
+ +

Unit 2: Tuning the Guts

� Concurrency Control | how to minimize

lock contention

� Recovery | how to minimize logging overhead

� Operating System| tune bu�er size, thread

scheduling, etc.

� Hardware | when to allocate more memory,

more disks, more processors

+ cDennis Shasha 1

+ +

CONCURRENCY CONTROL

RECOVERY SUBSYSTEM

OPERATING SYSTEM

PROCESSOR (S), DISK(S), MEMORY

Fig. 2.1

DATABASE SYSTEMSCOMMON UNDERLYING COMPONENTS OF ALL

+ cDennis Shasha 2

+ +

Fig. 2.2

T3

1

FIGURE: Concurrency

T2 is concurrent with T1, T3 and T4.

T1 is concurrent with T2 and T3 only.

TIME

T4

T2

T

+ cDennis Shasha 3

+ +

Concurrency Control Goals

Performance Goal: Reduce

� blocking | one transaction waits for another

to release its locks (should be occasional

at most).

� deadlock | a set of transactions in which

each transaction is waiting for another one

in the set to release its locks (should be

rare at most).

+ cDennis Shasha 4

+ +

Implications of Performance Goal

Ideal transactions (units of work)

� Acquire few locks and prefer read locks

over write locks (reduce conicts).

� Locks acquired have "�ne granularity" (i.e.

lock few bytes to reduce conicts).

� Held for little time (reduce waiting).

+ cDennis Shasha 5

+ +

Correctness Goal

� Goal: Guarantee that each transaction appears

to execute in isolation (degree 3 isolation).

� Underlying assumption: programmer guarantees

that if each transaction appears to execute

alone, then execution will be correct.

Implication: tradeo� between performance and

correctness.

+ cDennis Shasha 6

+ +

Example: Simple Purchases

Consider the code for a purchase application

of item i for price p.

1. if cash < p then roll back transaction

2. inventory(i) := inventory(i) + p

3. cash := cash � p

+ cDennis Shasha 7

+ +

Purchase Example | two ap-
plications

Purchase application program executions are

P1 and P2.

� P1 has item i with price 50.

� P2 has item j with price 75.

� Cash is 100.

If purchase application is a single transaction,

one of P1 or P2 will roll back.

+ cDennis Shasha 8

+ +

Purchase Application | concur-
rent anomalies

By contrast, if each numbered statement is a

transaction, then following bad execution can

occur.

1. P1 checks that cash > 50. It is.

2. P2 checks that cash > 75. It is.

3. P1 completes. Cash = 50.

4. P2 completes. Cash = �25

+ cDennis Shasha 9

+ +

Purchase Application | solu-
tions

� Orthodox solution |make whole program

a single transaction.

Implication: cash becomes a bottleneck.

� Chopping solution | �nd a way to rearrange

and then chop up the programs without

violating degree 3 isolation properties.

+ cDennis Shasha 10

+ +

Purchase Application | chop-
ping solution

Rewritten purchase application. Each bullet

is a separate transaction.

� If cash < p then roll back application.

cash := cash - p

� inventory(i) := inventory(i) + p

Cash no longer a bottleneck.

When can chopping work? See appendix of

tuning book for details.

+ cDennis Shasha 11

+ +

Recovery Hacks for Chopping

Must keep track of which transaction piece

has completed in case of a failure.

Suppose each user X has a table UserX.

� As part of �rst piece, perform

insert into UserX (i, p, 'piece 1'), where i

is the inventory item and p is the price.

� As part of second piece, perform

insert into UserX(i, p, 'piece 2').

Recovery requires reexecuting the second pieces

of inventory transactions whose �rst pieces

have �nished.

+ cDennis Shasha 12

+ +

Sometimes Degree 3 Isolation is
Not Necessary

Statistical sampling of a raw data feed usually

does not require full isolation.

Example: survey application counts the number

of depositor balances over $1,000 one day.

Doesn't need exact number.

Degree 2 isolation | reads hold locks only

during accesses (default in Sybase | called

level 1)

Degree 1 isolation | reads never obtain locks.

+ cDennis Shasha 13

+ +

Multiversion Read Consistency

Certain systems, e.g. Oracle, RDB and Gemstone,

o�er facility whereby a long read will appear

to see a snapshot of the data as it appeared

when the read began.

� Good news: Gives degree 3 isolation without

adding lock contention.

� Bad news: Costs space (e.g. if page p is

updated after read begins, must keep old

copy of p).

+ cDennis Shasha 14

+ +

Fig. 2.3

T2: Y:=1

Thus, reads return values at beginning of T1

R(Z) - returns 0

R(Y) - returns 1

R(X) - returns 0

T2T1

T3: Z:=2, X:=3

T1: R(X), R(Y), R(Z)

X=Y=Z=0

Multiversion Read Consistency

T3

W(X,Z)

W(Y)

+ cDennis Shasha 15

+ +

Sacri�cing Isolation for Perfor-
mance

A transaction that holds locks during a screen

interaction is an invitation to bottlenecks.

Airline reservation

1. Retrieve list of seats available.

2. Talk with customer regarding availability.

3. Secure seat.

Performance would be intolerably slow if this

were a single transaction, because each customer

would hold a lock on seats available.

+ cDennis Shasha 16

+ +

Solution

Make �rst and third steps transactions.

Keep user interaction outside a transactional

context.

Problem: ask for a seat, but then �nd it's

unavailable. Possible but tolerable.

+ cDennis Shasha 17

+ +

Low Isolation Counter Facility

Consider an application that assigns sequential

keys from a global counter, e.g. each new

customer must contain a new identi�er.

The counter can become a bottleneck, since

every transaction locks the counter, increments

it, and retains the lock until the transaction

ends.

ORACLE o�ers facility (called SEQUENCE)

to release counter lock immediately after increment.

Reduces lock contention, but a transaction

abort may cause certain counter numbers to

be unused.

+ cDennis Shasha 18

+ +

E�ect of Caching

The ORACLE counter facility can still be a

bottleneck if every update is logged to disk.

So, ORACLE o�ers the possibility to cache

values of the counter. If 100 values are cached

for instance, then the on-disk copy of the

counter number is updated only once in every

100 times.

In experiments of bulk loads where each inserted

record was to get a di�erent counter value,

the load time to load 500,000 records went

from 12.5 minutes to 6.3 minutes when I increased

the cache from 20 to 1000.

+ cDennis Shasha 19

+ +

Select Proper Granularity

� Use record level locking if few records are

accessed (unlikely to be on same page).

� Use page or table level locking for long

update transactions. Fewer deadlocks and

less locking overhead.

Example: In some systems, it is possible

to choose between page and table locks

with respect to a given table within a program

or DB startup �le.

+ cDennis Shasha 20

+ +

Avoid Catalog Updates

The catalog can easily become a concurrency

control bottleneck.

� It is small.

� Compiles of embedded queries and ad hoc

queries must read it.

So, in production setting, discourage such updates.

Prototype application developers, keep away!

+ cDennis Shasha 21

+ +

Load Control

Allowing too many processes to access memory

concurrently can result in memory thrashing

in normal time-sharing systems.

Analogous problem in database systems if there

are too many transactions and many are blocked

due to locks.

Gerhard Weikum and his group at ETH have

discovered the following rule of thumb: if more

than 23% of the locks are held by blocked

transactions at peak conditions, then the number

of transactions allowed in the system is too

high.

+ cDennis Shasha 22

+ +

Recovery Subsystem

Logging and recovery are pure overhead from

point of view of performance, but necessary

for applications that update data and require

fault tolerance.

Tuning the recovery subsystem entails:

1. Managing the log.

2. Choosing a data bu�ering policy.

3. Setting checkpoint and database dump intervals.

+ cDennis Shasha 23

+ +

Recovery Concepts

Every transaction either commits or aborts.

It cannot change its mind.

Goal of recovery: Even in the face of failures,

the e�ect of committed transactions should

be permanent; aborted transactions should

leave no trace.

Two kinds of failures: main memory failures,

disk failures.

+ cDennis Shasha 24

+ +

Fig.2.4

IMPLEMENT THIS FINITE STATE AUTOMATON

THE GOAL OF THE RECOVERY SUBSYSTEM IS TO

IT CANNOT CHANGE ITS MIND

ONCE A TRANSACTION ENTERS COMMIT OR ABORT,

ABORT

COMMIT

ACTIVE

+ cDennis Shasha 25

+ +

What About Software?

Trouble is that most system stoppages these

days are due to software. Tandem reports

under 10% remaining hardware failures.

Fortunately, nearly 99% of software bugs are

\Heisenbugs:"

one sees them once and then never again

(study on IBM/IMS).

Heisenbugs stop the system without damaging

the data.

Hardware-oriented recovery facilities are also

useful for Heisenbugs.

+ cDennis Shasha 26

+ +

Logging Principles

log | informally, a record of the updates

caused by transactions. Must be held on durable

media (e.g. disks).

� A transaction must write its updates to

a log before committing. That is, before

transaction ends.

Result: holds committed pages even if

main memory fails.

� Sometime later, those updates must be

written to the database disks.

How much later is a tuning knob.

+ cDennis Shasha 27

+ +

BUFFER

write just before

commit

LOG

recovery

DATABASE DISK

write after

commit

Fig. 2.5

STABLE STORAGE HOLDS LOG AS WELL AS THE DATABASE

STABLE

UNSTABLE

+ cDennis Shasha 28

+ +

Managing the Log

� Writes to the log occur sequentially.

� Writes to disk occur (at least) 10 times

faster when they occur sequentially than

when they occur randomly.

Conclusion: a disk that has the log should

have no other data.

Better reliability: separation makes log failures

independent of database disk failures.

+ cDennis Shasha 29

+ +

Bu�ered Commit

� Writes of after images to database disks

will be random.

� They are not really necessary from point

of view of recovery.

Conclusion: good tuning option is to do "bu�ered

commit." (Net e�ect: wait until writing an

after image to the database costs no seeks.)

+ cDennis Shasha 30

+ +

Bu�ered Commit | tuning con-
siderations

� Must specify bu�ered commit, e.g.,

Fast Commit option in INGRES. Default

in most systems.

� Bu�er and log both retain all items that

have been written to the log but not yet

to the database.

This can consume more free pages in bu�er.

Regulate frequency of writes from bu�er

to database by DBWR parameters in ORACLE.

� Costs: bu�er and log space.

+ cDennis Shasha 31

+ +

Group Commits

If the update volume is EXTREMELY high,

then performing a write to the log for every

transaction may be too expensive, even in the

absence of seeks.

One way to reduce the number of writes is

to write the updates of several transactions

together in one disk write.

This reduces the number of writes at the cost

of increasing the response time (since the �rst

transaction in a group will not commit until

the last transaction of that group).

+ cDennis Shasha 32

+ +

Database Dump Intervals

A database dump is a full copy of the database

at some point in time.

Bad point: Creates overhead during on-line

processing. (Should not be done more often

than once or twice a day.)

Good point: Permits recovery from crash of

database disks.

(i) current DB state = log + dump

+ cDennis Shasha 33

+ +

Checkpoint Intervals

A checkpoint is a partial ush of the updates

of the log onto the database disk.

Bad point: Creates overhead during on-line

processing though less than a dump. Should

not be done more often than every twenty

minutes or so.

Good points:

� Reduces time to recover from a crash of

bu�er.

� Reduces size of log unless needed for the

database dump.

(ii) current DB state = log + database disks.

+ cDennis Shasha 34

+ +

Batch to Mini-Batch

Consider an update-intensive batch transaction.

If concurrent contention is not an issue, then

it can be broken up into short transactions

known as mini-batch transactions.

Example: Transaction that updates, in sorted

order, all accounts that had activity on them

in a given day.

Break up to mini-transactions each of which

accesses 10,000 accounts and then updates

a global counter. Easy to recover. Doesn't

over�ll the bu�er.

+ cDennis Shasha 35

+ +

Example

Suppose there are 1 million account records

and 100 transactions, each of which takes

care of 10,000 records.

� Transaction 1:

Update account records 1 to 10,000.

global.count := 10,000

� Transaction 2:

Update account records 10,001 to 20,000

global.count := 20,000

and so on....

+ cDennis Shasha 36

+ +

Operating System Considerations

� Scheduling and priorities of threads of control.

� Size of virtual memory for database shared

bu�ers.

� Lay out of �les on disk.

+ cDennis Shasha 37

+ +

Threads

� Switching control from one thread to another

is expensive on some systems (about 1,000

instructions).

Run non-preemptively or with long, e.g.,

1 second long, timeslice.

� Watch priority:

{ Database system should not run below

priority of other applications.

{ Avoid priority inversion

+ cDennis Shasha 38

+ +

Example of Priority Inversion

Three transactions: T1, T2, T3 in priority

order (high to low).

1. T3 obtains lock on x and is preempted.

2. T1 blocks on x lock, so is descheduled.

3. T2 does not access x and runs for a long

time.

Net e�ect: T1 waits for T2.

+ cDennis Shasha 39

+ +

Fig. 2.8

PRIORITY INVERSION

can release. But T2 runs instead.

T1 waits for a lock that only T3

lock x

request x

T3

T2

T1

+ cDennis Shasha 40

+ +

Avoiding Priority Inversion

� Give all transactions the same priority

(recommended by many systems, e.g., ORACLE)

Avoids the inversion problem on lock, but

can lead to undesirable fairness.

� Specify dynamic priorities (either of operating

system threads or of database system threads)

that allow holder of lock to inherit priority

of highest priority waiter of lock (e.g., new

versions of SYBASE).

+ cDennis Shasha 41

+ +

Bu�er Memory | de�nitions

� bu�er memory | shared virtual memory

(RAM + disk).

� logical access | a database management

process read or write call.

� physical access | a logical access that is

not served by the bu�er.

� hit ratio | portion of logical accesses satis�ed

by bu�er.

+ cDennis Shasha 42

+ +

Fig. 2.6

SHOULD BE IN RANDOM ACCESS MEMORY

BUFFER IS IN VIRTUAL MEMORY, THOUGH ITS GREATER PART

DISK

(VIRTUAL MEMORY)

BUFFER

DISK

+ PAGING

RAM

DATABASE PROCESSES

+ cDennis Shasha 43

+ +

Bu�er Memory | tuning prin-
ciples

� Bu�er too small, then hit ratio too small.

Some systems o�er facility to see what hit

ratio would be if bu�er were larger, e.g.

X$KCBRBH table in ORACLE. Disable in

normal operation to avoid overhead.

� Bu�er is too large, then hit ratio may be

high, but virtual memory may be larger

than RAM allocation resulting in paging.

Recommended strategy:

Increase the bu�er size until the hit ratio attens

out. If paging, then buy memory.

+ cDennis Shasha 44

+ +

Disk Layout

Whether or not a database management system

uses the local operating system's �le system

(most do not), the following issues are important.

� Allocate long sequential slices of disk to

�les that tend to be scanned. Adjust

pre-fetching parameter.

� Control utilization factor of disk pages

depending on scan/update ratio

� Frequently accessed data in middle of magnetic

disks.

Outside of middle on CLV optical disks.

+ cDennis Shasha 45

+ +

Sequential Slices

Allocating long sequential slices of disk helps

in the following situations.

� Inserts to a history �le or log.

Any insert-intensive �le, in fact. Because

consecutive inserts can occur without seeks

(movements from one track to another).

� Any scan-intensive �le (e.g. where indexes

are not useful). Make sure that your system

allows pre-fetching (e.g.,

DB FILE MULTIBLOCK READ COUNT

in ORACLE).

+ cDennis Shasha 46

+ +

Fig.2.7

INNER TRACKS

IN CLV FORMAT, OUTER TRACKS HAVE MORE DATA THAN

DASHED CIRCLES ARE CALLED TRACKS.

SURFACE OF A PLATTER ON A DISK. THE CONCENTRIC

TRACK

+ cDennis Shasha 47

+ +

Utilization Considerations

Utilization = percentage of a page that can

have data and yet still receive an insert (e.g.,

PCTFREE parameter in ORACLE).

� High utilization helps scans, because fewer

pages need to be accessed, provided there

are no overows.

� Low utilization reduces likelihood of overows

when there are many updates that may

change the size of a record (e.g. string

�elds that have NULL values when �rst

inserted).

+ cDennis Shasha 48

+ +

Hardware Tuning

� Add memory | enables you to increase

database bu�er size without increasing paging.

� Buy disks |

{ to ensure log is on a separate disk

{ to mirror a frequently read �le

{ or to partition a large �le.

+ cDennis Shasha 49

+ +

Trading Memory Against Disk
Costs

Gray and Putzolu o�er a \5 minute rule" for

trading memory against disk. Details in book

(p. 42), but intuition is following:

� Price of keeping a page in memory is cost

of RAM and supporting circuitry, e.g. $0.05

per kilobyte.

� Price of keeping a page on disk is cost of

periodic disk accesses.

For example, if a disk gives 50 accesses

per second and costs $10,000, then an

access every 100 seconds costs $2 (actually,

a bit more because of controller costs).

Tradeo� based on frequency of access and

page size.

+ cDennis Shasha 50

+ +

Add Processors

� To o�oad non-database applications onto

other processors

� To o�oad data mining applications to old

database copy

� To increase throughput to shared data |

use a shared memory architecture or a

shared disk architecture.

+ cDennis Shasha 51

+ +

Fig. 2.9: POSSIBLE PROCESSOR-DISK-RAM CONFIGURATIONS

SHARED

DISKS

RAM

PROCESSORS

PROCESSORS

RAM

DISKS

PROCESSORS

RAM

. . .

. . .

. . .

. . .

. . .
DISKS

SHARED

EVERYTHING

SHARED

DISK

SHARED

NOTHING

+ cDennis Shasha 52

+ +

Scenario 1

� Many scans are performed.

� Disk utilization is high (long disk access

queues).

� Processor and network utilization is low.

� Execution is too slow, but management

refuses to buy disks.

+ cDennis Shasha 53

+ +

Scenario 1: What's Wrong?

Clearly, I/O is the bottleneck. Possible reasons:

� Load is intrinsically heavy. Buy a disk with

your own money.

� Data is badly distributed across the disks,

entailing unnecessary seeks.

� Disk accesses fetch too little data.

� Pages are underutilized.

+ cDennis Shasha 54

+ +

Scenario 1: an approach

Since processor and network utilization is low,

we conclude that the system is I/O-bound.

� Reorganize �les to occupy contiguous portions

of disk.

� Raise pre-fetching level.

� Increase utilization.

+ cDennis Shasha 55

+ +

Scenario 2

A new credit card o�ers large lines of credit

at low interest rates.

Set up transaction has three steps:

1. Obtain a new customer number from a

global counter.

2. Ask the customer for certain information,

e.g., income, mailing address.

3. Install the customer into the customer table.

The transaction rate cannot support the large

insert traÆc.

+ cDennis Shasha 56

+ +

Scenario 2: What's Wrong?

Lock contention is high on global counter.

In fact, while one customer is entered, no

other customer can even be interviewed.

+ cDennis Shasha 57

+ +

Scenario 2: Action

� Conduct interview outside a transactional

context.

� Obtain lock on global counter as late as

possible.

Or use special increment facility if available

(lock held on counter only while

it is incremented).

+ cDennis Shasha 58

+ +

Scenario 3

Accounting department wants average salary

by department.

Arbitrary updates may occur concurrently.

Slow �rst implementation:

begin transaction

SELECT dept, avg(salary) as avgsalary

FROM employee

GROUP BY dept

end transaction

+ cDennis Shasha 59

+ +

Scenario 3: What's Wrong?

Lock contention on employee tuples either

causes the updates to block or the scan to

abort (check deadlock rate and lock queues).

Bu�er contention causes the sort that is part

of the group by to be too slow (check I/O

needs of grouping statement).

+ cDennis Shasha 60

+ +

Scenario 3: Action

Partition in time or space. In descending order

of preference:

1. Pose this query when there is little update

activity, e.g., at night.

2. Execute this query on a slightly out-of-date

copy of the data.

3. Use multiversion read consistency if available.

4. Use degree 2 isolation; get approximate

result.

+ cDennis Shasha 61

+ +

Scenario 4

Three new pieces of knowledge:

1. The only updates will be updates to individual

salaries. No transaction will update more

than one record.

2. The answer must be at degree 3 isolation.

3. The query must execute on up-to-date

data.

What does this change?

+ cDennis Shasha 62

+ +

Scenario 4: Action

Degree 2 isolation will give equivalent of degree

3 isolation in this case.

The reason is that each concurrent update

transaction accesses only a single record, so

the degree 2 grouping query will appear to

execute serializably with each update.

+ cDennis Shasha 63

+ +

Scenario 5

Tickerplant application | distributes trade

quantities and prices (ticks) to traders.

� Ticks enter at 500-1,000 per second.

� Each broker follows only certain stocks

and bonds.

System is not keeping up.

+ cDennis Shasha 64

+ +

Scenario 5: What's Wrong?

Some possibilities to check:

� Network to brokers is overloaded.

� Disks may be overloaded due to inserts of

ticks.

+ cDennis Shasha 65

+ +

Scenario 5: Approach

� Disk accesses should be limited to history

�le.

� Use disk extents.

� Processing to traders should be distributed.

Partition traders into groups and dedicate

one processor of a shared memory multiprocessor

to each group as well as one network cable

attached directly to that processor.

+ cDennis Shasha 66

+ +

Scenario 6: Get One and Hold
It

Application consists of many workstations, each

of which has following algorithm: get next

unprocessed tuple, process it in a few seconds

and return it with processed ag set.

Application is slow because once one workstation

gets the tuple to process, it locks out the 80

others who are scanning behind it.

+ cDennis Shasha 67

+ +

Scenario 6: Partitioning Approach

Ask whether the tuples really must be processed

in a particular order. If order may be approximate,

then try following.

� Create 20 (or so) values of a new �eld

A. Assign a number between 1 and 20

to A �eld of each tuple as it comes in.

Index tuples with a clustering index on

A. Partition workstations so workstation

i handles tuples whose A �eld is (i mod

20) + 1.

For better load balancing, have some workstation

randomly choose A values of tuples to

work on. That is, pick x between 1 and

20, try to get a tuple with A=x. If none,

pick another x.

+ cDennis Shasha 68

+ +

Case Study: Sales and Market-
ing Application

� Application had a 3 gigabyte RAID disk.

Database size about 2 gigabytes.

� Also, 4 internal disks of 200 megabytes

each.

� Expect 50 active users

+ cDennis Shasha 69

+ +

Case Study: Basic Decisions

� The mirrored logs should go on two disks

o� of di�erent controllers of two internal

disks.

� The rollback segments and system table

should go on the third internal disk.

The rest of the database should be on the

Raids.

+ cDennis Shasha 70

+ +

Oracle Parameter Settings
(INIT.ORA)

� db block size | 4k (page size)

� DB BLOCK BUFFERS|- 20,000 (basic

bu�er)

� LOG BUFFER| 32 K (for group commits)

� SHARED POOL SIZE| 10 Meg (for compiled

queries)

+ cDennis Shasha 71

+ +

More Oracle Parameters (INIT.ORA

� DB FILE MULTIBLOCK READ COUNT

= 16 (for readahead, related to track size)

� PROCESSES = 50 at least (users and

daemons that can connect)

SEMMNS, SEMMNI, SEMMSL should be

set appropriately to avoid running out of

semaphores (default setting of 400 is �ne

for this number of PROCESSES).

� LOG CHECKPOINT INTERVAL| 50,000

(number of blocks)

A Checkpoint will occur when above limit

is reached or when a single log�le is full.

Log�le size is 10M.

+ cDennis Shasha 72

+ +

Unit 3: Indexes

� query types

� key types

� data structures

� clustering indexes

� non-clustering indexes

� composite indexes

� care and feeding of indexes

+ cDennis Shasha 1

+ +

LANGUAGE INTERFACE

(RELATIONAL OR OBJECT-ORIENTED)

INDEXES

CONCURRENCY CONTROL

RECOVERY

OPERATING SYSTEM

HARDWARE

INDEXES IN DATABASE SYSTEM ARCHITECTURE

Fig. 3.1

+ cDennis Shasha 2

+ +

Query Types

� point query | returns at most one record,

e.g. equality selection on social security

number.

� multi-point query | may return several

records, e.g. equality selection on department.

� range query | may return many records,

e.g. all employees who earn between $50,000

and $90,000.

+ cDennis Shasha 3

+ +

More Query Types

� pre�x query | based on pre�x of an attribute,

e.g., name = 'Sm%'.

� extremal query |may return many records

based on a maximum or minimum, e.g.

employee(s) who earn the most.

� join query | results from a join condition,

e.g. employee.name = student.name

+ cDennis Shasha 4

+ +

Key Types

� sequential key | attribute whose value is

monotonic with time of insertion, e.g. a

timestamp.

� non-sequential key | the opposite

On certain data structures, sequential key may

cause lock contention.

Can you see why?

+ cDennis Shasha 5

+ +

Data Structure

Maps a key value to the location(s) where the

record(s) having that key value can be found.

Di�erent structures are good for di�erent query

types.

+ cDennis Shasha 6

+ +

Fig. 3.2

LEVELS AND BRANCHING FACTOR

Tree with fanout of four and five levels

.

.

.

+ cDennis Shasha 7

+ +

B-tree

Balanced tree. Often with links from leaf to

neighboring leaf.

� Good for range, pre�x, and extremal queries.

� Self-regulating | reorganization is rarely

necessary.

� Lock contention on last page if there are

many inserts and key is sequential.

� Bad if key is very large, e.g. if it is a

string. In that case, use compression to

avoid too many levels.

+ cDennis Shasha 8

+ +

Fig. 3.3

BEING INDEXED) ARE SORTED AT THE LEAVES.

THE SAME DISTANCE FROM THE ROOT AND THE KEYS (ATTRIBUTE(S)

A B-TREE IS A MULTI-ARY TREE SUCH THAT EVERY LEAF IS AT

KEYS ARE SORTED AT LEAVES

ALL LEAVES
AT SAME DEPTH

+ cDennis Shasha 9

+ +

Fig. 3.4

administrator reorganizes the index.

E.g., Ingres does not even free empty nodes. Periodically,

of inserts fall to 52%.

B-trees stays near 69% until the percentage

Utilization if free-at-empty.

free-at-empty

merge-at-half

50% deletes

50% inserts

inserts

100%

39%

69%

Utilization

+ cDennis Shasha 10

+ +

Key Length and Fanout Exam-
ple

� Pointer | 6 bytes.

� Page | 4 kilobyte

� Number of leaf key-pointer pairs | 42

million.

� Average node utilization | 69%.

With 4 byte keys: 3 levels.

With 94 byte keys: 5 levels.

+ cDennis Shasha 11

+ +

COMPRESSION TYPES

COMPRESSION EXAMPLES WITH: Robert, Robin

PREFIX COMPRESSION

Robe Robi

INFIX COMPRESSION (expensive in processor time)

Robe 3i

Fig. 3.4a

+ cDennis Shasha 12

+ +

ISAM Structure

Index sequential access method | like B-tree

except that tree is never modi�ed. Instead

leaves overow.

� Better than B-trees for range, pre�x, and

extremal queries, provided there are few

overows, because utilization can approach

100%.

� No locking overhead on interior tree nodes.

� Bad when there are insertions, because

overows quickly destroy structure.

+ cDennis Shasha 13

+ +

In ISAM structures, the index is fixed,

but the leaves may overflow forming chains.

Fig. 3.5+ cDennis Shasha 14

+ +

Hash Structures

Hash function = given a key, returns the location(s)

of the record(s) containing the key (possibly

through an overow chain).

� Great for point queries, provided hash table

is 50% full (or less).

� Little extra overhead for large keys.

� Useless for range, pre�x, or extremal queries,

because close keys may be mapped to locations

that are far apart.

� Requires reorganization if becomes too full.

+ cDennis Shasha 15

+ +

Comparison of Data Structures

� Point/multipoint queries | Hash > ISAM

> Btree, if no overows.

� Few inserts on sequential key | Hash >

Btree > ISAM, because of concurrency

control problems (especially with page locking).

� Heavy inserts | Btree > Hash > ISAM |

second two must be reorganized periodically.

+ cDennis Shasha 16

+ +

Sparse vs. Dense Indexes

Index = data structure with pointers to a

table of records.

Sparse index = the data structure has one

pointer to each page of records.

Dense index = the data structure has one

pointer to each record.

� For small records, a sparse index may be

a level shorter than a dense one.

� In some systems (e.g., SYBASE), dense

index is better for queries for which search

criteria and select list are all in index. No

need to visit data.

+ cDennis Shasha 17

+ +

SPARSE DENSE

POINTER

PER

PAGE

POINTER

PER

RECORD

CLUSTERING NON-CLUSTERING

TUPLES TUPLES

TUPLES

HEAP - INSERTIONS AT END

Fig. 3.6

+ cDennis Shasha 18

+
+Fig.3.7

HAVE A SPARSE INDEX: ALL UPDATES, MOST QUERIES.

ALL ELSE BEING EQUAL, IT IS ALMOST ALWAYS BETTER TO

is better
Dense index

is better

Sparse index

yesno

only

index attributes

Query retrieves

+
c
D
e
n
n
is
S
h
a
s
h
a

1
9

+ +

Clustering Index

Clustering index = data structure that implies

a table organization.

That is, the table is organized (e.g., sorted)

based on the clustering attribute(s).

Ex: Phone book is clustered on last name,

�rst name.

+ cDennis Shasha 20

+ +

Review of Index Terminology

Index = data structure (Btree, Hash, ISAM)

+ pointers to data

Sparse index = one pointer per data page

Dense index = one pointer per data record

Clustering index = may be sparse or dense

and implies a data organization, e.g. Btree

on A, data records sorted on A.

Non-clustering index = enforces nothing about

data organization, so must be dense.

+ cDennis Shasha 21

+ +

Clustering vs. Non-clustering

� Clustering index may be sparse (up to the

DBMS implementor).

� Good for range (e.g., R.A between 5 and

15) and pre�x queries (e.g. R.Name =

'Sm%').

Near key values in data structure correspond

to near tuples.

� Good for concurrency | usually.

+ cDennis Shasha 22

+ +

Clustering Indexes and Concur-
rency Control

� If no clustering index, then insertions occur

at end of a heap (�le organized by time

of insertion).

Concurrent insertions will then conict on

last page of heap.

� If there is a clustering index, e.g. on

SocSecNum, then consecutive insertions

will likely be far apart. Low contention.

� However | if key value proportional to

time of insertion, then clustering index based

on B-tree causes a problem.

Do you see why?

Would hashing make any di�erence?

+ cDennis Shasha 23

+ +

Clustering Indexes: bad news

� Inserts tend to be placed in the middle

of the table. This can cause overows,

destroying the bene�ts of clustering.

� Similarly for updates.

So, may be a good idea to use fairly low page

utilization when using a clustering index.

+ cDennis Shasha 24

+ +

Non-Clustering Index

Non-clustering index = data structure but no

imposition on structure of table. May have

several per table.

� Dense, so some queries can be answered

without access to table. For example,

assume a non-clustering index on attributes

A, B and C of R.

SELECT B, C FROM R WHERE A=5

� Good for point queries and for selective

multi-point, and for extremal queries. May

or may not be useful for join queries.

+ cDennis Shasha 25

+ +

Non-clustering Indexes and Se-
lectivity | Example 1

� Pages are 4 kilobytes.

� Attribute A takes on 20 di�erent values.

� Query is multi-point on A.

� There is a non-clustering index on A.

If record is 50 bytes long, there are 80 records

per page. Nearly every page will have a matching

record.

Don't create non-clustering index.

+ cDennis Shasha 26

+ +

Non-clustering Indexes and Se-
lectivity | Example 2

� Pages are 4 kilobytes.

� Attribute A takes on 20 di�erent values.

� Query is multi-point on A.

� There is a non-clustering index on A.

If record is 2000 bytes long, there are 2 records

per page. Only 1 in ten pages will have a

matching record.

Create non-clustering index.

+ cDennis Shasha 27

+ +

Quantitative Conclusions

F | number of records per page.

D | number of di�erent values of attribute.

P| number of pages prefetched when performing

a scan.

� if D < FP, then no non-clustering index.

� otherwise, create non-clustering index provided

multipoint queries on attribute are frequent.

Practice: derive this.

+ cDennis Shasha 28

+ +

Composite Indexes

Composite index = index on multiple attributes,

e.g. last name, �rst name; latitude, longitude;

or supplier, part

Good way to support uniqueness of multiple

attributes.

Ex: onorder(supplier, part, quantity).

Each supplier may be in several records; similarly

for parts. No single combination, however,

will be in more than one record.

+ cDennis Shasha 29

+ +

Composite Indexes | 2

Some geographical queries.

SELECT name FROM city

WHERE population � 10000

AND latitude = 20

AND longitude � 5 AND longitude � 15

Good if index is on latitude, longitude as opposed

to longitude, latitude. Most speci�c goes �rst.

Bad if key size is a problem.

+ cDennis Shasha 30

+ +

Joins and Indexes

In general considerations are similar to those

for selections.

� A clustering index shines when the join

must access the table data.

� A dense non-clustering index shines when

the join does not need to access the table

data. (Semi-join condition.)

+ cDennis Shasha 31

+ +

Join | Examples

Which makes which index type shine?

SELECT R.A, R.D

FROM R, S

WHERE R.B = S.C

SELECT R.A, R.D, S.E

FROM R, S

WHERE R.B = S.C

+ cDennis Shasha 32

+ +

Join | How Clustering Helps

When semi-join condition does not hold, clustering

helps in three ways.

1. If clustering index sparse, then fewer levels.

2. If many S records may hold a given R.B

value (S.C not a key) then clustering on

C clusters those S records. In this case,

a non-clustering index may be worse than

building a hash join from scratch according

to experiments at Tandem.

+ cDennis Shasha 33

+ +

Clustering vs. Nonclustering

� Clustering |

sparse is possible

strong on point queries

strong on multipoint queries

strong on range/pre�x queries (Btree/ISAM)

� Nonclustering |

must be dense

strong on point queries

strong on multipoint queries if selective.

+ cDennis Shasha 34

+ +

Indexes and Size

Don't index a small table (unless read-only).

� An index search may read at least one

index page and one data page. On the

other hand, if the entire relation is held

on a single track and you can pre-fetch

that, you need only one disk access.

� If many inserts execute on a table with

a small index, then the index itself may

become a concurrency control bottleneck.

+ cDennis Shasha 35

+ +

Fig. 3.8

BASIC INDEX SELECTION

B-TREE

CLUSTER

ISAM

CLUSTER

FREQUENT?

INSERTS

KEY?

SEQUENTIAL

HASH

CLUSTER

ORDER BY?

EXTREMAL,.
RANGE,
or
24- HOUR UP

indexes

Heap with
HUGE?

no indexes

Use Heap

or LOADS

SMALL

Y

Y

Y

Y

Y

N

N

N

N

N

CLUSTER

HASH

+ cDennis Shasha 36

+ +

How to Distribute Hot Table

If a table is hot, then partition your index

across several disks.

� If insert-intensive, then put non-clustering

indexes on separate disks from clustering

and table data (e.g., put in di�erent Tablespace

in ORACLE).

Reason: Each insert will update all

non-clustering indexes, but will use the

clustering index to do its search. This

organization will spread the load.

� If read-mostly, partition indexes and table

over all disks. Balances load for random

reads (e.g., use STRIPEDTABSPACE in

ORACLE).

+ cDennis Shasha 37

+ +

General Care and Feeding

Here are some maintenance tips on indexes:

� Give them a face lift: eliminate overow

chains on index or table.

� Drop indexes when they hurt performance.

(Rebuild clustering indexes after sorting

�rst.)

Ex: during a batch insertion, you may be

better o� having no secondary indexes.

� Check query plan.

+ cDennis Shasha 38

+ +

Reasons System Might Not Use
an Index

� Catalog may not be up to date.

Optimizer may believe table is too small.

� Query may be badly speci�ed. For example,

in some systems (e.g. ORACLE v6 and

earlier):

SELECT * FROM employee

WHERE salary/12 � 4000

would not use salary index whereas following

would:

SELECT * FROM employee

WHERE salary � 4000 * 12

+ cDennis Shasha 39

+ +

Scenario 1

Suppose there are 30 employee records per

page.

Each employee belongs to one of 50 departments.

Should you put a non-clustering index on department

+ cDennis Shasha 40

+ +

Scenario 1: Action

If such an index were used, performance would

be worse, not better. The reason is that

approximately 3/5 of the pages would have

employee records from any given department.

Using the index, the database system would

access 3/5 of the pages in random order. A

table scan would likely be faster.

So, index is likely to be write-only.

+ cDennis Shasha 41

+ +

Scenario 2

There are no updates. Here are queries. Which

indexes should be established?

1. Count all the employees that have a certain

salary. (frequent)

2. Find the employees that have the maximum

(or minimum) salary within a particular

department. (rare)

3. Find the employee with a certain social

security number. (frequent)

+ cDennis Shasha 42

+ +

Scenario 2: Action

� Non-clustering index on salary, since the

�rst query can be answered solely based

on the non-clustering index on salary.

� Sparse clustering index on social security

number if the employee tuples are small,

because a sparse index may be a level

shorter than a dense one.

� Non-clustering composite index on (dept,

salary) using a B-tree for second query,

should it become more important.

+ cDennis Shasha 43

+ +

Scenario 3

The employee table has no clustering indexes.

Performs poorly when there are bursts of inserts.

Locking is page-based.

+ cDennis Shasha 44

+ +

Scenario 3: What's Wrong?

Employee is organized as a heap, so all inserts

to employee occur on the last page.

Last page is a locking contention hot spot.

Use monitoring facilities to check lock statistics

(e.g. MONITOR LOCK in ORACLE).

+ cDennis Shasha 45

+ +

Scenario 3: Action

� Find some way to smooth out the bursts

of inserts.

� Use record-level locking.

� Create a clustering index based on hashing

on customer number or social security number.

Alternatively, create a B-tree-based clustering

index on social security number.

+ cDennis Shasha 46

+ +

Scenario 4

A credit card company tries to support the

following:

� Insert new client records. (very frequent)

� Locate a client by Social Security number.

(very frequent)

� Locate a client by customer number, a

sequential key. (frequent)

� Scan the table for customer billing purposes.

(rare)

Clustering hash index on Social Security number.

Nonclustering B-tree index on customer number.

Locking is page level.

+ cDennis Shasha 47

+ +

Scenario 4: What's Wrong?

All inserts modify the last page of the B-tree

index.

Observe that the lock contention does not

occur on data pages because the data pages

are clustered by Social Security number rather

than by order of insertion.

+ cDennis Shasha 48

+ +

Scenario 4: Action

� If record locking is available, try that �rst.

� Use a hash nonclustering index on customer

number instead of a B-tree index.

Hashing will tend to place new distinct

records randomly in the hash index, thus

avoiding the creation of a contention bottleneck.

+ cDennis Shasha 49

+ +

Scenario 5

Ellis Island is a small island south of Manhattan

through which owed some 17 million immigrants

to the United States between the late 1800's

and the mid-1900's.

Immigration workers �lled in some 200 �elds

on each immigrant, e.g. last name, �rst name,

city of origin, ship taken, nationality, religion,

arrival date and so on.

Want pure retrieval database for this data.

Querier is assumed to know last name of immigrant

at least.

Most queriers will know the last name and

either year of arrival or �rst name.

What is a good structure?

+ cDennis Shasha 50

+ +

Scenario 5: Action

ISAM structures can be used since no updates.

If not available, then use B-tree.

� Clustering composite index on (last name,

�rst name).

� Composite indexes on (last name, year of

arrival) and whatever other combination

of attributes queriers are likely to know.

� Only cost to indexes is space.

+ cDennis Shasha 51

+ +

Unit 4: Relational Systems

� Comparative advantage of relational systems.

� Tuning normalization, clustering and denormaliza

� Query rewriting as tuning technique.

� Importance of triggers.

� Connections to applications.

+ cDennis Shasha 1

+ +

Comparative Advantage of Dif-
ferent Data Models

� Hierarchical and network data models |

stable, simple applications where high performanc

is critical. Trillion dollars worth of software

for such systems.

� Object-oriented data model | expressive,

complex applications that do not now use

databases.

Performance advantage: in-memory graph

traversal.

� Relational (and object-relational) systems

capture everything else | from accounting

to decision support to genetics.

+ cDennis Shasha 2

+ +

Responsibilities of people with different skills.

fig. 4.1

TUNER

SOPHISTICATED
APPLICATION APPLICATION

PROGRAMMER

Architecture of Relational Database Systems

PROGRAMMER

CONVENTIONAL PROGRAMMING

LANGUAGE

+

4GL

SQL

INDEXES

CONCURRENCY CONTROL

RECOVERY

OPERATING SYSTEM

HARDWARE

+ cDennis Shasha 3

+ +

Normalization: motivating ex-
ample

Application about suppliers and parts on order.

Schema design I (unnormalized):

� Onorder1(supplier ID, part ID, quantity, supplier

Schema design II (normalized):

� Onorder2(supplier ID, part ID, quantity)

� Supplier(supplier ID, supplier address)

+ cDennis Shasha 4

+ +

Normalization: de�nitions 1

� The key of a relation is a minimal subset

of attributes such that no two distinct

records of the relation have the same values

on those attributes.

For Onorder1 and Onorder2, supplier ID

and part ID together constitute a key. For

Supplier, supplier ID alone is a key.

� X determines A means that if any two

tuples have the same X values, then they

have the same A values.

Keys always determine all other attributes.

+ cDennis Shasha 5

+ +

Normalization: de�nitions 2

Relation is normalized if, whenever X determines

A and A is not an attribute of X, X is a key

or a superset of a key.

� Onorder1 is not normalized because supplier

determines supplier address, but supplier

is not a superset of the key of Onorder1.

� By contrast, Onorder2 is normalized because

supplier ID and part ID together determine

quantity and they constitute a key. For

Supplier, supplier ID determines supplier address

so is the key.

+ cDennis Shasha 6

+ +

Comparison: Space

Example: 100,000 orders outstanding and 2,000

suppliers.

Supplier ID is an eight byte integer.

Supplier address requires 50 bytes.

� Space { The second schema will use extra

space for the redundant supplier ID.

Total: 2000� 8 = 16,000 bytes.

First schema stores 100,000 supplier addresses

compared with 2000 for second.

Total: 98000� 50 = 4,950,000 bytes.

Net savings for second schema: 4,934,000

bytes

+ cDennis Shasha 7

+ +

Comparison: Performance

� Suppose one wants address of the supplier

from where a given part has been ordered.

First schema (unnormalized) is better |

requires merely a selection versus a join.

� On insertion, �rst schema requires adding

the supplier address to every

supplier-part-quantity triple.

Either extra data entry e�ort or extra lookup.

Second schema (normalized) is better.

+ cDennis Shasha 8

+ +

Is Normalization Good?

In unnormalized schema, relationship between

supplier ID and supplier address is repeated

for every part on order.

� This wastes space.

� It may or may not be good for performance.

{ Good for queries that correlate parts

with supplier addresses.

{ Bad for inserts.

More details to come.

+ cDennis Shasha 9

+ +

Tuning Normalization

Consider a bank whose Account relation has

the schema:

� (account ID, name, street, postal code,

balance)

When is it worthwhile to adopt the following

schema?

� (account ID, balance)

� (account ID, name, street, postal code)

Both schemas are normalized. Second one

results from vertical partitioning.

+ cDennis Shasha 10

+ +

Value of Vertical Partitioning

Second schema has following bene�ts for simple

account update transactions that access only

the ID and the balance:

� Sparse clustering index on account ID of

(account ID, balance) relation may be a

level shorter than it would be for the full

relation.

� More account ID-balance pairs will �t in

memory, thus increasing the hit ratio.

+ cDennis Shasha 11

+ +

In Moderation....

Consider the further decomposition:

� (account ID, balance)

� (account ID, name, street)

� (account ID, postal code)

Still normalized, but not good since queries

(e.g. monthly statements, account update)

require either both street and postal code or

neither.

+ cDennis Shasha 12

+ +

Vertical Partitioning: rule of thumb

If XYZ is normalized and XY and XZ are

also normalized, then use XYZ unless both

of following hold:

� User accesses rarely require X, Y, and Z,

but often access XY or XZ alone (80% of

time if sparse clustering, 90% if dense).

� Attribute Y or Z values are large.

+ cDennis Shasha 13

+ +

World of Bonds

Brokers base their bond-buying decisions on

price trends.

Database holds the closing price for the last

3,000 trading days.

Prices regarding the 10 most recent trading

days are frequently accessed.

Basic schema:

� (bond ID, issue date, maturity, ...) |

about 500 bytes per record.

� (bond ID, date, price) | about 12 bytes

per record.

+ cDennis Shasha 14

+ +

Vertical Anti-Partitioning

� (bond ID, issue date, maturity, today price,

yesterday price, ... 10dayago price) | 544

bytes per record.

� (bond ID, date, price)

Avoids a join when retrieving information about

a bond including statistics about the last 10

days' prices.

+ cDennis Shasha 15

+ +

Typical Queries for Mail Orders

� Correlate the sale of some item, e.g. safari

hat, with the city where the customer lives.

� Find a correlation between di�erent items

bought at di�erent times, e.g. suitcases

and safari hats.

� Find address of a promising customer.

How should Oldsale be organized?

+ cDennis Shasha 16

+ +

Denormalization Has its Place

Denormalized | Add customer address to

Oldsale.

This design is attractive for the query that

correlates customer city with items purchased

as well as for the query that �nds the address

of the promising customer.

Neither of the other designs is as good.

+ cDennis Shasha 17

+ +

Organization Lessons

1. Insert- and update-intensive applications

should use a standard, normalized design.

2. Read-only activities that would require many

joins on a normalized schema are the best

candidates for denormalization.

+ cDennis Shasha 18

+ +

Convenience Stores

The accounting department of a convenience

store chain issues queries every twenty minutes

to discover:

� the total dollar amount on order from a

particular vendor and

� the total dollar amount on order by a particular

store outlet.

These take a long time on original schema.

+ cDennis Shasha 19

+ +

Original Schema

� order(ordernum, itemnum, quantity, purchaser,

vendor)

� item(itemnum, price)

Order and item each has a clustering index on

itemnum.

Can you see why the total dollar queries will

be expensive?

+ cDennis Shasha 20

+ +

Query Maintenance

Add:

� VendorOustanding(vendor, amount), where

amount is the dollar value of goods on

order to the vendor, and

� StoreOutstanding(purchaser, amount), where

amount is the dollar value of goods on

order by the purchasing store, with a clustering

index on purchaser.

Each update to order causes an update to

these two redundant relations (triggers would

make this fast). Worthwhile if lookup savings

greater than update overhead.

+ cDennis Shasha 21

+ +

Query Rewriting

General principle:

The �rst tuning method to try is the one

whose e�ect is purely local.

Query rewriting has this property.

Two ways to see that a query is running too

slowly.

1. It issues far too many disk accesses, e.g.

a point query scans an entire table.

2. Its query plan, i.e. the plan the optimizer

has chosen to execute the query, fails to

use a promising index.

+ cDennis Shasha 22

+ +

Running Examples

� Employee(ssnum, name, manager, dept,

salary, numfriends).

Clustering index on ssnum; non-clustering

indexes on name and dept each. Ssnum

and name each is a key.

� Student(ssnum, name, degree sought, year).

Clustering index on ssnum; non-clustering

index on name; keys are ssnum and name

each.

� Tech(dept, manager, location)

Clustering index on dept; key is dept.

+ cDennis Shasha 23

+ +

Eliminate Unneeded DISTINCTs

Query: Find employees who work in the information

systems department. There should be no duplicates.

SELECT DISTINCT ssnum

FROM Employee

WHERE dept = 'information systems'

DISTINCT is unnecessary, since ssnum is a

key of Employee so certainly is a key of a

subset of Employee. (Note: On Sybase 4.9,

I've seen the elimination of a distinct reduce

the query time by a factor of 20).

+ cDennis Shasha 24

+ +

Subqueries

Query: Find employee social security numbers

of employees in the technical departments.

There should be no duplicates.

SELECT ssnum

FROM Employee

WHERE dept IN (SELECT dept FROMTech)

might not use the index on Employee dept in

some systems. However, equivalent to:

SELECT DISTINCT ssnum

FROM Employee, Tech

WHERE Employee.dept = Tech.dept

Is DISTINCT needed?

+ cDennis Shasha 25

+ +

DISTINCT Unnecessary Here Too

In the nested query, there were no duplicate

ssnum's.

Will there be in the rewritten query?

Since dept is a key of Tech, each Employee

record will join with at most one Tech tuple.

So, DISTINCT is unnecessary.

+ cDennis Shasha 26

+ +

Reaching

The relationship among DISTINCT, keys, and

joins can be generalized.

� Call a table T privileged if the �elds returned

by the select contain a key of T.

� Let R be an unprivileged table. Suppose

that R is joined on equality by its key �eld

to some other table S, then we say that

R reaches S.

� Now, de�ne reaches to be transitive. So,

if R1 reaches R2 and R2 reaches R3, then

say that R1 reaches R3.

+ cDennis Shasha 27

+ +

Reaches: Main Theorem

There will be no duplicates among the records

returned by a selection, even in the absence

of DISTINCT, if one of the following two

conditions hold:

� Every table mentioned in the from line is

privileged.

� Every unprivileged table reaches at least

one privileged one.

+ cDennis Shasha 28

+ +

Reaches: proof sketch

� If every relation is privileged, then there

are no duplicates even without any quali�cation.

� Suppose some relation T is not privileged

but reaches at least one privileged one, say

R. Then the quali�cations linking T with

R ensure that each distinct combination

of privileged records is joined with at most

one record of T.

+ cDennis Shasha 29

+ +

Reaches: example 1

SELECT ssnum

FROM Employee, Tech

WHERE Employee.manager = Tech.manager

The same Employee record may match several

Tech records (because manager is not a key of

Tech), so the Social Security number of that

Employee record may appear several times.

Tech does not reach privileged relation Employee.

+ cDennis Shasha 30

+ +

Reaches: example 2

SELECT ssnum, Tech.dept

FROM Employee, Tech

WHERE Employee.manager = Tech.manager

Each repetition of a given ssnum value would

be accompanied by a new Tech.dept, since

Tech.dept is the key of Tech.

Both relations are privileged.

+ cDennis Shasha 31

+ +

Reaches: example 3

SELECT Student.ssnum

FROM Student, Employee, Tech

WHERE Student.name = Employee.name

AND Employee.dept = Tech.dept

Both Employee and Tech reach Student, though

Tech does so indirectly.

Tech ! Employee ! Student

So no duplicates.

+ cDennis Shasha 32

+ +

Correlated Subqueries

Query: Find the highest paid employees per

department.

SELECT ssnum

FROM Employee e1

WHERE salary =

(SELECT MAX(salary)

FROM Employee e2

WHERE e2.dept = e1.dept

)

May search all of e2 (or all records having

department value e1.dept) for each e1.

+ cDennis Shasha 33

+ +

Use of Temporaries

SELECT MAX(salary) as bigsalary, dept

INTO temp

FROM Employee

GROUP BY dept

SELECT ssnum

FROM Employee, temp

WHERE salary = bigsalary

AND Employee.dept = temp.dept

Again, no need for DISTINCT, because dept

is key of temp.

+ cDennis Shasha 34

+ +

Abuse of Temporaries

Query: Find all information department employees

with their locations who earn at least $40,000.

SELECT * INTO temp

FROM Employee

WHERE salary � 40000

SELECT ssnum, location

FROM temp

WHERE temp.dept = 'information'

Selections should have been done in reverse

order. Temporary relation blinded optimizer.

+ cDennis Shasha 35

+ +

Better without Temporaries

SELECT ssnum

FROM Employee

WHERE Employee.dept = 'information'

AND salary � 40000

+ cDennis Shasha 36

+ +

Procedural Extensions to SQL

� Interactions between a conventional programming

language and the database management

system are expensive.

� Good to package a number of SQL statements

into one interaction.

� The embedded procedural language that

many systems o�er includes control ow

facilities such as if statements, while loops,

goto's, and exceptions.

+ cDennis Shasha 37

+ +

Inner Loop of Genealogical Query

WHILE EXISTS(SELECT * FROM Temp1)

BEGIN

INSERT Ancestor

SELECT * FROM Temp1;

INSERT Temp2

SELECT * FROM Temp1;

DELETE Temp1 FROM Temp1;

INSERT Temp1

SELECT Parental.parent

FROM Parental, Temp2

WHERE Parental.child = Temp2.parent;

DELETE Temp2 FROM Temp2;

END

+ cDennis Shasha 38

+ +

Triggers

A trigger is a stored procedure that executes

as the result of an event.

In relational systems, the event is usually a

modi�cation (insert, delete, or update) or a

timing event (it is now 6 A.M.).

The trigger executes as part of the transaction

containing the enabling event.

+ cDennis Shasha 39

+ +

Reasons to Use Triggers

� A trigger will �re regardless of the application

that enables it.

This makes triggers particularly valuable

for auditing purposes or to reverse suspicious

actions, e.g. changing salary on Saturday.

� Triggers can also maintain integrity constraints

e.g. referential integrity or aggregate maintenanc

� A trigger can respond to events generated

by a collection of applications. May help

performance.

+ cDennis Shasha 40

+ +

Life without Triggers

Application which must display the latest data

inserted into a table.

Without triggers, must poll data repeatedly.

SELECT *

FROM interestingtable

WHERE inserttime � lasttimeIlooked + 1

Update lasttimeIlooked based on current time.

Poll too often and you will cause lock conicts

with input.

Poll too seldom and you will miss updates.

+ cDennis Shasha 41

+ +

Triggers Can Help

An interrupt-driven approach is to use a trigger

to send the data directly to the display application

when a modi�cation occurs.

CREATE TRIGGER todisplay

ON interestingtable

FOR insert AS

SELECT *

FROM inserted

This trigger will avoid concurrency conicts

since it will execute within the same transaction

that inserts into interestingtable.

The trigger will provide new data to the display

exactly when produced.

+ cDennis Shasha 42

+ +

Tuning the Application Interface

Application interacts with database system via

programming languages or fourth generation

languages.

Examples of considerations:

� If transaction updates most of records in

a table, then obtain a table lock.

Avoids deadlocks and overhead of escalation.

� Retrieve only needed columns.

1. Save data transfer cost.

2. May be able to answer certain queries

within an index.

+ cDennis Shasha 43

+ +

Summary of Relational Tuning

1. Tune queries �rst:

check query plan

rewrite queries without changing index or

table structure to avoid bad subqueries,

tune temporaries, and so on

2. Establish the proper indexes (previous unit).

3. Cluster tables.

4. Consider using redundancy.

5. Revisit normalization decisions | views

hide this from user.

+ cDennis Shasha 44

+ +

Scenario 1

Oldsale(customernum, customercity, itemnum,

quantity, date, price).

To serve the data mining needs, there are

indexes on customernum, customercity and

item.

Updates to Oldsale take place as a bulk load

at night. Load times are very slow and the

daytime performance is degenerating.

+ cDennis Shasha 45

+ +

Scenario 1: What's Wrong?

The indexes are slowing down the bulk load.

The bulk load is causing overows in the indexes.

+ cDennis Shasha 46

+ +

Scenario 1: Action

Drop the indexes at night while modifying the

table.

Recreate them after the load has �nished.

This will eliminate overows and empty nodes.

The load should lock the entire table.

+ cDennis Shasha 47

+ +

Scenario 2

Suppose you are given the following relation

Purchase(purchasenum, item, price, quantity,

supplier, date)

with a clustering index on purchasenum.

You want to compute the cost of items based

on a �rst-in �rst-out ordering. That is, the

cost of the �rst purchase of an item should

be accounted for before the cost of a later

item.

We want to do this for all the 10,000 data

items.

Processing is slow.

+ cDennis Shasha 48

+ +

Scenario 2: current implemen-
tation

For each such data item :x, we return the data

sorted by date. (Bind variable :x is rebound

10,000 times.)

SELECT *

FROM Purchase

WHERE item = :x

ORDER BY date

The application runs too slowly.

+ cDennis Shasha 49

+ +

Scenario 2: What's Wrong?

For each data item, there is a separate sort

command.

This creates signi�cant disk accesses unless

the whole table �ts into main memory.

+ cDennis Shasha 50

+ +

Scenario 2: Action

SELECT *

INTO temp

FROM Purchase

ORDER BY item, date

This will require only one scan and sort of

Purchase instead of 10,000 scans.

Then go through temp sequentially using a

4GL or programming language.

Another possibility is to cluster by (item, date)

if queries on purchasenum are infrequent.

+ cDennis Shasha 51

+ +

Scenario 3

Want to audit the event that a depositor's

account balance increases over $50,000. Exact

amount is unimportant.

CREATE TRIGGER nouveauriche

ON Account

FOR update

AS BEGIN

INSERT Richdepositor

FROM inserted

WHERE inserted.balance > 50000

END

Trigger consumes excessive resources.

+ cDennis Shasha 52

+ +

Scenario 3: What's Wrong?

� Trigger will �re even if the only records

a�ected by a modi�cation belonged to poor

depositors.

� On an update of a depositor's balance

from $53,000 to $54,000, will write a depositor

record into Richdepositor.

But it is already there.

+ cDennis Shasha 53

+ +

Scenario 3: Action

CREATE TRIGGER nouveauriche

ON Account

FOR update

AS

IF update(balance)

BEGIN

INSERT Richdepositor

FROM inserted, deleted

WHERE inserted.balance >= 50000

AND deleted.balance < 50000

AND deleted.account_ID =

inserted.account_ID

END

+ cDennis Shasha 54

+ +

Tuning an Object-Oriented
Database System (Optional)

Unit 5

Dennis Shasha

+ cDennis Shasha 1

+ +

Goals

1. Identify good applications for object-oriented

database systems.

2. Suggest ways to speed up object-oriented

applications.

3. Study the response of relational vendors.

4. Speculate on the prospectus for such systems.

+ cDennis Shasha 2

+ +

Fig. 5.1

PROGRAMMER
APPLICATION

PRGRAMMERTUNER
APPLICATION

SOPHISTICATED

PERSISTENT PROGRAMMING

LANGUAGE (e.g. C++WITH LIBRAIRY)

+ SQL CONNECTION

INDEXES

CONCURRENCY CONTROL

RECOVERY

OPERATING SYSTEM

HARDWARE

Architecture of Object-Oriented Database Systems with Responsibilities

+ cDennis Shasha 3

+ +

Basic Concepts

Object is a collection of data attributes, an

identity and a set of operations, sometimes

called methods.

Ex: a newspaper article object may contain

zero or more photographs as constituent objects

and a text value.

Operations will be to edit the article and display

it at a certain width: edit(), display(width).

Operations are de�ned by the class to which

object belongs.

+ cDennis Shasha 4

+ +

Fig. 5.2

and photograph contituent objects.

Article objects with text subvalues

photo:::photo

text:
text:

ARTICLE y
ARTICLE x

+ cDennis Shasha 5

+ +

Languages for OODB's

In research literature, about 20.

In commercial world, C++ and Smalltalk.

(My guess is that C++ will win | cynics may

say by inertia.)

Any language should:

� Allow run-time addition of classes (like addition

of relational schema at runtime).

� Be compiled, at least mostly.

+ cDennis Shasha 6

+ +

Claimed Bene�ts of OODB's

� Better platform for software engineering

| all good software will change. Objects

can be reused (provided they are maintained).

Analogy with new model of cars (objects

are fuel tanks, suspension, etc.)

� Relational type model is too poor, e.g.

against sorted sequences and pointers.

� Relational operations are too weak, e.g.

can't do display(width) easily.

� Impedance mismatch in relational systems

| set-oriented and record-oriented languages

must communicate in ugly ways, e.g. cursors.

+ cDennis Shasha 7

+ +

Application Properties that Are
Good for OODB's

� Not already in a database.

Only 10% of computerized data is in databases.

� Application data structure is a graph. Pointer

dereferencing predominates and data �ts

in main memory.

Ex: design checking programs for circuits

Reason: OODB's dereference pointers in

around 10 instructions; relational systems

take 1000 using foreign keys through indexes.

+ cDennis Shasha 8

+ +

Fig.5.3

OO

OO

RELATIONAL : indirection through indexes

index

OODB : direct pointers in virtued access memory

+ cDennis Shasha 9

+ +

A Design Applications

� A server for hypermedia documentation

supporting Large machinery | for example,

an airplane. The documentation integrates

text, graphs, video, and voice. Typical

queries:

{ what is attached to drive train?

{ what is path from X to Y?

+ cDennis Shasha 10

+ +

Existing Applications Continued

� A database for a part-component explosion

for an airplane manufacturer. Typical queries

include:

{ Is there a path between mechanical linkage

X and control panel Y going through

linkage Z?

{ Change all sensors of type A in any

circuit responsible for ight control to

type B. (Note that this is an update

that requires graph traversal. Such updates

are sometimes called complex updates.)

+ cDennis Shasha 11

+ +

Performance Features to Look
For

� Standard relational-style index possibilities.

Usual concurrency control and logging options

(e.g. bu�ered commit).

� Index structures for ordered data types

such as lists and sequences e.g. positional

B-tree (keys are positions of members in

ordering). EÆcient pointer-following of

data already in memory.

� EÆcient on-line garbage collection in memory

and on disk (because of pointers).

� User may bring data bu�ers and computation

into client workstation. (Independent of

model.)

+ cDennis Shasha 12

+ +

CONVENTIONAL:

COMPUTE-

INTENSIVE:

CLIENT

SITE
SERVER

SITE

CLIENT

SITE

SERVER

SITE

client

process

server
process +
buffers +
disk database

client process

+ server process

+ buffers

disk database

Fig. 5.4

+ cDennis Shasha 13

+ +

Performance Features | 2

� Concurrency control options.

{ Check-out | hold locks over long time.

{ Gentle Aborts | create new version

from updates of aborted transactions

� Pre-fetching options.

{ fetch objects as needed;

{ pre-fetch all objects reachable from an

accessed object; or

{ pre-fetch a user-de�ned cluster upon

access to any member of that cluster.

� Control layout of objects on disk.

+ cDennis Shasha 14

+ +

Controversies Over References

� Should an object identi�er = location on

disk?

{ Avoids indirection.

{ Hurts ability to perform storage compaction.

� Should an object reference in virtual memory

= virtual memory pointer?

{ Faster, can use standard libraries without

changes.

{ Need large virtual memories.

+ cDennis Shasha 15

+ +

Empirical Results in a 1993 Bench-
mark

On a single site benchmark done at Wisconsin,

Object Store (for whom object references are

virtual memory pointers) took 101.6 seconds

on �rst invocation (\cold"), but only 6.8 seconds

on second invocation.

For Ontos (for whom object references are

location-independent), the cold invocation took

45.6 seconds and the warm one 12.6.

Explanation: Object Store encounters substantial

overhead because of memory mapping overhead.

On the other hand, using virtual memory pointers

is faster than Ontos's \test if virtual memory

pointer is valid, then use it else bring in target"

approach.

+ cDennis Shasha 16

+ +

Tuning Object Layout

� object attribute= attribute whose contents

(logically) are other objects.

The object contents may be logically shared.

The objects may be accessed independently.

� value attribute= attributes whose contents

are simple values or arrays of simple values.

Question: What should be clustered (colocated)

with an object and what should not be?

+ cDennis Shasha 17

+ +

Fig. 5.5

(OCTOPUS LAYOUT)

UNCLUSTERED FOR v AND v’’

v’’

v

A’’:

A’ : v

A :

oidO :

CLUSTERED

A’’: v’’

A’: v’

A : v

oidO :

+ cDennis Shasha 18

+ +

Rules for Object Layout

� if A is small value attribute then

cluster the A value with o

end if

� if A is large value attribute

and is USUALLY accessed

whenever o is accessed, then

cluster

else

uncluster

end if

+ cDennis Shasha 19

+ +

Object Layout | subobjects

� if A is an object attribute and either

large or

often accessed

independently of class C or

widely shared then

uncluster

else

cluster

end if

A system that loads objects by time of

insertion will often cluster objects with their

subobjects in any case.

Eliminates need for explicit clustering.

+ cDennis Shasha 20

+ +

Computation Layout

� If repeatedly access some set of objects

X with few concurrent updates by other

users of X,

then put X in client workstation bu�er

� Otherwise, (e.g. small transaction, high

contention transactions, or computation-poor

transactions)

leave X in server.

+ cDennis Shasha 21

+ +

Performance Results of Client
Caching

Client caching between transactions can make

running times of multi-transaction applications

on single data approximately equal to a single

transaction doing the same work. Without

client caching, each new transaction must fetch

pages from the server. This can hurt performance

on hot starts.

On a multi-site benchmark at University of

Wisconsin, Object Store (which does client

caching) had multi-transaction performance

within factor of 1.1 of single transaction doing

the same work (no concurrency).

For Ontos (no client caching), factor was 3.5.

Caveat: all systems are under development

and are constantly improving.

+ cDennis Shasha 22

+ +

Revenge of the Relational Sys-
tems

Argument of IBM, Oracle, Illustra.

� SQL is widely spoken. Very often,

interoperability is more important than object

orientation.

� SQL can be supported eÆciently.

� Can be extended with special data types

each having special operations that can

be accessed through select clauses.

+ cDennis Shasha 23

+ +

Object-Relational Systems

� Long Fields | for image, voice and text

data.

� User-de�ned operations | for rotating images,

enlarging them. Be able to include these

into select statements (Illustra, Oracle 8,

etc.)

� Recursion | (too much ado) �nd all ancestors

of Je�rey Green.

Can use WHILE loop of procedural extensions.

New e�orts to maintain transitive closures.

+ cDennis Shasha 24

+ +

Illustra/Informix/UniSQL/Oracle

� Developer identi�es a new type as a C

structure. These can participate in a hierarchy.

For example, JPEG move clip built as a

sub-type of movie clip. Types can be

composites of other types.

� Developer speci�es methods for these types.

Can inform system about costs of these

methods.

� Zero or more columns in zero or more

tables can be de�ned to have a speci�c

type. Selects can refer to these columns

with the special methods as de�ned.

� One can also add new index types such as

R Trees.

+ cDennis Shasha 25

+ +

Optimization Tricks

� Defer �nal select if it involves a user-de�ned

function. e.g. select showvideo(name)

where

� Remember expensive calculations, e.g. where

mrivalue(scan) ...

� Force the plan.

+ cDennis Shasha 26

+ +

Prospectus

Believer:

� Present database management systems are

too slow for computationally-expensive low

concurrency applications, like electrical computer

design. Pointer dereferencing is essential.

� Impedance mismatch forces unnatural implement

� Objects are right for software maintenance.

+ cDennis Shasha 27

+ +

My View

If OODB's

� standardize on some language, e.g. C++

or Java or some XML dialect.

� achieve high performance on several applications

� o�er SQL access

they will �nd markets.

Users of relational systems will evolve to object-relati

systems without making the leap to C++-based

object-oriented systems.

+ cDennis Shasha 28

+ +

Scenario 1

An electronic archival service uses a C++-based

object-oriented database system to store its

data.

Article objects consist of text, date, author

and subject keyword value attributes, and zero

or more photographs as object attributes.

Articles may be accessed by date, author, subject

keywords, or (rarely) by performing a string

search on the text.

What clustering strategy would you choose

for the text with respect to the article objects?

+ cDennis Shasha 29

+ +

Scenario 2

� Stock market application requires extensive

time series analysis of �nancial instruments.

� Relational systems don't give order.

� Does object-relational or object-oriented

make more sense?

+ cDennis Shasha 30

+ +

Benchmarking (Optional)

+ cDennis Shasha 1

+ +

Hazards of Choosing a System

� InsuÆcient transaction throughput.

� Too much transaction throughput at too

high a price. (TPS on mainframe is 30

times more expensive than on a personal

computer.)

� Starts o� well, but becomes overwhelmed,

e.g. Minitel, most intranets.

+ cDennis Shasha 2

+ +

Measurement Approaches

There are lies, damn lies, and then there are

benchmarks | folklore

� Application exists, then bring in equipment

and/or software and try application.

Simple in principle provided software is compatibl

� Application doesn't exist, so must use indirect

measures. Unfortunately, database performance

depends on many factors:

{ disk subsystem

{ operating system

{ algorithms

+ cDennis Shasha 3

+ +

Create Your Own Benchmark

Must model: data and transactions.

For data, size is important. On toy database:

� Query optimizer may scan instead of using

index.

� Bu�er will give unrealistically high hit ratio.

+ cDennis Shasha 4

+ +

Your Own Benchmark | trans-
actions

For transactions, three critical features:

� Terminals | do terminals bu�er characters?

If not, load will be high.

� Application programming| can you safely

ignore it? Yes for transaction processing,

no for design checkers.

� Database accesses | how are indexes used?

which accesses are updates?

DiÆcult and expensive to do well.

+ cDennis Shasha 5

+ +

DATABASECLIENTS

Transaction Processing System.

Architecture of Enterprise Client-Server

Fig. 6.1

TERMINALS

PHONE LINE

SERVERS

+ cDennis Shasha 6

+ +

Standard Benchmark

Main dimensions of choice:

� transaction length: short or long.

� transaction characteristics: update or read-only.

� interaction with application logic: none or

frequent.

+ cDennis Shasha 7

+ +

On-Line Transaction Processing

On-line transaction = under 10 disk accesses

with little computation.

Low-end: 100 on-line transactions per second

(TPS) against sub-gigabyte database.

High-end: 50,000 TPS against terabyte database.

Applications: telecommunications, airline reservation

banking, transportation, brokerage, process

control, and so on.

+ cDennis Shasha 8

+ +

OLTP is big business

Hardware and software for OLTP represents

approximately $50 billion per year.

Standards organization: Transaction Processing

Performance Council. www.tpc.org

Most mature benchmarks: TPC/A and TPC/B

(now outlawed). New ones are TPC/C, TPC/D,

and TPC/H.

+ cDennis Shasha 9

+ +

TPC/B Benchmark Comes from
Banking Deposit

1. Read 100 bytes including account id, teller

id, branch id and quantity information from

the terminal.

2. update a random account balance

3. write to a history �le

4. update a teller balance

5. update a branch balance

6. commit the transaction

7. write 200 bytes to the terminal

+ cDennis Shasha 10

+ +

Tightly Speci�ed

Benchmark attempts to prevent unrealistic

assumptions that would inate results.

Examples:

� Think time should not be constant, but

based on a truncated negative exponential

distribution.

� Degree 3 isolation (serializability) and tolerate

failure of any disk.

� 95% of the transactions must complete

within two seconds.

� Independent auditor.

+ cDennis Shasha 11

+ +

Typical Cheating Techniques

� Disable statistical optimizer.

� Do redo logging only (as in Oracle 7 discrete

transaction.)

� Turn o� archiver so log is overwritten.

Don't checkpoint.

+ cDennis Shasha 12

+ +

Order Entry (TPC/C)

Proposed benchmark to simulate transactions

of geographically distributed sales districts and

associated warehouses.

� payment | record receipt of payment.

� order-status | determine status of an order.

� delivery batch | process 10 orders by

deferred execution.

� stock-level transaction| returns information

about the quantity remaining of items recently

sold. Entails several joins and returns about

8,000 records.

+ cDennis Shasha 13

+ +

Simple Scan Benchmark

To test your disk and simple scan performance,

Jim Gray suggests trying a simple count query

on a 1 million record table

SELECT count(*) FROMTWHERE x between

(-999999, 999999)

Assuming a 10 MB/second scan rate and 100

byte records, this should take about 10 seconds.

If more then either disk or disk controller is

old, the operating system and database are

not prefetching, the data is not clustered on

disk, the record movement software is ineÆcient.

+ cDennis Shasha 14

+ +

Parallel Scan Benchmark

n disks,

n controllers (or more),

n processors

n times as many records uniformly partitioned

same query should have same elapsed time.

+ cDennis Shasha 15

+ +

Parallel Modi�cation Benchmarks

Insert from one table to another, then replicate

both tables four times.

See if log becomes a bottleneck.

See if rollback is fast.

+ cDennis Shasha 16

+ +

Other Benchmarks

� How are referential integrity constraints

checked?

� How do I guarantee that a secondary key

is unique?

� Are triggers parallelized?

� Can I reorganize my 10 terabyte database

in an hour?

+ cDennis Shasha 17

+ +

Summary

1. Application runs, then test products directly.

2. Application is on-line transaction processing,

then use TPC/A or TPC/B.

3. Application is general relational, then use

ASAP or TPC/C.

4. Application is decision support, then use

Set Query or TPC/D or TPC/H.

+ cDennis Shasha 18

+ +

and corresponding benchmarks. For graph traversal

Range of Applications on Relational Systems

Fig. 6.2

P

TPC A,B, Order-Entry

telecommunications

short transactions

data mining

SetQuery

join-aggregate

select-project
TPC/C benchmark

TPC/D benchmark

applications, use the 007 benchmark.

+ cDennis Shasha 19

+ +

Lessons from Wall Street:
case studies in con�guration,
tuning, and distribution

Dennis Shasha

Courant Institute of Mathematical Sciences

Department of Computer Science

New York University

shasha@cs.nyu.edu

http://cs.nyu.edu/cs/faculty/shasha/index.html

occasional database tuning consultant on Wall Street

+ cDennis Shasha 1

+ +

Wall Street Social Environment

� Very secretive, but everyone knows everything

anyway (because people move and brag).

� Computers are cheap compared to people.

e.g., 2 gigs of RAM is a common con�guration

for a server and will grow once 64 bit

addressing comes in.

� Two currencies: money and fury.

+ cDennis Shasha 2

+ +

Wall Street Technical Environ-
ment

� Analytical groups use APL or FAME or

object-oriented systems or Excel with extensions

to value �nancial instruments: bonds,

derivatives, and so on. These are the

\rocket scientists" because they use continuous

mathematics and probability (e.g. Wiener

processes).

� Mid-oÆce (trading blotter) systems use

Sybase. These maintain positions and prices.

Must be fast to satisfy highly charged traders

and to avoid arbitrage (delays can result

in inconsistencies).

� BackoÆce databases handle �nal clearance.

+ cDennis Shasha 3

+ +

Overview

� Con�guration | disaster-proof systems,

interoperability among di�erent languages

and di�erent databases.

� Global Systems | semantic replication,

rotating ownership, chopping batches.

� Tuning | clustering, concurrency, and

hashing; forcing plans.

� Complaints, Kudos, and a Request

+ cDennis Shasha 4

+ +

Preparing for Disaster

� Far from the simple model of stable storage

that we sometimes teach, though the principles

still apply.

� Memory fails, disks fail (in batches), �res

happen (Credit Lyonnais, NY Stock Exchange),

and power grids fail. If your system is still

alive, you have a big advantage.

� You can even let your competitors use

your facilities ... for a price.

+ cDennis Shasha 5

+ +

Case: Bond Futures

� Server for trading bond futures having to

do with home mortgages.

� Application used only a few days per month,

but the load is heavy. During a weekend

batch run, 11 out of 12 two-gigabyte disks

from a single vendor-batch failed.

+ cDennis Shasha 6

+ +

High Availability Servers

� A pair of shared memory multiprocessors

attached to RAID disks.

� If the primary multiprocessor fails, the backup

does a warm start from the disks.

� If a disk fails, RAID masks it.

� Does not survive disasters or correlated

failures.

+ cDennis Shasha 7

+ +

Client Client Client

Interface file

Primary SecondaryHigh

Availability

Disk Subsystem

Writes go to the primary and into the high availability

disk subsystem. This subsystem is normally a RAID device,

so can survive one or more disk failures.

If the primary fails, the secondary works off the same

disk image (warm start recovery).

Vulnerability: High availability disk subsystem fails

entirely.

+ cDennis Shasha 8

+ +

Dump and Load

� Full dump at night. Incremental dumps

every three minutes.

� Can lose committed transactions, but there

is usually a paper trail.

� Backup can be far away.

+ cDennis Shasha 9

+ +

Replication Server

� Full dump nightly. All operations at the

primary are sent to the secondary after

commit on the primary.

� May lose a few seconds of committed

transactions.

� Slight pain to administer, e.g. schemas,

triggers, log size.

+ cDennis Shasha 10

+ +

Primary Secondary

Client Client Client

Log sniffer

Basic architecture of a replication server.

The backup reads operations after they are committed

on the primary. Upon failure, the secondary becomes the

primary by changing the interface file configuration variables.

Vulnerability: if there is a failure of the primary after commit

at the primary but before the data reaches the secondary, we

have trouble.

Interface file

+ cDennis Shasha 11

+ +

Remote Mirroring

� Writes to local disks are mirrored to disks

on a remote site. The commit at the local

machine is delayed until the remote disks

respond.

� Backup problems may cause primary to

halt.

� Reliable bu�ering can be used (e.g. Qualix),

but the net result is rep server without the

ability to query the backup.

+ cDennis Shasha 12

+ +

Two Phase Commit

� Commits are coordinated between the primary

and backup.

� Blocking can occur if the transaction monitor

fails. Delays occur if backup is slow.

� Wall Street is scared of this.

+ cDennis Shasha 13

+ +

Primary Secondary

Client Client Client

Trans

Manager

Two phase commit: transaction manager ensures

that updates on the primary and secondary are

commit-consistent. This ensures that the two

sides are in synchrony.

Vulnerability: blocking or long delays may occur

at the primary either due to delays at the secondary

(in voting) or failure of the transaction manager.

+ cDennis Shasha 14

+ +

Quorum Approach (e.g., DEC,
HP, IBM, ISIS....)

� Servers are co-equal and are interconnected

via a highly redundant wide area cable.

� Clients can be connected to any server.

Servers coordinate via a distributed lock

manager.

� Disks are connected with the servers at

several points and to one another by a

second wide area link.

+ cDennis Shasha 15

+ +

Heartbeats

� Heartbeats monitor the connectivity among

the various disks and processors.

� If a break is detected, one partition holding

a majority of votes continues to execute.

� Any single failure of a processor, disk, site,

or network is invisible to the end users

(except for a loss in performance).

+ cDennis Shasha 16

+ +

Disk Wide Area Network

Primary Backup

Processor Wide Area Network

Clients... Clients...

Quorum Approach as Used in most Stock and

Currency Exchanges.

Survives Processor, Disk, and Site failures.

Distributed lock manager

Quorum approach used in most exchanges.

+ cDennis Shasha 17

+ +

Which to Use

� Stock exchanges use the quorum approach.

� MidoÆce database servers often use dump

and load or rep server. Symmetric approaches

that may cause the primary to delay are

too scary.

� Don't buy batches from one vendor.

+ cDennis Shasha 18

+ +

Case: Indicative Data Display

� Indicative data is data that doesn't change

much, e.g. payment schedules of bonds,

customer information.

� Must be at a trader's �ngertips.

� Relational connections to personal computers

are too slow. So data is held outside the

database.

+ cDennis Shasha 19

+ +

.

.Clients Server

Please give me data

.

It’s 10 past the hour
Here is data.

You’re out of date
Here is new data.

The fashion is for the serves to be stateless,
but this implies that clients may have out-of-date data.
Stateful Servers are better.

What happens if two clients update concurrently?

+ cDennis Shasha 20

+ +

How to Handle Updates?

� Ignore updates until the next day (used all

too often).

� Program clients to request refresh at certain

intervals.

� Have the server hold the state of the clients.

Send messages to each client when an

update might invalidate a client copy or

simply refresh the screens.

+ cDennis Shasha 21

+ +

Question for Vendors

� Consider data structures that are kept outside

the database because it is too computationally

or graphically intensive to put in the database.

� How best should you keep the data used

by that application up-to-date?

� What facilities should you give to handle

concurrent client updates?

+ cDennis Shasha 22

+ +

Case: Interdatabase Communi-
cation

� As in many industries, �nancial database

systems grow up as islands and then discover

| surprise | they must interconnect. Source

sends data to destination which then sends

some con�rmation.

� Replication server is a possible solution to

this problem, but

(i) Commits at the source may not make

it.

(ii) Responses from the destination imply

two-way replication. Known to be hazardous.

(iii) Hard to determine where the data is.

+ cDennis Shasha 23

+ +

Use Tables as Bu�ers

� Implement a bu�er table on the source

system side that holds information in the

denormalized form required by the destination

side.

� The destination database reads a new tuple

t from the bu�er table.

� After processing t, the destination database

ags t as deletable or deletes t itself in the

bu�er table.

+ cDennis Shasha 24

+ +

Overcoming Blocking

� Get blocking if source and destination scan

the bu�er table for update purposes.

� Approach 1: Destination database puts

responses in a di�erent table to avoid update-upd

conicts on the bu�er table.

� Approach 2: Use clustering in the bu�er

to avoid blocking.

+ cDennis Shasha 25

+ +

Source System

Buffer
Tables

Destination
Systems

Midoffice

Back
Office

Back
Office

Source system transactions write to
buffer tables and back office systems
read from them.
If back office systems must respond,
then either cluster the buffer tables
or use a second response table written
by the back office system.

Buffer Tables

+ cDennis Shasha 26

+ +

Clustering Solution Expanded

� Cluster on some hashing of a key value.

� Source writes new records to one cluster

at a time.

� Destination updates records in one cluster

at a time in round-robin fashion.

No FIFO guarantee, but every sent tuple

will be received.

+ cDennis Shasha 27

+ +

The Need for Globalization

� Stocks, bonds, and currencies are traded

nearly 24 hours per day (there is a small

window between the time New York closes

and Tokyo opens).

� Solution 1: centralized database that traders

can access from anywhere in the world via

a high-speed interconnect.

� Works well across the Atlantic, but is very

expensive across the Paci�c. Need local

writes everywhere in case of network partition.

+ cDennis Shasha 28

+ +

Distributed Solution

� Two phase commit worries users because

of blocking and delays. Replication can

result in race condition/anomalies. (e.g.

Gray et al. Sigmod 96).

� Sometimes, application semantics helps.

+ cDennis Shasha 29

+ +

Case: Options traders

� A trading group has traders in 8 locations

accessing 6 Sybase servers. Access is 90%

local.

� Exchange rate data, however, is stored

centrally in London. Rate data is read

frequently but updated seldom (about 100

updates per day).

� For traders outside of London, getting

exchange rates is slow.

Can we replicate the rates?

+ cDennis Shasha 30

+ +

Consistency Requirements

� If a trader in city X changes a rate and

then runs a calculation, the calculation

should reect the new rate (So, can't update

London and wait for replication.)

� All sites must agree on a new exchange

rate after a short time (must converge).

(So, can't use vanilla replication server.)

+ cDennis Shasha 31

+ +

Clock-based Replication

� Synchronize the clocks at the di�erent sites.

(Use a common time server.)

� Attach a timestamp to each update of an

exchange rate.

� Put a database of exchange rates at each

site. An update will be accepted at a

database if and only if the timestamp of

the update is greater than the timestamp

of the exchange rate in that database.

+ cDennis Shasha 32

+ +

London

New
York

Tokyo

...

...

...

Clients Clients

Clients

Clients send rates to local machines where they take
immediate effect.
Rates and timestamps flow from one server to the other.
Latest timestamp does the update.
Ensures: convergence and primacy of latest knowledge.

Timestamped Replication

+ cDennis Shasha 33

+ +

Case: Security Baskets

� Trade data is mostly local, but periodically

traders collect baskets of securities from

multiple sites.

� The quantity available of each security must

be known with precision.

� The current implementation consists of an

index that maps each security to its home

database. Each site retrieves necessary

data from the home site.

+ cDennis Shasha 34

+ +

Rotating Ownership

� Maintain a full copy of all data at all sites.

� Not all of this data will be up-to-date (\valid")

at all times however. Can be used for

approximate baskets.

� When a market closes, all its trades for the

day will be sent to all other sites. When

receiving these updates, a site will apply

them to its local database and declare the

securities concerned to be \valid."

+ cDennis Shasha 35

+ +

Rotation Issues

� Receiving ownership must be trigger-driven

rather than time-driven.

� Suppose New York assumes it inherits

ownership from London at 11 AM New

York time. If the connection is down when

London loses its ownership, then some updates

that London did might be lost.

+ cDennis Shasha 36

+ +

TokyoLondonNew
York

Ownership travels from east to west as exchanges close.

it is sure that the previous exchange has processed all
trades.

A given exchange should assert ownership only after

Rotating Ownership

+ cDennis Shasha 37

+ +

Case: Batch and Global Trad-
ing

� When the trading day is over, there are

many operations that must be done to

move trades to the backoÆce, to clear out

positions that have fallen to zero and so

on. Call it \rollover."

� Straightforward provided no trades are hitting

the database at the same time.

� In a global trading situation, however, rollover

in New York may interfere with trading in

Tokyo.

+ cDennis Shasha 38

+ +

Chop the batch

� \Chop" the rollover transaction into smaller

ones.

� The conditions for chopping are that the

ongoing trades should not create cycles

with the rollover pieces.

� New trades don't conict with rollover.

Lock conicts are due to the fact that

rollover uses scans.

+ cDennis Shasha 39

+ +

Good Candidates for Chopping

� Batch operations that don't logically conict

with ongoing operations. (Index conicts

are not a problem).

� Chopping means take each batch operation

and break it into independent pieces, e.g.,

delete zero-valued positions, update pro�t

and loss.

� If batch operations are not idempotent, it

is necessary to use a \breadcrumb" table

that keeps track of which batch operations

a process has completed.

+ cDennis Shasha 40

+ +

Tuning Case: Sequential keys,
clustering and blocking

� Sequential keys (i.e., keys whose values

are monotonic in time) are used to identify

rows in trade and position tables uniquely.

Suppose the table is clustered on a sequential

key.

� Bu�er behavior is good since all inserts hit

the same few pages.

� Multiple concurrent inserts will conict on

the last page of a data structure or of a

data page. Especially bad for page-level

locking systems.

+ cDennis Shasha 41

+ +

Hash Clusters

� Create a key:

concat(hash(process id), sequential key).

� inserts cluster at as many locations as there

are possible hash values.

� Good clustering without concurrency loss.

+ cDennis Shasha 42

+ +

Data Tuples in sorted order based on clustering

random key 0
sequential key

random key 1
sequential key

....

Different random key, sequential key concatenations
will not conflict with one another.
They will still however give good buffering behavior
since only one page per random key need be in the
database cache.

+ cDennis Shasha 43

+ +

Tuning Case: Interest Rate Clus-
tering

� Bond is clustered on interestRate and has

a non-clustered index on dealid. Deal has

a clustered index on dealid and a non-clustered

index on date.

� Many optimizers will use a clustering index

for a selection rather than a non-clustering

index for a join. Often good. The trouble

is that if a system doesn't have bit vectors,

it can use only one index per table.

+ cDennis Shasha 44

+ +

Query to be Tuned

select bond.id

from bond, deal

where bond.interestRate = 5.6

and bond.dealid = deal.dealid

and deal.date = '7/7/1996'

+ cDennis Shasha 45

+ +

What Optimizer Might Do

� Pick the clustered index on interestRate.

� May not be selective because most bonds

have the same interest rate.

� This prevents the optimizer from using

the index on bond.dealid. That in turn

forces the optimizer to use the clustered

index on deal.dealid.

+ cDennis Shasha 46

+ +

Alternative

� Make deal use the non-clustering index on

date (it might be more useful to cluster on

date in fact) and the non-clustering index

on bond.dealid.

� Logical IOs decrease by a factor of 40

(170,000 to 4,000).

+ cDennis Shasha 47

+ +

Complaints and Kudos

� It's important to know what your system

does badly. For Sybase, the NOT IN subquery

is particularly bad. Rewriting queries to

get rid of them can reduce the number of

logical IOs by a factor of 6 in cases I've

seen.

� Removing DISTINCTs when they are unnecessary

can improve a query's performance by 25%.

+ cDennis Shasha 48

+ +

Case: Temporal Table Partition-
ing

� Position and trade were growing without

bound. Management made the decision

to split each table by time (recent for the

current year and historical for older stu�).

Most queries concern the current year so

should be run faster.

� What happened: a query involving an equality

selection on date goes from 1 second with

the old data setup to 35 seconds in the

new one. Examining the query plan showed

that it was no longer using the non-clustered

index on date. Why?

+ cDennis Shasha 49

+ +

Use of Histogram

� Optimizer uses a histogram to determine

usefulness of a non-clustering index.

� Histogram holds 500 cells, each of which

stores a range of date values.

� Each cell is associated with the same number

of rows (those in the cell's date range).

+ cDennis Shasha 50

+ +

After reducing the size of the table, each cell was associated
with less than a day’s worth of rows. So, a single day query
spills on several cells.

Non-clustering index is not used if more than
one cell contains the searched-for data.

Single day

Many days

Initially, each cell was associated with several days’ worth of rows.

+ cDennis Shasha 51

+ +

Heuristic Brittleness

� The optimizer's rule is that a non-clustering

index may be used only if the value searched

�ts entirely in one cell.

� When the tables became small, an equality

query on date spread across multiple cells.

The query optimizer decided to scan.

� A warning might help.

+ cDennis Shasha 52

+ +

RAID disks

� Raid 5 discs seem to be much faster for

load applications than Raid 0, giving

approximately a 60% improvement (14 minutes

to 5 minutes)

� Raid 5: each disk has a portion of a sector.

there are n subsector portion and a parity

subsector that make up a sector. A small

update will write a single subsector.

+ cDennis Shasha 53

+ +

RAIDs on online transaction pro-
cessing

� How Raid 5 works when updating a subsector:

it must read the old version of that subsector

Sold, read the parity subsector Pold,

Pnew := (Sold xor Snew) xor Pold

� This is two reads and two writes for one

write.

� Savage and Wilkes (Usenix ref) have a

nice solution to this problem that involves

delaying the write to the parity disk. Ted

Johnson and I have a technique for making

this safe.

+ cDennis Shasha 54

+ +

Kudos: sample of new monitor-
ing tools

� Average utilization of packets (if high, then

bigger network packets might help).

� Why the log bu�er is ushed (if before

transaction completes, then perhaps make

it bigger).

� Reason for task context switches. (Tells

you if there is too much locking.)

+ cDennis Shasha 55

+ +

My Requests to Industry

� Database systems on Wall Street require

(i) an engine, (ii) a user interface, (iii) a

third generation language for math functions

and interprocess communication. Getting

these to work together is hard.

� Most of the updatable data �ts in a few

gigabytes however.

� Perhaps a programming language approach

is better.

+ cDennis Shasha 56

+ +

Shape of this Programming Lan-
guage

� Array based for time series, top ten queries

etc.

� Integrated GUI, e.g. negative values of

some variable turn red, newly updated values

blink. This happens by de�ning an attribute

on the variable. (Ravi Krishnamurthy proposed

something like this in Sigmod 1996).

� Include interprocess communication.

+ cDennis Shasha 57

+ +

Transaction Processing with a
Programming Language

� Operation logging. Recovery by replaying

the log from the last dump.

� Eliminate concurrency control by single

threading or run-time conict detection.

Deadlocks and blocking require too much

development time.

http://cs.nyu.edu/cs/faculty/shasha/papers/papers.html

+ cDennis Shasha 58

+ +

Summary: the main challenges

� Wall Street is di�erent from you and me,

it has more money... Also, more demands.

� High availability and reliability: hot remote

backup with low probability of blocking.

� Global: must worry about distribution across

WANs, where delays are signi�cant and

breakdowns

+ cDennis Shasha 59

+ +

Research and Products: db sys-
tem issues

� Batch cycle overlaps online activity. This

results in signi�cant blocking and requires

concurrent maintenance operations (e.g.

tear down and build up of indexes).

� Need a science of tuning in the spirit of

Schek and Weikum's Comfort project.

� Would really like a good sizing tool: given

a distributed application, what hardware

and interconnection bandwidth should I

buy?

+ cDennis Shasha 60

+ +

Research and Products: language
issues

� SQL 92 is complicated and too weak.

SQL 93 and object-relational systems may

�ll the void.

� Bulk operations on arrays would be really

useful however.

� There is a whole class of applications that

would be better o� without concurrency

control.

+ cDennis Shasha 61

+ +

References

1. The Dangers of Replication and a Solution.

Jim Gray, Pat Helland, Pat O'Neil, and Dennis

Shasha, Sigmod 1996. pp. 173-182

2. Is GUI Programming a Database Research

Problem? Nita Goyal, Charles Hoch, Ravi

Krishnamurthy, Brian Meckler, and Michael

Suckow. Sigmod 1996, p. 517-528.

3. The COMFORT Automatic Tuning Project

Gerhard Weikum, Christof Hasse, Axel Moenkeberg,

and Peter Zabback. Information Systems, vol.

19 no. 5, July 1994.

4. Transaction Chopping: Algorithms and

Performance Studies. Dennis Shasha, Francois

Llirbat, Eric Simon, Patrick Valduriez ACM

Transactions on Database Systems, October

1995, pp. 325-363.

+ cDennis Shasha 62

+ +

References { Continued

5. \AFRAID | A frequently redundant array

of independent disks" Stefan Savage and John

Wilkes 1996 USENIX Technical Conference,

January 22-26, 1996

6. Database Tuning: a principled approach

Prentice-Hall, 1992. (Dennis Shasha) The

book that got me all these gigs.

+ cDennis Shasha 63

