Corrigendum to
 "Efficient similarity search and classification via rank aggregation" by Ronald Fagin, Ravi Kumar and D. Sivakumar, Proc. SIGMOD'03.

Alexandr Andoni
MIT
32 Vassar St.
Cambridge, MA 02139

Ronald Fagin
IBM Almaden
650 Harry Road
San Jose, CA 95120

Ravi Kumar
Yahoo! Research
701 First Ave.
Sunnyvale, CA 94089

Mihai Pǎtraşcu
MIT
32 Vassar St. Cambridge, MA 02139

In this corrigendum, we correct an error in the paper [FKS03]. The error was discovered by Alexandr Andoni, and the corrected theorem is due to the three authors of [FKS03], along with Alexandr Andoni and Mihai Pǎtraşcu.

Theorem 4 of [FKS03] states:

> Let D be a collection of n points in \mathbb{R}^{d}. Let $r_{1}, \ldots r_{m}$ be random unit vectors in \mathbb{R}^{d}, where $m=\alpha \epsilon^{-2} \log n$ with a suitably chosen. Let $q \in \mathbb{R}^{d}$ be an arbitrary point, and define, for each i with $1 \leq i \leq m$, the ranked list L_{i} of the n points in D by sorting them in increasing order of their distances to the projection of q along r_{i}. For each element x of D, let medrank $(x)=$ median $\left(L_{1}(x), \ldots, L_{m}(x)\right)$. Let z be a member of D such that medrank (x) is minimized. Then with probability at least $1-1 / n$, we have $d(z, q) \leq(1+\epsilon) d(x, q)$ for all $x \in D$.

As stated, the above theorem does not hold, but a slight modification of it holds. Below, we first give a counterexample to the original theorem, and then present a modified theorem.

1. A COUNTER-EXAMPLE

In our counter-example, we give a specific set of n points in 2-dimensional space. Consider the following point set for very small ϵ, illustrated in Fig. 1:

- point $q=(0,0)$, the query;
- point $p=(0,1)$, the nearest neighbor;
- point $z=(1+\epsilon, 0)$, the false nearest neighbor;
- set H of 10 points h all at distance $(1+\epsilon)^{2}$ from q, specifically $h=(1+\epsilon)^{2} \cdot\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$;

D. Sivakumar

 Google Inc.1600 Amphitheatre Parkway
Mountain View, CA 94043

- set S of the rest $n-12$ points, all situated at $s=$ $\left((1+\epsilon)^{2}, 0\right)$.

1
Let r be random unit vector in \mathbb{R}^{2}, L is the list of the pointset D sorted by increasing distance from q; and $\operatorname{rank}(x)$ is the rank of point x in L. Then we have the following two claims.

Claim 1.1. $\operatorname{Pr}_{r}[\operatorname{rank}(z) \leq 2]>1 / 2+\Omega(\epsilon)$.
The claim follows immediately from Lemma 3 of [FKS03].
CLAIM 1.2. $\operatorname{Pr}_{r}[\operatorname{rank}(p) \geq|H|] \geq 1 / 2+1 / 16$.
It is sufficient to consider r 's with non-negative x coordinate, and identify r 's by their angle with the $O x$ axis. First, $\operatorname{rank}(p) \leq \operatorname{rank}(z)$ if $r \in[\alpha, \beta]$, where α is angle formed by the perpendicular to the line connecting q to midpoint of $p z$, and β is the angle formed by the perpendicular to $p z$. We can estimate α and β :

$$
\begin{gathered}
\alpha=\arctan \frac{p_{y}+z_{y}}{p_{x}+z_{x}}-\pi / 2=\arctan (1+\epsilon)-\pi / 2=-\pi / 4-\Theta(\epsilon) \\
\beta=\arctan \frac{z_{x}-p_{x}}{p_{y}-z_{y}}=\arctan (1+\epsilon)=\pi / 4+\Theta(\epsilon) .
\end{gathered}
$$

Thus, if $r \in[\alpha, \beta], \operatorname{rank}(p) \geq \operatorname{rank}(z)$, and then $\operatorname{rank}(p) \geq$ $|S|+1$.
Moreover, as we will see, if the angle of r is around $-\pi / 4$, then $\operatorname{rank}(p)>\operatorname{rank}(h)$. Indeed, consider any angle $\gamma \in$ $[-\pi / 4,-\pi / 4+\pi / 16]$. Then, $|\langle p, r\rangle|=|\sin \gamma| \geq 0.5$ and $|\langle h, r\rangle|=\left|(1+\epsilon)^{2} \frac{1}{\sqrt{2}} \cdot(\sin \gamma+\cos \gamma)\right| \leq 0.2(1+\epsilon)^{2}$.

Thus, if the angle of r is in the range $(-\pi / 2,-\pi / 4+$ $\pi / 16)$ or $(\beta, \pi / 2), \operatorname{rank}(p) \geq|H|$, and this happens with probability at least $\frac{\pi / 4+\pi / 16-\Theta(\epsilon)}{\pi / 2} \geq 1 / 2+1 / 16$.

Standard high concentration bounds will yield that medrank(z) $\operatorname{medrank}(p)$ with high probability. For completeness, we include one such lemma, due to Indyk:

Lemma 1.3 (cf. [Ind00], Lemma 2). Let \mathcal{D} be a distribution on \mathbb{R} and F be its cumulative distribution function. Then, for $\epsilon, \delta>0$ and $k=O\left(\frac{\log 1 / \delta}{\epsilon^{2}}\right)$, if $X_{1} \ldots X_{k}$ are iid from \mathcal{D}, then $X=$ median $\left\{X_{1}, \ldots X_{k}\right\}$ satisfies $\operatorname{Pr}[F(x) \in$ $(1 / 2-\epsilon, 1 / 2+\epsilon)] \geq 1-\delta$.

2. A NEW ALGORITHM

To correct the theorem, we propose to use the following new function medrank (x) :

$$
\operatorname{medrank}(x)=\operatorname{median}_{i}\left(\left|x r_{i}-q r_{i}\right|\right) .
$$

The resulting algorithm is presented in Fig. 2. Next, we show that this algorithm gives a $1+\epsilon$ nearest neighbor data structure.

We note that, for Step 2 of the query algorithm, we can use also other aggregation functions instead of the median function. In particular, if we use ℓ_{2} norm of the score vector instead of the median, then the same lemma as above holds, implied by Johnson-Lindernstrauss lemma [JL84]. Furthermore, if use ℓ_{1} norm of the score vector, then again the same lemma as above holds, and is implied by the ℓ_{2} to ℓ_{1} embedding of [JS82].

3. REFERENCES

Ronald Fagin, Ravi Kumar, and D. Sivakumar. Efficient similarity search and classification via rank aggregation. In SIGMOD '03: Proceedings of the 2003 ACM SIGMOD international conference on Management of data, pages 301-312, New York, NY, USA, 2003. ACM.
P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream computation. Proceedings of the Symposium on Foundations of Computer Science, 2000.
W.B. Johnson and J. Lindenstrauss. Extensions of lipshitz mapping into hilbert space. Contemporary Mathematics, 26:189-206, 1984.
W.B. Johnson and G. Schechtman. Embedding l_{p}^{m} into l_{1}^{n}. Acta Mathematica, 149:71-85, 1982.

Preprocessing. Input: a set of points $P \subset \mathbb{R}^{d},|P|=n$, and $\epsilon>0$.

1. Choose $k=O\left(\frac{\log n}{\epsilon^{2}}\right)$ vectors $r_{i} \in \mathbb{R}^{d}, i=1 \ldots k$, where each coordinate of r_{i} is drawn from a Gaussian $N(0,1)$ distribution. Vectors r_{i} represent random projections.
2. Construct k lists, where the $i^{\text {th }}$ list contains all the points from $p \in P$ sorted according to the value $p \cdot r_{i}$.
Query. Input: a query point $q \in \mathbb{R}^{d}$.
3. For fixed i and $p \in P$, define $\operatorname{score}_{i}(p)=q \cdot r_{i}-p \cdot r_{i}$.
4. Find the point $p^{*} \in P$ that minimizes $\operatorname{median}_{i \in[k]}\left\{\left|\operatorname{score}_{i}\left(p^{*}\right)\right|\right\}$.
5. Return p^{*}.

Lemma 2.1. The algorithm from Figure 2 returns a $1+\epsilon$ nearest neighbor of q with probability at least $1-1 / n$.

Proof. Fix some p and let $\Delta=\|p-q\|_{2}$. For each $i \in[k], \operatorname{score}_{i}(p)$ is distributed as $N\left(0, \Delta^{2}\right)$, normal distribution with standard deviation Δ. We will once again use Lemma 1.3 for estimating the median of iid samples.

Let $M_{p}=$ median $_{i \in[k]}\left\{\left|\operatorname{score}_{i}(p)\right|\right\}$. Applying Lemma 1.3 to the distribution $N\left(0, \Delta^{2}\right)$, we conclude that $F\left(M_{p}\right) \in$ $(1 / 2-\epsilon, 1 / 2+\epsilon)$ with probability at least $1-1 / n^{2}$, where F is the cumulative of $N\left(0, \Delta^{2}\right)$. Since the value x that satisfies $F(x)=1 / 2$ is $x=c \Delta$ where c is an absolute constant, and F has derivate $\Theta(1 / \Delta)$ around this x, we conclude that $M_{p} \in$ $(x-O(\epsilon \Delta), x+O(\epsilon \Delta))$. Thus, M_{p} is a $1+\epsilon$ approximation to $\|q-p\|$ with probability at least $1-1 / n^{2}$.

We conclude that M_{p} is a $1+\epsilon$ approximation to $\|q-p\|$ for all p, with probability at least $1-1 / n$. Thus the algorithm returns a $1+\epsilon$ approximate nearest neighbor with probability at least $1-1 / n$.

