RT has the same level of trust as the user himself; otherwise the RT 
could not deliver the results. The RT should not have access to unauthorized data or 
temporary results since the user could tamper the RT. 
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ProgramProgram
ProgramProgram

ProgramProgram
ProgramProgram
ProgramProgram

UserUser

Data repositoryData repository

Secure 
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Environment

Data request

Data transfer
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Fig. 6. Reference Architecture. 

6.2. Existing approaches 

Two solutions, called Trusted-DataBase (TDB) [VMS02, MVS00] and GnatDB 
[Vin02], have been proposed. These solutions target emerging applications 
requiring running trusted programs on untrusted hosts. For instance, to enforce 
Digital Right Management (DRM) policies, distributors of digital content need to 
control the usage of the supplied content made by consumers on multimedia 
appliances. The terms of a DRM policy are implemented by a program (i.e., a 
license interpreter) that must run in a secured environment to be reliable.  

The first solution, TDB, targets an architecture endowed with a large SOE like a 
secured co-processor (powerful CPU, boosted cryptographic performance, megabytes 
of RAM and FLASH memory) within a tamper-responding enclosure like the IBM 
4758 [DLP+01]. The second solution, GnatDB, is a limited version of TDB addressing 
secured architectures endowed with smaller SOE like smart cards or secure tokens. 

In TDB, the data is stored encrypted on the UOE into large chunks (100 bytes to 
100 kilobytes) stored in a log fashion. The integrity of each partition is protected by 
a Merkle Hash Tree stored within a location map (also organized as a hierarchy). 
Encryption keys and the hash roots of each tree are stored within the SOE. The data 
is encrypted/decrypted within the SOE, its integrity is checked using the Merkle 
Hash Tree, and replay attacks are prevented using increment-only counters 
associated to the data. TDB implements some transactional features (a set of updates 
can be declared to be atomic). Supported queries are equivalent to relational mono-
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table selections (TDB has an object-oriented interface). The performance analysis of 
the system (TPC-B benchmark) shows the feasibility of the approach.  

GnatDB is the light version of TDB, fitting into a smart card and complying with 
the smart card constraints. GnatDB ensures the same high security level as TDB. 
GnatDB does not rely on Merkle Hash Trees to reduce the code footprint, minimizes 
the RAM consumption within the SOE, and provides a light transactional kernel 
(atomicity and durability only). The location map is not stored as a hierarchy but 
within an array (again to minimize the code footprint), written sequentially at each 
update. This technique limits the scalability of this system, but provides transaction 
atomicity. In this proposal, performance is not the primary concern, and query 
processing is not addressed.  

These solutions successfully rely on a secure operating environment, on 
encryption and on integrity techniques to ensure a very strong level of security, 
actually much higher than the one provided by the preceding approaches (except 
those introduced in Section 4). Also, the main DBMS transactional functionalities 
are supported. However, the query processing capabilities are limited, thus 
proscribing applications that rely on fine grain privileges. Thus, these works show 
the benefit of combining SOE, encryption and integrity control and pave the way for 
more powerful approach dealing with real query processing. 

6.3. A step toward broader solutions 

Considering query processing, and thus fine grain privileges, raises two 
important questions: (i) which part of the query processing could be delegated to 
untrusted parties without reducing the security level and (ii) how to cope with the 
constrained resources of the SOE while processing the remaining part of the query. 
These questions are addressed in the following and some perspectives are drawn. 

Compared with an architecture where the DBMS code and the database are 
entirely hosted in a SOE (e.g., PicoDBMS), the security level is obviously reduced 
as soon as part of the system stands on an UOE, potentially controlled by an attacker 
(e.g., the UOE administrator). Thus, externalized data and externalized processing 
(i.e., processing done on the UOE and messages exchanged between the SOE and 
the UOE) must be opaque and tamper resistant.  

While cryptographic techniques may provide such opacity and tamper resistance 
for the externalized data, providing opacity and tamper resistance for externalized 
processing is today an open problem. Indeed, tamper resistance means that any 
externalized processing should be checked afterward in the SOE. Actually, such 
verification might be as expensive as the processing itself. Some techniques indeed 
exist for simple selections [GKM+04] but the problem remains open for more 
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complex operations3. Thus, the tamper resistance of externalized processing seems 
difficult to attain. Externalized processing opacity seems also unreachable since 
delegating processing always discloses some information (even if it is done on 
encrypted data), which can be exploited by an attacker. As observed in [KaC05], 
providing total opacity on externalized processing appears to be a Private 
Information Retrieval (PIR) [CGK+95] problem. 

A possible, but drastic, solution to cope with these issues is to reduce 
externalized processing to its strict minimum. This can be achieved by reducing the 
UOE to a server of encrypted blocks, each one characterized by an address and a 
size. The advantages of this option are to obtain the highest level of opacity and to 
make the problem of tamper resistance tractable. Indeed, it only discloses the 
accesses to the data blocks and the number and size of the exchanged messages. 
Moreover, checking the external processing integrity simply amounts to verify that 
each retrieved data block has not been altered (data integrity), substituted (the block 
originates from the expected address with the expected size) or replayed (this is the 
latest version of this block).  

Query processing is thus confined within the SOE, except the retrieval of 
external data, which is necessarily delegated to the UOE. The execution strategy is 
therefore highly impacted by the data access cost and the limited amount of RAM 
available in the SOE. Indeed, the external data must be decrypted and its tamper-
resistance must be checked within the SOE, thereby significantly increasing the data 
access cost (two orders of magnitude more expensive than accessing the internal 
memory of the smart card). This leads to strongly minimize access to irrelevant data. 
This could be achieved by an extensive use of indices, vertical fragmentation and 
fine grain access to data (and thus fine grain encryption, authenticity, etc.) 

The limited amount of RAM has also a large impact on query execution. Indeed, 
techniques as the one proposed in PicoDBMS or [ABP03a] cannot be used since 
they incur numerous iterations on the data. Aggressive indexation is clearly required 
in this context but do not solve totally the problem unless every possible view result 
is materialized, thereby hurting data and access right dynamicity.  

A possible approach is to use the small amount of available RAM for query 
processing and to rely on swapping on the UOE or RT in order to adapt state-of-the-
art algorithms (e.g., sort-merge join). Obviously, swapped data should have the 
same opacity and integrity characteristics as the base data. Thus, swapping in and 
out data roughly doubles the data access cost. To maximize the usefulness of the 
                             
3 In [GKM+04], the author use Merkle hash trees to authenticate the result of simple 
selections produced by an untrusted server (but on plaintext data). Roughly, the idea is to sort 
the data according to the desired criteria (e.g., the age of a person when the predicate is age ∈ 
[30-40]) and to provide hash values for the data that are not in the result (e.g., less than 30 
and more than 40). These hash values combined with the computed hash of the result should 
be equal to the hash of the queried relation. This interesting result is however difficult to 
adapt to all operators of the relational algebra. Moreover, in our case, the computation must 
be done on encrypted data! 
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RAM, the following principle could be adopted: at every step during query 
processing, the SOE should only retrieve the subset of data strictly necessary to 
perform that step. While this seems natural, it is opposed to classical execution 
techniques where caching and prefetching are used to increase performance. 

 We are currently investigating the approach proposed above and believe that it 
is a first step towards a highly secure DBMS providing query processing features, 
views and powerful privileges. However, many problems remain open and deserve 
further investigation.  

7. Conclusion 

This paper studied and compared alternatives to enforce data confidentiality, by 
means of cryptographic techniques and/or specialized secured hardware.  

Approaches based solely on data encryption provide a security and functionality 
level that depends on the place encryption/decryption is actually performed. 
Decryption at the server side exposes the system to administrator attacks. Moving it 
to the client side increases the security at the price of loosing data sharing 
capabilities, thereby limiting the applicability of the approach to the management of 
private databases. 

An unequalled security level can be obtained by embedding the DBMS and the 
database into a secure operating environment. Approaches based on smart cards 
have been explored so far. While limited by the smart card hardware constraints, 
these solutions are well suited for handling secured personal folders (e.g., healthcare 
folder) as well as for a broader range of applications dealing with smart objects in 
an ambient intelligence surrounding. Indeed, a strong protection is required for these 
highly personal and sensitive data. The smart card limitations should be alleviated in 
the mid-term thus increasing the applicability of this approach. 

Combining cryptographic techniques and secure operating environment allows 
enforcing confidentiality while preserving important DBMS properties like data 
sharing, unbounded data volume and performance. Few works have been conducted 
in this area. C-SDA is one of them. It uses a specific encryption scheme allowing 
delegating part of the processing to the server on the encrypted data, thus allowing 
efficient processing.  As a side effect, this encryption scheme allows attackers to 
perform snooping attacks. This limits the scope of this solution to scenarios where 
there is no collusion between the client and the server.  

Finally, we presented an approach where the server is hosted in an untrusted 
environment and integrity techniques are added to prevent from altering, 
substituting or replaying the data. Two systems representative of this approach 
already exist but they do not provide real query facilities and then implement coarse 
grain privileges. The problem becomes much harder as soon as query processing is 
considered. Preliminary ideas have been sketched in this paper to support complex 
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query processing without entailing a reduction of security. These ideas could pave 
the way for future highly secured DBMS providing query processing facilities, 
views and fine grain privileges and deserve further investigations. 

8. References 

[ABB+01] Anciaux N., Bobineau C., Bouganim L., Pucheral P., « PicoDBMS: Validation 
and Experience », International Conference on Very Large Databases (VLDB), 
demo session, 2001.  

[ABP03a] Anciaux N., Bouganim L., Pucheral P., « Memory Requirements for Query 
Execution in Highly Constrained Devices », International Conference on Very 
Large Databases (VLDB), 2003. 

[ABP03b] Anciaux N., Bouganim L., Pucheral P., « Database Components on Chip », 
ERCIM news, 2003.  

[ADH+01] Ailamaki A. G., DeWitt D. J., Hill M. D., Skounakis M., « Weaving Relations for 
Cache Performance », International Conference on Very Large Data Bases 
(VLDB), 2001. 

[AKS+04] Agrawal R., Kiernan J., Srikant R., Xu Y, « Order-Preserving Encryption for 
Numeric Data », ACM International Conference on Management of Data 
(SIGMOD), 2004. 

[Anc04] Anciaux N., « Database Systems on Chip », PhD thesis, University of Versailles, 
2004. 

[App03] Application Security Inc., « Encryption of Data at Rest - Database Encryption », 
White Paper, 2002. http://www.appsecinc.com  

[BCF01] Bertino E., Castano S., Ferrari E., « Securing XML documents with Author-X », 
IEEE Internet Computing, 2001. 

[BDP04] Bouganim L., Dang Ngoc F., Pucheral P., « Client-Based Access Control 
Management for XML documents », International Conference on Very Large 
Databases (VLDB),2004. 

[BeL76] Bell D. E., LaPadula L. J., « Secure computer systems: Unified exposition and 
multics interpretation », Technical Report ESD-TR-73-306, The MITRE 
Corporation, 1976. 

[BoP02] Bouganim L., Pucheral P., « Chip-Secured Data Access: Confidential Data on 
Untrusted Servers », International Conference on Very Large Databases (VLDB), 
2002.  

[BPS96] Baraani A., Pieprzyk J., Safavi-Naini R., « Security In Databases: A Survey 
Study », 1996.  citeseer.nj.nec.com/baraani-dastjerdi96security.html 

[BRW04]  Bellare M., Rogaway P., Wagner D., « The EAX Mode of Operation », Fast 
Software Encryption (FSE), 2004.  



18     Annals of Telecoms. Volume X – n° X/2005 

[BSS+03] Bolchini C., Salice F., Schreiber F., Tanca L., « Logical and Physical Design 
Issues for Smart Card Databases », ACM Transactions on Information Systems 
(TOIS), 2003. 

[Car99] Carrasco L. C., « RDBMS’s for Java Cards ? What a Senseless Idea ! », 1999.  
http://www.sqlmachine.com 

[CGK+95] Chor B., Goldreich O., Kushilevitz E., Sudan M., « Private information  
retrieval », Symposium on Foundations of Computer Science (FOCS'95), 1995. 

[CSI04]  Computer Security Institute. « CSI/FBI Computer Crime and Security Survey », 
2004. http://www.gocsi.com/forms/fbi/pdf.html. 

[DCP+04] Damiani D., De Capitani Di Vimercati S., Paraboschi S., Samarati P., 
« Computing range queries on obfuscated data », Information Processing and 
Management of Uncertainty in Knowledge-Based Systems (IPMU), 2004.    

[DDJ+03] Damiani E., De Capitani Vimercati S., Jajodia S., Paraboschi S., Samarati P.,  
« Balancing Confidentiality and Efficiency in Untrusted Relational DBMSs », 
ACM Conference on Computer and Communications Security (CCS), 2003. 

[DDP02] Damiani E., De Capitani di Vimercati S., Paraboschi S., Samarati P., « A Fine-
Grained Access Control System for XML Documents », ACM TISSEC, vol. 5, n. 
2, 2002. 

[DLP+01] Dyer J. G., Lindemann M., Perez R., Sailer R., Doorn L. van, Smith S. W., 
Weingart S., « Building the IBM 4758 Secure Coprocessor », IEEE Computer, 
2001. 

[EFF] Electronic Frontier Foundation, « Unintended Consequences: Five Years under 
the DMCA ». http://www.eff.org/IP/DMCA/ 

[Eru01]  Eruces Inc., « Securing Data Storage: Protecting Data at Rest », In Dell Power 
Solutions magazine, Issue 4, 2001.  http://ftp.dell.com/app/4q01-Eru.pdf 

[Eur85]  European Directive 95/46/EC, « Protection of individuals with regard the 
processing of personal data », Official Journal L 281, 1985.  

[GaB01] Gabillon A., Bruno E., « Regulating access to XML documents », IFIP Working 
Conference on Database and Application Security, 2001. 

[GKM+04] Gertz M., Kwong A., Martel C., Nuckolls G., Devanbu P., Stubblebine S.,  
« Databases that tell the Truth: Authentic Data Publication », Bulletin of the 
Technical Committee on Data Engineering, 2004. 

[HIL+02]  Hacigümüs H., Iyer B., Li C., Mehrotra S., « Executing SQL over Encrypted Data 
in the Database-Service-Provider Model », ACM International Conference on 
Management of Data (SIGMOD), 2002. 

[HIM02] Hacigümüs H., Iyer B., Li C., Mehrotra S., « Providing Database as a Service », 
International Conference on Data Engineering (ICDE), 2002. 

[HIM04] Hacigümüs H., Iyer B., Mehrotra S., « Efficient execution of aggregation queries 
over encrypted relational databases », International Conference on Database 
Systems for Advanced Applications (DASFAA), 2004.   



     19 

[HIM05] Hacigümüs H., Iyer B., Mehrotra S., « Query Optimization in Encrypted Database 
Systems », International Conference on Database Systems for Advanced 
Applications (DASFAA), 2005. 

[HRU76] Harrison M. A., Ruzzo W. L., Ullman J. D. « Protection in Operating Systems », 
Communication of the ACM, 19(8):461-471, 1976. 

[IBM03] IBM corporation, « IBM Data Encryption for IMS and DB2 Databases v. 1.1 », 
2003. http://www-306.ibm.com/software/data/db2imstools/html/ibmdataencryp.html. 

[IMM+04] Iyer B., Mehrotra S., Mykletun E., Tsudik G., Wu Y., « A Framework for 
Efficient Storage Security in RDBMS », International Conference on Extending 
Database Technology, 2004. 

[ISOp7] International Standardization Organization, Integrated Circuit(s) Cards with 
Contacts - Part 7, ISO/IEC 7816-7, 1999. 

[KaC05]  Kantarcioglu M., Clifton C., « Security Issues in Querying Encrypted Data », 
IFIP Working Conference on Database and Applications Security (DBSec), 2005. 

[KrT] Krause M., Tipton H. F., « Handbook of Information Security Management », 
Auerbach Publications, CRC Press LLC. http://www.cccure.org/Documents 
/HISM/ewtoc.html 

[Mas02] MasterCard, « MasterCard Open Data Storage (MODS) », 2002. 
https://hsm2stl101.mastercard.net/public/login/ebusiness/smart_cards/one_smart_
card/biz_opportunity/mods. 

[Mat04] Mattsson U., « Transparent Encryption and Separation of Duties for Enterprise 
Databases -A Solution for Field Level Privacy in Databases », Protegrity 
Technical Paper, 2004. http://www.protegrity.com/whitepapers 
/TRANSPARENT-ENCRYPTION-FOR-ENTERPRISE-DATABASES.pdf 

[Mer90] Merkle R., « A Certified Digital Signature », Advances in Cryptology (Crypto'89), 
LNCS, vol.435, Springer--Verlag, 1990.  

[MeS93] Melton J. and A. Simon R, « Understanding the new SQL: A Complete Guide », 
Morgan Kaufmann, 1993.  

[MOV97] Menezes A., Van Oorschot P., Vanstone S., « Handbook of Applied  
Cryptography », CRC Press, 1997. www.cacr.math.uwaterloo.ca/hac. 

[MVS00] Maheshwari U., Vingralek R., Shapiro W., « How to build a trusted database 
system on untrusted storage », Symposium on Operating Systems Design and 
Implementation (OSDI), 2000. 

[NIS95] NIST, « Secure hash standard », FIPS Publication 180-1, 1995. 

[Ora01] Oracle Corporation, « Database Encryption in Oracle9i », 2001. 
otn.oracle.com/deploy/security/oracle9i. 

[Ora02]  Oracle Corporation, « Oracle Advanced Security - Administrator’s Guide »,  
Release 2 (9.2), Part No. A96573-01, 2002 



20     Annals of Telecoms. Volume X – n° X/2005 

[OSC03]  Ozsoyoglu G., Singer D., Chung S. S., « Anti-Tamper Databases: Querying 
Encrypted Databases », IFIP Working Conference on Database and Applications 
Security (DBSec), 2003. 

[PBV+01] Pucheral P., Bouganim L., Valduriez P., Bobineau C., « PicoDBMS: Scaling 
down Database Techniques for the Smart card », Very Large Data Bases Journal 
(VLDBJ), 2001. 

[Pri74] The Privacy Act, 5 U.S.C. § 552a, 1974. http://www.usdoj.gov/04foia/ 
privstat.htm. 

[RIV92] Rivest R.L., « The MD5 message-digest algorithm », RFC 1321, 1992. 

[SCF+96] Sandhu R., Coyne E. J., Feinstein H. L., Youman C. E., « Role-based access 
control models », IEEE Computer, 29(2):38-47, 1996. 

[Sma] SmartRight Technical white paper. http://www.smartright.org/images/SMR/ 
content/SmartRight_tech_whitepaper_jan28.pdf 

[TCP] Trusted Computing Platform Alliance, http://www.trustedcomputing.org/. 

[Vin02] Vingralek R., « Gnatdb: A small-footprint, secure database system », 
International Conference on Very Large Databases (VLDB), 2002. 

[VMS02] Vingralek R., Maheshwari U., Shapiro W., « TDB: A Database System for Digital 
Rights Management », International Conference on Extending Database 
Technology (EDBT), 2002. 


