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In this corrigendum, we correct an error in the paper [FKS03].
The error was discovered by Alexandr Andoni, and the cor-
rected theorem is due to the three authors of [FKS03], along
with Alexandr Andoni and Mihai Pǎtraşcu.

Theorem 4 of [FKS03] states:

Let D be a collection of n points in
� d. Let r1, . . . rm be

random unit vectors in
� d, where m = αε−2 log n with

a suitably chosen. Let q ∈
� d be an arbitrary point,

and define, for each i with 1 ≤ i ≤ m, the ranked

list Li of the n points in D by sorting them in in-

creasing order of their distances to the projection of q
along ri. For each element x of D, let medrank(x) =
median(L1(x), . . . , Lm(x)). Let z be a member of D
such that medrank(x) is minimized. Then with prob-

ability at least 1−1/n, we have d(z, q) ≤ (1+ ε)d(x, q)
for all x ∈ D.

As stated, the above theorem does not hold, but a slight
modification of it holds. Below, we first give a counter-
example to the original theorem, and then present a modified
theorem.

1. A COUNTER-EXAMPLE
In our counter-example, we give a specific set of n points

in 2-dimensional space. Consider the following point set for
very small ε, illustrated in Fig. 1:

• point q = (0, 0), the query;

• point p = (0, 1), the nearest neighbor;

• point z = (1 + ε, 0), the false nearest neighbor;

• set H of 10 points h all at distance (1 + ε)2 from q,
specifically h = (1 + ε)2 · ( 1√

2
, 1√

2
);
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• set S of the rest n − 12 points, all situated at s =
((1 + ε)2, 0).
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Let r be random unit vector in
� 2, L is the list of the

pointset D sorted by increasing distance from q; and rank(x)
is the rank of point x in L. Then we have the following two
claims.

Claim 1.1. Prr[rank(z) ≤ 2] > 1/2 + Ω(ε).

The claim follows immediately from Lemma 3 of [FKS03].

Claim 1.2. Prr[rank(p) ≥ |H|] ≥ 1/2 + 1/16.

It is sufficient to consider r’s with non-negative x coordi-
nate, and identify r’s by their angle with the Ox axis. First,
rank(p) ≤ rank(z) if r ∈ [α, β], where α is angle formed by
the perpendicular to the line connecting q to midpoint of pz,
and β is the angle formed by the perpendicular to pz. We
can estimate α and β:

α = arctan
py + zy

px + zx
−π/2 = arctan(1+ε)−π/2 = −π/4−Θ(ε)

β = arctan
zx − px

py − zy
= arctan(1 + ε) = π/4 + Θ(ε).



Thus, if r ∈ [α, β], rank(p) ≥ rank(z), and then rank(p) ≥
|S| + 1.

Moreover, as we will see, if the angle of r is around −π/4,
then rank(p) > rank(h). Indeed, consider any angle γ ∈
[−π/4,−π/4 + π/16]. Then, |〈p, r〉| = | sin γ| ≥ 0.5 and
|〈h, r〉| = |(1 + ε)2 1√

2
· (sin γ + cos γ)| ≤ 0.2(1 + ε)2.

Thus, if the angle of r is in the range (−π/2,−π/4 +
π/16) or (β, π/2), rank(p) ≥ |H|, and this happens with

probability at least π/4+π/16−Θ(ε)
π/2

≥ 1/2 + 1/16.

Standard high concentration bounds will yield that medrank(z) <
medrank(p) with high probability. For completeness, we in-
clude one such lemma, due to Indyk:

Lemma 1.3 (cf. [Ind00], Lemma 2). Let D be a dis-

tribution on
�

and F be its cumulative distribution function.

Then, for ε, δ > 0 and k = O( log 1/δ

ε2
), if X1 . . . Xk are iid

from D, then X = median{X1, . . . Xk} satisfies Pr[F (x) ∈
(1/2 − ε, 1/2 + ε)] ≥ 1 − δ.

2. A NEW ALGORITHM
To correct the theorem, we propose to use the following

new function medrank(x):

medrank(x) = mediani(|xri − qri|).

The resulting algorithm is presented in Fig. 2. Next, we
show that this algorithm gives a 1+ ε nearest neighbor data
structure.

Preprocessing. Input: a set of points P ⊂
� d, |P | = n, and ε > 0.

1. Choose k = O( log n
ε2

) vectors ri ∈
� d, i = 1 . . . k, where each coordinate of ri is drawn from a Gaussian

N(0, 1) distribution. Vectors ri represent random projections.

2. Construct k lists, where the ith list contains all the points from p ∈ P sorted according to the value
p · ri.

Query. Input: a query point q ∈
� d.

1. For fixed i and p ∈ P , define scorei(p) = q · ri − p · ri.

2. Find the point p∗ ∈ P that minimizes mediani∈[k]{|scorei(p
∗)|}.

3. Return p∗.
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Lemma 2.1. The algorithm from Figure 2 returns a 1 + ε
nearest neighbor of q with probability at least 1 − 1/n.

Proof. Fix some p and let ∆ = ‖p − q‖2. For each
i ∈ [k], scorei(p) is distributed as N(0, ∆2), normal distri-
bution with standard deviation ∆. We will once again use
Lemma 1.3 for estimating the median of iid samples.

Let Mp = mediani∈[k]{|scorei(p)|}. Applying Lemma 1.3

to the distribution N(0, ∆2), we conclude that F (Mp) ∈
(1/2− ε, 1/2+ ε) with probability at least 1−1/n2, where F
is the cumulative of N(0, ∆2). Since the value x that satisfies
F (x) = 1/2 is x = c∆ where c is an absolute constant, and F
has derivate Θ(1/∆) around this x, we conclude that Mp ∈
(x−O(ε∆), x + O(ε∆)). Thus, Mp is a 1 + ε approximation
to ‖q − p‖ with probability at least 1 − 1/n2.

We conclude that Mp is a 1+ε approximation to ‖q−p‖ for
all p, with probability at least 1 − 1/n. Thus the algorithm
returns a 1+ε approximate nearest neighbor with probability
at least 1 − 1/n.

We note that, for Step 2 of the query algorithm, we can
use also other aggregation functions instead of the median
function. In particular, if we use `2 norm of the score vector
instead of the median, then the same lemma as above holds,
implied by Johnson-Lindernstrauss lemma [JL84]. Further-
more, if use `1 norm of the score vector, then again the
same lemma as above holds, and is implied by the `2 to `1
embedding of [JS82].
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