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Abstract

A large amount of data demonstrating the stochastic nature of gene expression and cell differentiation
has accumulated during the last 40 years. These data suggest that a gene in a cell always has a certain
probability of being activated at any time and that instead of leading to on and off switches in an all-or-
nothing fashion, the concentration of transcriptional regulators increases or decreases this probability. In
order to integrate these data in an appropriate theoretical frame, we have tested the relevance of the
selective model of cell differentiation by computer simulation experiments. This model is based on
stochastic gene expression controlled by cellular interactions. Our results show that it is readily able to
produce tissue organization. A model involving only two cells generated a bi-layer cellular structure of finite
growth. Cell death was not a drawback but an advantage because it improved the viability of this bi-layer
structure. However, our results also show that cellular interactions cannot be simply based on raw selection
between cells. Instead, tissue coordination includes at least two basic components: phenotypic
autostabilization (differentiated cells stabilize their own phenotype) and interdependence for proliferation
(differentiated cells stimulate the proliferation of alien phenotypes). In this modified autostabilization-
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selection model, cellular organization and growth arrest result from a quantitative equilibrium between the
parameters controlling these two processes. An imbalance leads to tissue disorganization and invasive
cancer-like growth. These findings suggest that cancer does not result solely from mutations in the
cancerous cell but from the progressive addition of several small alterations of the equilibrium between
autostabilization and interdependence for proliferation. In this frame, it is not solely the cancerous cell that
is abnormal. The whole organism is involved. Tumor growth is a local effect of an imbalance between all
the factors involved in tissue organization.
r 2004 Elsevier Ltd. All rights reserved.

Keywords: Cell differentiation; Tissue organization; Cell proliferation; Cell death; Stochastic gene expression; Cancer;

Selective model; Computer simulation
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1. Introduction

Embryogenesis results in the ordered emergence of an adult organism made up of a multitude
of differentiated tissues. Understanding the rules that govern this phenomenon remains a major
challenge. For this purpose, molecular mechanisms controlling basic cell processes such as gene
expression, cell division, cell differentiation and apoptosis have been widely studied. Because these
studies have been conducted in the context of the paradigm of a determinist genetic program,
stochastic aspects of cell physiology have been generally neglected. However, a large amount of
data have now been obtained either at the cellular or molecular levels, suggesting an important
role for stochasticity in gene expression and cellular differentiation. Taking into account these
data, both experimentally and theoretically, could greatly increase our understanding of cellular
physiology. These observations are all based on the same kind of experiments. If cell
differentiation is a determinist mechanism, the behavior of all cells belonging to the same
population should be homogeneous. In this frame, one does not predict variability between the
kinetics of differentiation of single cells, apart from experimental noise or minor fluctuations. In
contrast, in the frame of a stochastic mechanism, variability is expected to occur on a larger scale.
To our knowledge, Till et al. (1964) were the first to use this strategy. Because of the variability
observed, they suggested that the differentiation of cloned hematopoietic stem cells is a stochastic
phenomenon. Since this pioneer work, a similar observation has been made in other experimental
systems. In melanoma and leukemia cultured cells, the kinetics of expression of differentiation
markers better fit models in which cells are assigned a probability of becoming differentiated,
either after each mitosis, or as a continuous function of time (Gusella et al., 1976; Tarella et al.,
1982; Bennett, 1983; review: Levenson and Housman, 1981). In a variety of cell types including
myoblasts (Lin et al., 1994), goblet intestinal crypt cells (Paulus et al., 1993), hepatocytes
(Michaelson, 1993), lymphocytes (Davis et al., 1993), neural crest cells (Baroffio and Blot, 1992),
the gonadal cells in Caenorhabditis elegans (Greenwald and Rubin, 1992) and in vivo mice
hematopoietic cells (Abkowitz et al., 1996), the analyses of cell fate determination also support a
probabilistic model of cell differentiation.
At the molecular level, cells expressing the same phenotype and placed in homogeneous

environments should always express the same genes if they are controlled by a tight determinist
mechanism. In contrast, a large variability in gene expression has been reported between single
cells from numerous cell lines, both in vivo and in cultured cells.
In cells stably transfected with a lacZ plasmid under control of either the IL-2 promoter, or the

kB and NFAT-1 cis-activator elements (Fiering et al., 1990), or with target sequences of steroı̈d
hormones (Ko et al., 1990), only a fraction of cells express lacZ. Similar results have been
obtained with an LTR–HIV–lacZ plasmid (Ross et al., 1994). In rat neuroblastoma cells,



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

ARTICLE IN PRESS

JPBM : 345

B. Laforge et al. / Progress in Biophysics and Molecular Biology ] (]]]]) ]]]–]]]4
UNCORRECTED P
ROOF

heterogeneous expression of the insulin receptor gene has been shown by direct RT-PCR analysis
in single cells (Heams and Kupiec, 2003). In cells expressing luciferase genes under the control of
HIV–LTR, cytomegalovirus or prolactin promoters (White et al., 1995; Takasuka et al., 1998),
transcriptional activity has been reported to vary not only between single cells, but also to be
discontinuous in time within the same cell. In multinucleated muscular cells of transgenic mice,
different nuclei sharing the same cytoplasm differentially express lacZ placed under the control of
the actin, troponin I or HMG6CoA reductase promoters. Heterogeneous expression of these
genes has also been directly observed using in situ hybridization with actin and troponin probes
(Newlands et al., 1998). Results have even been obtained demonstrating a heterogeneity of
expression between the two chromosomes from the same pair in a diploı̈d organism. Indeed, in
situ analyses with specific probes allowing to discriminate the different alleles of a multiallelic
locus show that it is not always the same allele that is expressed, at a given time on the two
chromosomes for immunoglobulin (Nemazee, 2000), olfactive receptors (Chess et al., 1994),
globin (Wijgerde et al., 1995), T and NK receptors (Held et al., 1999) and cytokins IL-2 and IL-4
genes (Riviere et al., 1998; Hollander, 1999). According to the classical theory, the state of
activation of a gene is determined by the composition of its nuclear environment in transcription
factors. These experiments demonstrate that it is not sufficient and that there must be another
important parameter involved in the control of gene expression. Globally, when quantitative
analyses of transcription levels are made for series of genes within single cells, such a large
variability is observed that the very notion of an ‘‘average cell’’, representing a cell type, that can
be questioned (Levsky and Singer, 2003). In fact, all these data suggest a probabilist model, put
forth by most of the authors. Within this new paradigm that departs from the classical view of a
genetic program, each gene of a cell has a probability of being activated at any time. Instead of
leading to on and off switches of genes in an all-or-nothing fashion, the concentration of
transcriptional regulators increases or decreases this probability (reviews: Hume, 2000; Fiering et
al., 2000; Paldi, 2003). In order to explain stochastic gene expression, it has been proposed that
diffusion of chromatin molecules causes random local fluctuations in transcription regulators
concentrations along DNA resulting in stochastic variability of gene expression (Kupiec, 1983,
1989, 1997; Ko, 1991; McAdams and Arkin, 1997, 1999; Misteli, 2001). Finally, a series of
experiments showing how random fluctuations of gene expression in a gene network could lead to
bi-stable states have demonstrated the potential importance of stochastic gene expression in cell
differentiation (Becksei and Serrano, 2000; Becksei et al., 2001; Isaacs et al., 2003; Blake et al.,
2003).
Taken altogether, these cellular and molecular data support a Darwinian (selective) model of

cell differentiation. In the classical instructive model, cells differentiate because they receive
signals that direct them to a particular lineage (Fig. 1A). Each signal corresponds to a
‘‘command’’ of the genetic program. In this determinist frame, all cells are expected to react
identically to the stimulus and therefore variability is not expected. Instead, in the selective model,
cells differentiate primarily because of internal and stochastic events such as the stochastic
activation of genes. Cellular interactions act secondarily to coordinate the differentiation of the
different cell lines by stabilizing their phenotypes (Fig. 1B; Till, 1981; Kupiec, 1983, 1997;
Michaelson, 1987, 1993). Thus, the Darwinian model seems to be in better agreement with the
data because it predicts stochasticity and variability in cellular behavior. However, in spite of the
accumulating evidence, it is not yet acknowledged as a predominant mechanism, but rather as an
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Fig. 1. (A) Instructive (or determinist) model of cell differentiation. (B) Selective (or Darwinian) model of cell

differentiation. According to whether the random event a or b occurs, the cell differentiates into type A or B.

B. Laforge et al. / Progress in Biophysics and Molecular Biology ] (]]]]) ]]]–]]] 5
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exception to the general instructive rule. Darwinian theories have been proposed, and are well
accepted, in immunology and neurosciences (Jerne, 1955; Lederberg, 1959; Changeux et al., 1973;
Edelman and Mountcastle, 1978). But, as regards the cell differentiation during embryo
development, it is still believed to be deterministic in nature. The main reason in support of this
opinion seems to be the highly precise and reproducible kinetics of this phenomenon. A stochastic
process would be expected to be more chaotic. However, it is well known that stochastic processes
at the molecular level can lead to organized macroscopic structures. Statistical physics gives many
such examples. Another reason for the reluctance in accepting the selective model stems from its
imprecision as regards the actual nature of the selective or stabilizing cellular interactions it relies
on. Although epigenetic modifications of transcriptional regulators could be the molecular basis
for stabilization of gene expression and thereby of cellular phenotypes (Kupiec, 1997; Misteli,
2001; Paldi, 2003), there is still a need to give a deeper insight into this mechanism. In order to
address these questions and to evaluate the general relevance of the selective model, it is necessary
to investigate further its capability to build organized structures. Finally, only in vivo experiments
will elucidate the rules governing cell differentiation. But, computer simulation allows one to
explore rapidly and globally the properties of a theory. For this reason, we have simulated the
selective model of cell differentiation and conducted in silico computer experiments to test its
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relevance. Our analysis shows that the selective model displays the main properties expected from
a theory of embryogenesis. It is able to generate a stable cellular structure of finite growth.
However, the simulation also demonstrates that the Darwinian model must be modified.
Coordination in the development of differentiated tissues is not achieved merely by cellular
selection (or stabilization) operating on cells differentiating stochastically, as shown in Fig. 1B.
Instead, tissue coordination includes at least two basic components: phenotypic autostabilization
(differentiated cells must stabilize their own phenotype) and interdependence for proliferation
(differentiated cells stimulate the proliferation of alien phenotypes). Cellular organization is the
result of a balance between these two processes. An imbalance leads to tissue disorganization and
invasive cancer-like growth.
UNCORRECTED P
ROOF

2. Models

Two versions of the model depicted in Fig. 1B have been studied.

2.1. Model 1

2.1.1. Cells and molecules
The cell population consists of two cell types, A and B. Each cell synthesizes S molecules at a

certain rate Rs. In practice, the quantity of molecules synthesized at each simulation step is taken
in a Gaussian distribution whose average is Rs and standard deviation sRs. These molecules
could be signaling molecules involved in embryogenesis such as differentiation or growth factors.
There are two types of S molecules: A cells synthesize a molecules and B cells synthesize b
molecules. They are degraded at a certain rate (Rd). This parameter Rd includes catalysis after
interaction with a cellular receptor. Because S molecules diffuse within the cell population, each
individual cell is situated in an environment characterized by their concentrations. Biological
molecules do not diffuse by a three-dimensional random walk as simple solutes do in water
because of intracellular structuration and molecular overcrowding in the cytoplasm. Nevertheless,
they still move by passive diffusion and random walk in restricted cellular compartments (for
reviews see: Berg and von Hippel, 1985; Pederson, 2000) and, as experimentally demonstrated,
establish gradients (Tabata and Takei, 2004). This phenomenon is documented but its complete
and detailed representation in a cell is impossible to achieve at this time and would be
cumbersome to simulate. For these reasons, we used Fick’s laws. Therefore, there might be
distortions in our models as regards the concentrations of S molecules within the cell populations.
However, they do not modify the overall significance of our results. Thus, diffusion of S molecules
occurs according to

dn=dt ¼ DDn; (1)

where n is the local concentration of molecules and D the diffusion coefficient. If one assumes that
at t ¼ 0 no molecules stand at r ¼ 0 (r ¼ radius), then after a time t; the number of molecules at
distance r is given by

Nðr; tÞ ¼ N0

4pDt
e�r2=4Dt; (2)
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which is the integral solution we implemented in the simulation softwares. As a consequence after
a duration t the mean free path traveled by molecules is

L ¼
ffiffiffiffiffiffiffiffi

2Dt
p

: (3)

In practice, the algorithm uses formula (2) where t is taken to be the simulation time step. In the
simulation network associated to the concentration matrix, this integral diffusion formula is
applied square by square using a superposition principle.

2.1.2. Stochastic differentiation
At any time, a cell has a certain probability to switch its phenotype. A cells can switch to B, B

cells can switch to A. This phenotype switching probability (P) is a function (F) of the
concentration of S molecules. S molecules stabilize cellular phenotypes as described in Fig. 1B. An
increase of their concentrations in the immediate environment of a cell decreases its P. This aspect
of the model is based on the following biological assumption. It is well established that signal
transduction in cells leads to modifications in the phosphorylation of chromatin molecules and
thereby in the equilibrium constants of chromatin molecular complexes. In turn, these
modifications could result in either the stabilization or destabilization of chromatine structure
and of stochastic gene expression (Kupiec, 1997). Similarly, any other epigenetic modification
such as DNA methylation or protein acetylation could be involved in phenotype stabilization.
However, in various experimental systems that have been studied, cells may be involved in two
sorts of interactions. Either a cell acts on cells expressing a different phenotype or on cells
expressing their own phenotype. For example, during the stochastic differentiation of gonadal
cells in C. elegans, the anchor cell (AC) interact with the vulval cell (VU) (Greenwald and Rubin,
1992), whereas a mammalian muscle cell phenotype is achieved by positive auto-regulation
(Edmondson et al., 1992). Consequently, in our model, the effect of an S molecule can be of two
kinds. Either it stabilizes cells with the same phenotype as the cell it was produced from
(autostabilization): a molecules stabilize A cells and b molecules stabilize B cells; or, it stabilizes
cells with the other phenotype (interstabilization): a molecules stabilize B cells and b molecules
stabilize A cells. In the simulation, both effects can be combined according to

PðT ! T�Þ ¼ qautoFðNTÞ þ qinterF ðNT�Þ;

where PðT ! T�Þ is the probability for a cell of switching from one type to the other, T and T�

being the two cell types (if T ¼ A; T� ¼ B; if T ¼ B; T� ¼ A); NT and NT� are the quantities of
the corresponding S molecules (a and b) in the immediate environment of the cell; qauto and qinter
are the relative proportions of auto- and interstabilization (qauto+qinter ¼ 1); if qauto ¼ 1, the
model works according to a purely autostabilization mode, conversely if qinter ¼ 1, the model
works according to a purely interstabilization mode; F is a Fermi–Dirac function such as

FðxÞ ¼
1þ e�bC0

1þ ebðx�C0Þ
;

where x is either NT or NT�; C0 is the value for x corresponding to the inflexion point of the
function where FðxÞ � 1=2 for a large range of bC0 values; b is a coefficient determining the
steepness of the function; when b is big, the slope is abrupt with an almost direct transition
between F ðxÞ ¼ 1 and 0, when b is small, the slope is gentle with a progressive transition between
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EDF ðxÞ ¼ 1 and 0. This function was chosen because by varying the values of C0 and b it can
describe a wide range of situations. Fig. 2 shows several examples of FðxÞ:
At the beginning of each simulation experiment the whole matrix representing the cell

population (see Section 3) was filled with cells whose type, A or B, was chosen at random.
CT
UNCORRE2.2. Model 2

Model 1 was useful in determining the respective effects of auto- and interstabilization but it did
not generate organized cellular structures (see Section 4). Thus, we designed another version
including other fundamental features of eukaryotic cell physiology. In this second model, in
addition to their role in the stabilization of cell differentiation, S molecules are also necessary for
cell division and cell survival.
Model 2 works according to the same rules and with the same parameters as Model 1 but cells

are always in the autostabilization mode (qauto ¼ 1). In addition, in order to survive and
proliferate, a cell of a given type needs S molecules produced by the other cell type
(interdependence for proliferation). Indeed, it is well known that signaling molecules cause
various effects on different target cells. According to the context, a growth factor may either be a
proliferative factor, a differentiation factor or a survival factor (see for example: Fortunel et al.,
2000; Tjwa et al., 2003). Thus, these molecules have also pleiotropic effects in Model 2. Moreover,
S molecules may either be a signal or a trophic factor. As shown by the interesting work of
Atamas (1996), in the frame of a selective model, there is a functional equivalence between a signal
in a cellular system and food in an ecosystem. In both cases metabolization of the signal, or the
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resource, leads to the multiplication of cells, or predators, and to organization of the system.
Therefore, signals exchanged between cells can also be viewed as resources.
2.2.1. Cell survival
Cells A consume b molecules and similarly cells B consume a molecules. At each simulation

step, the quantity Cc consumed by a cell is randomly taken from a Gaussian distribution whose
average and standard deviation are Cs and sCs, respectively. If the quantity of adequate S
molecules present in the environment is smaller than Cc, the cell dies.
UNCORRECTED P
ROOF2.2.2. Cell proliferation

Cells do not move in the matrix, but they can proliferate. In order to enter mitosis, cells need to
consume, on average, a certain quantity of S molecules (Cp) produced by cells of the other type.
In order to account for the variability of cell cycle duration (Liu et al., 2004 and references
therein), for each cell and for each cell cycle, the actual quantity Cd of S molecules needed to enter
mitosis is taken from a Gaussian distribution whose average and standard deviation are Cp and
sCp, respectively. The quantities of S molecules consumed by a cell (Cc) are added at each
simulation step until Cd is reached. At that step the cell divides and the new cell occupies an
empty neighboring square chosen at random. If all squares are occupied, the cell does not divide.
This simplification, which avoids additional computing, might introduce a bias in cell growths
kinetics but it cannot change the overall signification of our results. Indeed, if cells were allowed to
divide within the cell layers, these layers would grow faster, but it would not change their size
which is determined by a balance between the parameters of diffusion and autostabilization as
demonstrated by all our results (see Section 4).
Two alternative versions of Model 2 were studied. When a cell switched its phenotype during a

cell cycle and therefore started to consume a different type of S molecules, either the counting of
consumption was carried on with the new type of consumed molecules (Model 2a) either it was
started again from zero (Model 2b). Model 2a integrates the fact that molecular recognition is
degenerate in biological systems (see for example: Edelman and Gally, 2001; Moggs and
Orphanides, 2001). Only a few ubiquitous intracellular signaling pathways exist that can be
activated by many different degenerate signals. Therefore, it is very plausible that the effects of S
molecules are not specific and can be added.
With either Model 2a or 2b, all cells died rapidly and the simulations failed if started with only

one cell. It occurred because S molecules, which are necessary for cells to survive and proliferate,
were not present at the beginning of the simulation. In fact, in actual organisms, fertilized ovum
rely on their reserves during the initial hours of embryonic development. Instead of supplying the
first cell with a reserve of S molecules, we skipped the first cell divisions. Therefore, in all the
experiments, the matrix was filled at the beginning of the simulation with 16 cells whose type, A or
B, was chosen at random. This ensured that S molecules were immediately produced in a quantity
allowing the cell population to grow.
In summary, in each cell of the simulation step: (1) S molecules are synthesized; (2) S molecules

are degraded; (3) S molecules diffuse; (4) the cell identity is determined stochastically according to
S molecules concentrations; (5) the cell consumes S molecules. It either dies, or divides, or remains
the same until the next simulation step. Table 1 summarizes the parameters of Models 1 and 2.
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Table 1

Summary of simulation parameters

Parameters Definition Units

Rs Rate of S molecules synthesis Molecules/time simulation step

sRs Standard deviation of Rs Gaussian distribution Molecules/time simulation step

Rd Rate of S molecules degradation % Of molecules/time simulation step

L Mean free path of S molecules Distance per time simulation step

qauto Ratio of autostabilization —

qinter Ratio of interstabilization —

C0 Inflexion of the Fermi–Dirac-like function

(concentration of S molecules for which the

phenotype switching probability is E1/2)

Number of molecules/square

b Slope of the Fermi–Dirac-like function bC0 is dimensionless

Cs Average quantity of S molecules consumed by a

cell during one simulation step

Number of molecules/square

sCs Standard deviation of Cs Gaussian distribution Number of molecules/square

Cp Average quantity of S molecules for a cell to enter

mitosis

Number of molecules/square

sCp Standard deviation of Cp Gaussian distribution Number of molecules/square

B. Laforge et al. / Progress in Biophysics and Molecular Biology ] (]]]]) ]]]–]]]10
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3. Material and methods

3.1. General features of the softwares

The cell population grows and differentiates in a two-dimensional matrix whose size can be
determined in the command line of the software. Actual organisms are three-dimensional but this
simplification allowed to spare a lot of computing time. Each square of this matrix may either be
empty or filled with a cell. This matrix is a torus in which a square situated at one extremity is
contiguous to the symmetrical square situated on the other side of the matrix. For example,
square with coordinates [1, 1] is contiguous to square [1, 50] and [50, 1]. The software runs two
other matrices identical to the first one but in which each square is a real number corresponding to
the quantity of S molecules present at this spot. Thus, the central algorithm for molecular
diffusion works with these matrices. Time is discretized and run as a succession of elementary
intervals corresponding to simulations steps. At each step, molecular diffusion and cellular events
(differentiation, division or death) are handled by the software.
The software was written in C++ and we used the ROOT framework developed at the Centre

Européen de la Recherche Nucléaire (CERN) to generate a user-friendly interface made of four
windows. One window is used for setting the values of the different parameters of the model.
Another window shows the matrix filled with cells A (red squares) and B (green squares). Two
other windows show separately the concentrations of each S molecule on the matrix.
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3.2. Computation of failure rates

For a given set of parameters, the simulation was run at least 100 times for 100 simulation steps.
The number of failures (the death of the entire cell population or in some rare occurrences a
disorganized cell population, see Section 4) was recorded and counted manually.
CTED P
ROOF

4. Results

4.1. Inter- and autostabilization of cellular phenotypes exert different effects on tissue formation

We first wanted to test the respective effects of inter- and autostabilization on tissue formation.
In a series of experiments, a matrix (50� 50) was filled with cells whose phenotype (A or B) was
chosen at random, each cell type having a probability p ¼ 1=2: The cell population was then
allowed to evolve according to rules of Model 1. A first visual examination showed obvious
differences between the results of simulations run under either the inter- or autostabilization
mode. With the interstabilization mode, small interspaced clusters of cells of both types were
always generated (Fig. 3A), whereas large homogeneous areas corresponding to one cell type
resulted from the autostabilization mode (Fig. 3B). However, in both cases, no organized
structures involving the two cell types could be reproducibly detected. A quantitative analysis of
variables including the time needed for stabilization and form (defined by the average radius,
maximum radius, perimeter, filling in), made from a series of simulations run with an extensive
range of values for the different parameters of the model did not uncover other hidden
characteristics (data not shown). Therefore, we concluded that interstabilization might be needed
to produce small cellular structures whereas autostabilization seems necessary to produce large
UNCORRE

Fig. 3. Simulation of Model 1. Here and in all the following experiments presented in this article, the values of the

parameters were identical for both cell types and S molecules. It has been checked that all the A/B cells symmetric

structures are statistically equally distributed for all the results. (A) Rd ¼ 0.15, Rs ¼ 5, Qauto ¼ 0, C0 ¼ 4, L ¼ 1.4,

b ¼ 1.1; (B) Rd ¼ 0.15, Rs ¼ 5, Qauto ¼ 1, C0 ¼ 4, L ¼ 1.4, b ¼ 1.1.
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homogeneous areas of cells. But, neither of them is sufficient by itself, at least in our conditions, to
produce an organization involving several tissues.
F

4.2. The combined action of cell phenotype autostabilization and interdependence for proliferation
generates an organized cellular structure of finite growth

Since Model 1 did not produce reproducible structures, we added dynamic features of cell
physiology, notably cell division and cell death. In addition, Model 2 combines stochastic
differentiation controlled by autostabilization and interdependence for proliferation. Visual
examination of the results obtained with several sets of values for the different parameters (Fig.
4A–G) immediately showed a striking difference between Models 1 and 2. The simulations, run
UNCORRECTED P
ROO

Fig. 4. Simulation of Model 2a. (A–F and G) Rs ¼ 14, sRs ¼ 0.1, Rd ¼ 0.08, L ¼ 0.6, C0 ¼ 15, b ¼ 0.5, Cs ¼ 2.4,

sCs ¼ 0.05, Cp ¼ 6, sCp ¼ 0.15. These parameters are the standard parameters we used in all the following

experiments described in this article. Simulation steps: A ¼ 0, B ¼ 52, C ¼ 105, D ¼ 223, E ¼ 552, F ¼ 1021. H

corresponds to another simulation with the same parameters: (H) Rs ¼ 4, sRs ¼ 0.1, Rd ¼ 0.08, L ¼ 0.3, C0 ¼ 5,

b ¼ 0.5, Cs ¼ 0.2, sCs ¼ 0.05, Cp ¼ 1, sCp ¼ 0.15. (I) Concentrations of a and b molecules across a typical bi-layer

structure. Green and red boxes represent zones occupied by A or B cells.
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either with Model 2a or 2b, produced a clearly recognizable organization. Starting from the initial
16 random cells (Fig. 4A), a cellular structure formed, made of two layers corresponding to the
two cell types A and B (Fig. 4B). As this bi-layer structure continued growing longitudinally, its
shape was not determined. It might fold up and vary each time the simulation was run again.
When it reached one side of the matrix, it continued growing on the other side because of the toric
structure (see Section 3). But, laterally, the cell layers were always adjacent, regular in width and
separated by a well-defined interface (Fig. 4C and D). Unexpectedly, there was no infinite growth
of these ‘‘virtual organisms’’. It reached a maximum development and then became stabilized even
if the simulation was carried on (compare Figs. 4E and F). Fig. 4G shows another stabilized bi-
layer structure obtained with the same set of parameters. Its overall shape is different but the bi-
layer structure is conserved. A similar output was obtained each time the simulation was run
again. The bi-layer structure remained invariant. Interestingly, this structure could be generated
with different sets of parameter values (Fig. 4H). Fig. 4I shows the concentration profiles of a and
b molecules across a lateral section of a typical bi-layer structure. Two symmetrical gradients of
these molecules spread across the structure. Its lateral growth arrest as well as its composition of
only one layer of each cell type suggested that this cellular organization does not result solely from
interdependence for proliferation. Indeed, if this was the case, one could expect alternative growth
of each cell type because of the nutriment availability. Cells A should proliferate on the external
side of cell layer B because of the presence of b molecules, and similarly, cells B should proliferate
on the external side of cell layer A. This phenomenon seemed important since we did not program
in the model any condition that would cause such a cellular growth arrest. To explain it, we
hypothesized that, because of concentrations of S molecules in these areas, phenotype
autostabilization prevents cells from switching their phenotype in the external sides of the
structure and consequently, to resume growth. Thereby, we tested this possibility by suppressing
the cell phenotype autostabilization. For this purpose, C0 was set to a very high value
corresponding to a concentration of S molecules that could not be reached during the simulation
(see legend of Fig. 5). As can be seen in Fig. 5, with Model 2a, the bi-layer structure was no longer
produced. Large interspaced clusters of cells A and B grew progressively and invaded the whole
UNCORR

Fig. 5. Suppression of autostabilization (Model 2a). Standard parameters except C0 ¼ 10,000. Simulation steps:

A ¼ 300, B ¼ 301.
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matrix. Because of the absence of autostabilization, the cell clusters identity was unstable and they
changed their type at each simulation step (compare Fig. 5A and B). With Model 2b, the bi-layer
could not form either. However, in this case Cd could not be reached since cells changed their
phenotype at each simulation step and the cell population simply stopped growing (data not
shown). Similarly, we evaluated the necessity of interdependence for proliferation by preventing
it. Rs and D were set to values that would make both kinds of S molecules overabundant in and
outside the whole cell population (see legend of Fig. 6), therefore always available for both cell
types in concentrations sufficient for proliferation. As can be seen in Fig. 6, it also resulted in the
progressive growth of large clusters of cells A and B. However, in this case, due to
autostabilization, the identity of these clusters remained stable. A similar bi-layer structure was
obtained whatever Model 2 (a or b) was used. Altogether, these data indicate that both cell
phenotype autostabilization and interdependence for proliferation are both necessary for
generating the bi-layer structure (see Section 5).
We have also observed that asymmetric cellular structures with layers of different sizes could be

formed by affecting different values for b and C0 to A and B cells (data not shown). Finally, it
should be noted that, due to the stochastic nature of the model, failures could occur in the
formation of the bi-layer structure. It occurred in the initial steps of the simulations because of an
imbalance in the ratio between the two cell types, leading to the death of the entire cell population.
However, the failure rate depended on the values of the different parameters of the model. For
certain sets of values it was low, compatible with biological reality in which embryonic mortality is
a widespread phenomena (Ayalon, 1978). For Model 2a, with the standard set of parameters
corresponding to Fig. 4A–D, failures occurred only 23 times out of 139 simulations,
corresponding to a viability (V ) of 79%. For Model 2b, with the same set of parameters,
failures occurred 46 times out of 132 simulations (V ¼ 65%).
UNCORRECT

Fig. 6. Suppression of interdependence for proliferation. Standard parameters except Rs ¼ 10,000, L ¼ 2.
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4.3. Cell death improves the bi-layer cellular structure formation

In order to evaluate the role of cell death in the bi-layer structure formation we modified the
software of Model 2a. In this experiment, cells did not die, even if the quantity Cc of S molecules
needed for survival was not present. However, they consumed all the remaining S molecules and
divided if Cd was reached. The absence of cell death had an obvious but unexpected consequence.
Although the bi-layer structure could still form, this happened at a much lower rate than when cell
death was integrated in the model. Out of 100 simulations, failures occurred 50 times
corresponding to V ¼ 50% instead of 79%. In the first steps of simulation, all cells became
converted into one of the two cell types and stopped growing (Fig. 7). From this result, cell death
appears to play a positive role in the formation of the bi-layer structure. It removes cells that are
not adjusted to their environment and this causes an imbalance in the ratio between the two cell
types. In turn, this imbalance causes the autostabilization of only one cell type.

4.4. A distortion in any parameter can impair the bi-layer structure formation

To get more insight into the relative influence of the parameters of Model 2 on the bi-layer
formation. For this purpose, we have proceeded to a separate distortion of each individual
parameter, starting from the our standard set of values corresponding to Fig. 4A–G.

4.4.1. Length of diffusion (L)
As can be seen in Figs. 8A and B, increasing L from 0.4 to 0.8 allows the formation of the bi-

layer structure with layers of increasing width. However, there are limits that cannot be exceeded.
When the value of L becomes too small ( ¼ 0.1), small interspaced clusters of both cell types grow
across the whole matrix (Fig. 8C). When it is too high ( ¼ 1), S molecules diffuse at long distances
from the source cells; their local concentrations become too small, leading to death of the entire
UNCORREC

Fig. 7. Suppression of cell death. Standard parameters but cells could not die.
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Fig. 8. Influence of diffusion. Standard parameters except (A) L ¼ 0.4, (B) L ¼ 0.8 and (C) L ¼ 0.1.

B. Laforge et al. / Progress in Biophysics and Molecular Biology ] (]]]]) ]]]–]]] 17
UNCORRECcell population within the first steps of simulation. Similar results were obtained with either Model
2a or 2b.

4.4.2. Autostabilization (C0 and b)

The suppression of autostabilization prevents the formation of the bi-layer structure (see Fig.
5). Its intensification leads to the same result. When the value of C0 is too small ( ¼ 1), cells
stabilize at low concentrations of S molecules. Consequently, large interspaced clusters of both
cell types invade the whole matrix (Fig. 9A). Autostabilization is also dependent on the coefficient
b: When its value is very small ( ¼ 0.01), cells cannot get fully stabilized. Small clusters of cells
with unstable phenotypes invade the whole matrix (Fig. 9B). When the value of b is high ( ¼ 15),
the transition from an unstable phenotype (P ¼ 1) to a stabilized one (P ¼ 0) occurs without
intermediate stochastic states (see Fig. 2). However, the bi-layer formation is not prevented.
Similar results concerning C0 and b were obtained with either Model 2a or 2b.

4.4.3. Cell proliferation (Cs and Cp)

The rate of cell division depends on Cs and Cp. On average, the number of simulation steps
needed for a cell to divide is equal to the ratio Cp/Cs. With Model 2a, when cell proliferation was
slowed down (Cp ¼ 10 and Cs ¼ 1) compared to the standard parameters we used (see legend of
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Fig. 4), the bi-layer could still form but failures occurred more frequently leading to death of all
cells during the first simulation steps. This happened 95 times out of 148 simulations (V ¼ 35%).
Model 2b produced similar results. With Model 2a, when cell proliferation was speeded up
UNCORRECTED P
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Fig. 9. Influence of autostabilization. Standard parameters except (A) C0 ¼ 1 and (B) b ¼ 0.01.

Fig. 10. Influence of the rate of synthesis of S molecules. Standard parameters except Rs ¼ 5. Simulations steps:

A ¼ 45, B ¼ 70, C ¼ 150.
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(Cs ¼ Cp ¼ 2), the bi-layer formed with a better efficiency. Failures were observed only 11 times
out of 110 simulations (V ¼ 90%). With Model 2b, failures occurred 63 times out of 117
(V ¼ 46%). In these latter experiments, a few cells survived in the matrix after 100 simulation
steps, when they were stopped. Otherwise the bi-layer was produced normally.

4.4.4. Concentrations of S molecules (Rs)

With either Model 2a or 2b, when S molecules were scarce (Rs ¼ 1) compared to the standard
parameters we used (see legend of Fig. 4), all cells always died in the first steps of simulation.
Interestingly, when S molecules were synthesized at an intermediate rate (Rs ¼ 5), a ring of mixed
cells was produced transiently before it broke up (Fig. 10). In fact, the ring expanded until the
torus geometry of the space made its edges to collide. The circular structure and its development
were reproducible. When S molecules were overabundant (Rs ¼ 100), large interspaced areas
corresponding to the two cellular phenotypes invaded the matrix, as shown in Fig. 6.

4.5. An imbalance between autostabilization and interdependence for proliferation leads to tissue

disorganization and cancer-like growth

Although we have not proceeded to a totally exhaustive analysis, our results are sufficient to
show that the bi-layer formation depends on an equilibrium between the different parameters of
the model. Since finite growth is an important feature of this process with considerable biological
relevance, we were intrigued to see what would happen to an already formed bi-layer structure of
the parameters controlling autostabilization and interdependence for proliferation were modified.
In the first experiment, the simulation was run with our standard parameters (see legends of the
values in Fig. 4) until the bi-layer formed and stopped growing (Fig. 11A). C0 was then increased
to a value of 45 instead of 15. This value corresponds to the concentration of S molecules on the
external side of the bi-layer. In an actual organism, such a modification could result either from
the mutation of a transcriptional regulator controlling a gene involved in autostabilization or its
interaction with a carcinogenic product. In both cases, its affinity with DNA target sequences
would be modified and consequently more molecules would be needed to achieve the same effect
on gene expression. As can be seen in Fig. 11B, the bi-layer was not destroyed but cell
UNCOR

Fig. 11. A modification of C0 causes cancer-like growth. Standard parameters except (B): C0 ¼ 45.
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Fig. 12. A modification of L causes cancer-like growth. Standard parameters except (B): L ¼ 0.2.

B. Laforge et al. / Progress in Biophysics and Molecular Biology ] (]]]]) ]]]–]]]20
ED P
ROO

proliferation resumed locally on its external sides, producing masses of cells of both types that
were continuously released in the environment and died after a variable period of time. In the
second experiment, the bi-layer was also formed using the default parameters until it stopped
growing (Fig. 12A). L was then set to 0.2 for both S molecules. In an actual organism, this could
result from either a mutation of S molecules or from their interaction with a toxic substance
modifying their diffusion properties. As can be seen in Fig. 12B, this led to a disorganized cellular
growth that invaded the whole matrix.
These experiments demonstrate that, in the frame of our model, a quantitative modification of

the parameters of either autostabilization or diffusion of S molecules leads to uncontrolled
cellular growth.
 T
UNCORREC
5. Discussion

5.1. An autostabilization-selection model of tissue organization

The results reported in this article show that a modified selective model of cell differentiation
integrating stochastic gene expression displays the main properties expected from a theory of
embryogenesis. In fact, the generation of order at the macroscopic level from stochastic disorder
at the molecular level has been acknowledged as an important principle in many areas of science
for a long time. It lies, for example, at the very root of statistical physics. But, until now it has
been rejected by mainstream biology. In his influential essay, ‘‘What is life’’, Schrödinger (1944)
suggested, instead, what he called the ‘‘order from order’’ principle applying to biological systems.
According to this principle, in living organisms, macroscopic order does not stem from stochastic
molecular disorder caused by Brownian motion, but from the transformation of the information
encoded in DNA into a three-dimensional cellular structure by a genetic program. Until recently,
this genetic program has been envisioned as a totally deterministic mechanism in which genes are
regulated by on and off switches (Jacob and Monod, 1961; Britten and Davidson, 1969; Oliveri
and Davidson, 2004). This view is still widely accepted. However, it is now challenged by the
accumulating evidence showing the importance of stochastic gene expression (see Section 1).
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Indeed, if gene expression, considered as the basic step of the deterministic genetic program, is a
stochastic event, there is a contradiction between the data and theory and one has to explain how
these data can be reintegrated into a coherent theoretical frame. For this reason, we aimed to
investigate the relevance of the selective model. As expected, the results we obtained demonstrate
that a mechanism based on stochasticity in cell fate choice can produce an organized cellular
structure. But, our results also show that the selective model should be modified, as regards the
modalities by which cellular selection operates to coordinate the development of differentiated
tissues. The simulations with Model 1 show that an interaction between cells, based simply on
interstabilization, as was previously imagined (Fig. 1B) is insufficient. It leads to the formation of
interspaced cell clusters. Although this pattern sometimes occurs during the development of
organs such as the Drosophila brain (Urbach et al., 2003), this is not a general theme in
embryogenesis. In contrast, autostabilization, which is not a property usually included in the
selective model, produces large homogeneous areas of cells. But, these structures are not
reproducible. These two complementary behaviors suggest that in order to generate an organized
cellular structure both types of interactions are needed: an interaction linking the different cell
types in order to create a pattern and autostabilization to give tissues extension in size. Model 2
works according to this principle. The growths of A and B cells are linked by interdependence for
proliferation, combined with phenotypic autostabilization. As a result, this model is readily able
to generate an organized cellular structure characterized by a bi-layer organization of finite
growth. These findings can be integrated into a modified model shown in Fig. 13. This
autostabilization-selection model might miss some important feature of living systems that would
make it more accurate. It should integrate other types of interactions to produce various sorts of
structures encountered in living beings. However, some argue that it is already relevant as a
general theoretical frame. Indeed, cell layers are very common in a biological organization and
finite growth is a major characteristic of development. By simply varying the values of the
parameters of the model, a ring of cells with an internal cavity could also be produced. Cavities
are a widespread feature of tissue organization and more specifically, this structure is reminiscent
of a blastula with its blastocoel. Moreover, the simulations suggest that tissue formation is not the
result of a single sort of cell interaction but involves multiple complementary molecules exerting
UNCORR
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Interdependance for proliferationInterdependance for proliferation
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events

Autostabilization Autostabilization

Fig. 13. Autostabilization-selection model of cell differentiation. Cell differentiation and tissue organization result

from stochastic gene expression, interdependence for proliferation and autostabilization of cell phenotypes.
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various effects. This is in agreement with basic knowledge in cellular physiology. Many different
kinds of molecules such as differentiation, proliferation, survival or apoptotic factors are involved
in the development. As is the case in actual experimental systems, in the autostabilization-
selection model these molecules are ubiquitous and affect either cell differentiation, cell survival or
cell proliferation on different cell types. These different effects could also be carried by multiple
sets of molecules resulting in a more complex model. Nevertheless, our results show that a simple
model involving only two cell types and two sorts of interaction is already sufficient to generate a
basic cellular organization. Therefore, we suggest that a complementary action of autostabiliza-
tion and interdependence for proliferation is an important requirement for tissue organization. Of
course, a major difference between the autostabilization-selection model and the classical
understanding of how morphogenetic factors act upon cells remains. In the usual instructive
model, these molecules act as signals to promote a change in the cell state. In the
autostabilization-selection model, they only stabilize a state previously achieved by a stochastic
mechanism.
Although sufficient to show that the autostabilization-selection model displays the main

characteristics of embryogenesis, our results do not constitute an exhaustive study of its
properties. In order to simulate more complex experimental systems, the simple two-cell model
presented here should be improved. It should be made three-dimensional and the number of cell
types should be increased. This work is now under progress with a three-cell model. Our
preliminary results show the formation of a three-layer structure (data not shown). Since we have
understood the basic rules for the control of cell proliferation, it will be possible to create a model
in which cells stop growing not only laterally but also longitudinally. As is often the case in
computer simulation experiments, our models are two-dimensional but they should be made
three-dimensional.
In the future, it will also be interesting to get insight into the dynamics leading to the formation

of the bi-layer structure. Indeed, it is generally acknowledged that cells differentiate according to
their position inside morphogen gradients (Gurdon and Bourillot, 2001; Wolpert, 1989).
However, the dynamic aspect of the process is usually underestimated. The morphogen gradients
are considered as prepatterns of the embryo in which morphogen concentrations act as
information causing cell differentiation. It is probably different in the autostabilization-selection
model. Both the concentration patterns and the bi-layer cellular structure seem to result from the
same dynamics and their formations to be completely entangled.

5.2. Cell differentiation and Natural Selection

Since phenotypic autostabilization is not a concept that usually forms part of a selective model,
a question arises from our results: to what extent is the autostabilization-selection model
Darwinian and how can it be integrated within an evolutionary perspective?
A selective model explains a biological process by a mechanism combining random variations

with selection. In this respect, it is conceptually analogous to Natural Selection. But, in order to
explain the evolutionary origin of multicellularity, it has also been postulated that Natural
Selection actually enters the organisms. In this frame, metabolic cooperation between cells is
considered as the source of order during embryogenesis. Cellular differentiation is explained as an
adaptation of cells to their microenvironment within the organisms. Each cell adjusts its
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metabolism in order to use the available resources transferred from its neighboring cells (Kupiec,
1997; Blackstone, 2000; Furusawa and Kaneko, 2000; Pfeiffer et al., 2001; Schlichting, 2003).
However, this theory only draws a general frame that does not exclude the appearance of
additional mechanisms in the course of evolution. Our findings can easily fit within this scenario.
Starting from a mechanism in which the interdependence for proliferation was based on raw
metabolic selection of cells, the efficacy of cellular differentiation could be improved: firstly, by
incorporating the action of molecules such as growth factors or hormones; secondly, by adding
new mechanisms such as autostabilization. Because of these additional mechanisms, an organism
cannot be viewed as a simple ‘‘cellular ecosystem’’ in which trophic interdependence for
proliferation between cells leads to cellular self-organization. As we have demonstrated, the
suppression of phenotypic autostabilization prevents cellular organization. Of course, this theory
still needs to get more experimental support. The evidence for stochastic gene expression relies on
its variability among single cells (see Section 1). However, in spite of the mass of data that has
accumulated two interpretations are still competing to explain its existence. Either it is a
fundamental process underlying cell physiology, or it is an unavoidable background noise of gene
expression. In order to establish it experimentally as a meaningful biological parameter, it should
be correlated with a cell process. In this regard, the autostabilization-selection model allows one
to make predictions. For example, according to the autostabilization-selection model, when a cell
is subject to a physiological change such as cell differentiation, variability in gene expression
allows for the subsequent selection and amplification of adequate expression profiles. Therefore,
in the course of differentiation kinetics, the cell-to-cell variability in gene expression is expected to
decrease whereas a background noise is not expected to be correlated with cell differentiation.
Another complementary prediction can also be made. In the frame of this model signal
transduction, or metabolism, controls gene expression variability via phosphate flux. Therefore,
its experimental alteration, for example by inhibiting or overexpressing a kinase or a phosphatase,
should also alter the restriction of variability in gene expression and disturb the normal course of
cell differentiation.
 E
UNCORR
5.3. Cell death and Natural Selection

In multicellar organisms, cell death, not only occurs during development but also is an active
process known as apoptosis with important consequences in many areas of physiology (Ameisen,
2002). However, the origin of its widespread occurrence remains somewhat enigmatic. Our results
suggest a strong explanation for its existence and maintenance in the course of evolution. Indeed,
in the frame of the autostabilization-selection model, cell death improves the viability of
organisms and therefore there is no reason for it to be suppressed. This result further supports the
hypothesis that cell differentiation originated from Natural Selection operating directly at the
cellular level. Indeed, this theory predicts the death of cells that cannot adjust to their
microenvironment as well as the differentiation of those that succeed. Therefore, in this frame, cell
death and cell differentiation are two effects of the same process.
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5.4. Cancer

According to the current theory of molecular biology, the genetic program is not only
responsible for the control of cell differentiation, but also cell proliferation. Cells are thought to
receive signals that determine them either to rest or to proliferate. In consequence, in the Somatic
Mutation Theory of cancer, tissue disorganization and neoplasia result from mutations in
oncogenes coding for these signals (Hahn and Weinberg, 2002). Dozens of these genes have been
reported. However, a clear and rational understanding of neoplasia has not been achieved yet.
Our results suggest another explanation. Tissue organization and cell proliferation are not
controlled by a genetic program made of qualitative signals but result from a quantitative
equilibrium between different parameters. Indeed, the bi-layer structure produced by the
autostabilization-selection model displays finite growth, but this feature was produced without
being programmed by an inhibitory signal. On the contrary, in this model, it is implicitly assumed
that there is a constant supply of nutriments allowing for the synthesis of S molecules and for cell
proliferation. Growth arrest results from the balanced effects of autostabilization and
interdependence for proliferation and we have shown that a quantitative modification of one of
these two processes leads to uncontrolled cellular growth. Consequently, these results suggest an
alternative mechanism to the classical Somatic Mutation Theory of cancer. Because tissue
organization and control of cell proliferation result from an equilibrium between autostabilization
and interdependence for proliferation, any modification within cells that would modify the
balance between their effects could lead to disorganization. As in the classical theory, it could be a
mutation of a protein involved in autostabilization of phenotypes. It could also be a mutation
preventing the diffusion of a trophic factor and thereby impairing interdependence for
proliferation. But, it could even not be a mutation. The direct fixation of a carcinogenic product
on a growth factor or the alteration of cell membranes could have the same effects. Moreover, if
tissue organization arises from the combined action of several causes, the etiology of cancer could
be diffuse because neoplasia would result from the progressive addition of several small
alterations of these causes. Therefore, in this frame, it is not solely the cancerous cell that is
abnormal. The whole organism is involved. Tumor growth is a local effect of an imbalance
between all the factors involved in tissue organization. This conclusion of the simulations is in
agreement with recent data showing the importance of cellular microenvironment and growth
factor signaling in neoplasia (van Kempen et al., 2003; Kenny and Bissell, 2003; Bhowmick et al.,
2004; Maffini et al., 2004; Hede, 2004). It is also in agreement with theoretical proposals that
stress the importance of the tissue structure over the genome (Bissell et al., 1999; Sonnenschein
and Soto, 1999).
Finally, the autostabilization-selection model might also enable us to make non-trivial

predictions for a strategy against cancer. Indeed, the simulations suggest that tissue organization
does not result from some ‘‘normal’’ values of the parameters, but from a ratio that has to be
respected between these values in order to maintain an equilibrium. As a consequence, if one
parameter is changed and the ratio is no longer respected, it should be possible to restore it by
modifying another parameter. Under the current dominant paradigm if a protein affecting
autostabilization is mutated and provokes cell proliferation, one will try to restore a ‘‘normal’’
autostabilization. For example, one will try to reinstate the wild-type gene-by-gene therapy.
Instead, the autostabilization-selection model suggests that it should also be possible to restore the
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adequate ratio between autostabilization and interdependence for proliferation by changing the
parameters of diffusion of this same protein. This could be achieved either by adding other
mutations to it or by affecting the medium in which it diffuses. For example, by mutating a
membrane protein. Of course, to be able to do that one requires uncovering in more detail the
relations between stochastic gene expression, autostabilization and interdependence for
proliferation. This will be the task of a new research program.

5.5. Conclusion

The results reported here do not provide a fully elaborated theory of embryogenesis and tissue
organization. But, the autostabilization-selection model of cell differentiation gives an example of
a new approach to biological systems through which the phenotype is not the direct expression of
information encoded in the DNA. The importance of the genome is not denied but it is no longer
considered as governing the organism. This latter view that can be traced back to the foundation
of genetics with Weisman’s (1892) germ-plasm theory has been the dominant paradigm of
molecular biology up to now. It underlies research programs focusing on gene analysis. This
research has been fruitful but it now needs to be enriched by integrating all the components of
biological organization (Crampin et al., 2004). The approach put forth in this article fits within
this frame. Tissue organization results from an equilibrium between the influences coming from
both the genome and cellular interactions. Embryogenesis is the evolution of the embryo toward
this equilibrium and cancer the destruction of the equilibrium.
D
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