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Abstract. This paper considers the problem of computing the editing distance between un-

ordered, labeled trees. We give efficient polynomial-time algorithms for the case when one tree is a

string or has a bounded number of leaves. By contrast, we show that the problem is NP -complete

even for binary trees having a label alphabet of size two.
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1 Introduction

Unordered labeled trees are trees whose nodes are labeled and in which only ancestor relationships

are significant (the left-to-right order among siblings is not significant). Such trees arise naturally

in genealogical studies, for example, the genetic study of the tracking of diseases. For many such

applications, it would be useful to compare unordered labeled trees by some meaningful distance

metric. The editing distance metric, used with some success for ordered labeled trees [1], is a

natural such metric. This paper presents algorithms and complexity results for a wide spectrum of

assumptions concerning this problem.

2 Definitions

The definitions below are similar in style to those for ordered labeled trees in [5]. We will omit the

proofs for Lemma 1 and Theorem 1 since they are similar to those in [5] and can be found in [6].

∗Research supported by the Natural Sciences and Engineering Research Council of Canada grants OGP0046373

and the U.S. National Science Foundation under grant IRI-89-01699 and CCR-9103953 and by the U.S. Office of

Naval Research under grants N00014-90-J-1110 and N00014-91-J-1472.

1



2.1 Editing operations and editing distance between unordered labeled trees

We consider three kinds of operations. Changing a node n means changing the label on n. Deleting

a node n means making the children of n become the children of the parent of n and then removing

n. Inserting is the complement of deleting. This means that inserting n as the child of m will make

n the parent of a subset (as opposed to a consecutive subsequence [5]) of the current children of m.

We represent an edit operation as a → b, where a is either Λ or a label of a node in tree T1 and

b is either Λ or a label of a node in tree T2. We call a → b a change operation if a 6= Λ and b 6= Λ;

a delete operation if b = Λ; and an insert operation if a = Λ.

Let S be a sequence s1, ..., sk of edit operations. An S-derivation from A to B is a sequence of

trees A0, ..., Ak such that A = A0, B = Ak, and Ai−1 → Ai via si for 1 ≤ i ≤ k. Let γ be a cost

function which assigns to each edit operation a → b a nonnegative real number γ(a → b).

We constrain γ to be a distance metric. That is, i) γ(a → b) ≥ 0, γ(a → a) = 0; ii) γ(a → b) =

γ(b → a); and iii) γ(a → c) ≤ γ(a → b) + γ(b → c).

We extend γ to the editing operations sequence S by letting γ(S) =
∑|S|

i=1 γ(si). Formally the

distance between T1 and T2 is defined as:

δ(T1, T2) = min
S

{γ(S) | S is an edit operation sequence taking T1 to T2}.

δ is also a distance metric according to the definition of γ.

2.2 Mappings

The edit operations give rise to a mapping which is a graphical specification of what edit operations

apply to each node in the two unordered labeled trees.

Suppose that we have a numbering for each tree. Let T [i] be the ith node of tree T in the given

numbering. Formally we define a triple (M, T1, T2) to be a mapping from T1 to T2, where M is any

set of pair of integers (i, j) satisfying:

(1) 1 ≤ i ≤| T1 |, 1 ≤ j ≤| T2 |;

(2) For any pair of (i1, j1) and (i2, j2) in M ,

(a) i1 = i2 iff j1 = j2 (one-to-one)

(b) T1[i1] is an ancestor of T1[i2] iff T2[j1] is an ancestor of T2[j2] (ancestor order preserved)

We will use M instead of (M ,T1,T2) if there is no confusion. Let M be a mapping from T1 to

T2. Let I and J be the sets of nodes, in T1 and T2, not in M . Then we can define the cost of M :

γ(M) =
∑

(i,j)∈M

γ(T1[i] → T2[j])+
∑

i∈I

γ(T1[i] → Λ)+
∑

j∈J

γ(Λ → T2[j])
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The relation between a mapping and a sequence of editing operations is as follows:

Lemma 1 Given S, a sequence s1, . . . , sk of edit operations from T1 to T2, there exists a mapping

M from T1 to T2 such that γ(M) ≤ γ(S). Conversely, for any mapping M , there exists a sequence

of editing operations such that γ(S) = γ(M).

Theorem 1 δ(T1, T2) = min
M

{γ(M) | M is a mapping from T1 to T2}

3 Algorithmic results

In this section, we first study the problem of finding the editing distance (a minimum cost mapping)

between a string and an unordered tree; and then between a tree with k leaves and an unordered

tree.

For the purpose of numbering the nodes in an unordered tree, we can take any ordering of

the tree. That is, we first fix an arbitrary order among the children of each interior node of the

unordered tree, yielding an ordered tree T . We will then use a postorder numbering of the nodes

in T . In the intermediate steps of our algorithm, we may have to consider unordered forests. We

note that the definition of mappings for unordered forests is the same as for unordered trees.

Define the out-degree of a node in a given tree to be the number of children of the node. We

then define the degree of a tree to be the maximum out-degree of any of its nodes. A string can be

considered to be a degree one tree.

3.1 Notation

Let T [i] be the ith node in the tree according to the left-to-right postorder numbering of tree T .

Let l(i) be the number of the leftmost leaf descendant of the subtree rooted at T [i]. When T [i]

is a leaf, l(i) = i. T [l(i)..i] is the unordered forest resulting from removing T [i] from the subtree

rooted at T [i]. The distance between T1[l(i)..i] and T2[l(j)..j] is denoted by dist(i, j). If i or j

is zero it represents the empty tree. We use d(i, 0) to represent γ(S[i] → Λ), d(0, j) to represent

γ(Λ → T [j]), and d(i, j) to represent γ(S[i] → T [j]).

3.2 Algorithm for the Editing Distance between a String and a Tree

The tree will be denoted by T . We will refer to the string as S and assume that it represents the

sequence a1a2 . . . an. In the postorder representation, S[1] represents an, S[n] represents a1, and in

general S[i] represents an−i+1. That is, the postorder numbering reverses the order of the string.

This implies that S[l(i)..i] = S[1..i] represents anan−1 . . . an−i+1.
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With these preliminaries out of the way, we can now present a few lemmas and then the

algorithm.

Lemma 2 The relative order among siblings of T does not influence the editing distance between

S and T .

Proof: By the ancestor-descendant constraint on mappings, we know that, in the best mapping

between S and T , S can be mapped only to a path of T from the root to a leaf. All other nodes

of the tree must be inserted. Since leaf-to-root paths are preserved by different orderings of T , the

order of T does not matter. 2

This lemma implies that we can solve this problem by the algorithm of Zhang and Shasha [5] for

ordered trees by fixing an arbitrary order for T . The time complexity will be O(|S| ·T | · depth(T )).

In the following we show that this can be improved to O(|S| · T |).

Assume that T[j] has k ≥ 0 children, T [j1], T [j2], ...T [jk].

Lemma 3 1) dist(0, 0) = 0

2) dist(i, 0) = d(i, 0) + dist(i − 1, 0)

3) dist(0, j) = d(0, j) +
∑k

i=1 dist(0, ti)

Proof: Statements (1) and (2) are obvious. As for (3), insertion of subtree(j) is equivalent to the

insertions of subtree(j1), ... subtree(jk), and then the insertion of root T [j]. 2

Lemma 4 If T [j] has no children, then

dist(i, j) = min











dist(i, 0) + d(0, j)
dist(i − 1, j) + d(i, 0)
dist(i − 1, 0) + d(i, j)

Proof: Consider the best mapping between S[1..i] and T [j]. We have three cases.

1. S[i] is not in the best mapping, then dist(i, j) = dist(i − 1, j) + d(i, 0).

2. T [j] is not in the best mapping. Since T [j] has no child, dist(i, j) = dist(i, 0) + d(0, j).

3. Both S[i] and T [j] are in the best mapping, then by the definition of mapping S[i] and T [j]

must mapped to each other. Therefore dist(i, j) = dist(i − 1, 0) + d(i, j).

Lemma follows. 2
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If S[i] maps to T [j], and S[1..i − 1] maps to subtree rooted at T [jt]. The cost of such a mapping
includes the cost of inserting all subtrees of T [j] aside from T [jt].

Figure 1: Case 3 in Lemma 5.

Lemma 5 If T [j] has k ≥ 1 children, then

dist(i, j) = min











dist(i − 1, j) + d(i, 0)

dist(0, j) + mink
t=1{dist(i, jt) − dist(0, jt)}

d(i, j) + dist(0, j) − d(0, j) + mink
t=1{dist(i − 1, jt) − dist(0, jt)}

Proof: Consider the best mapping between S[1..i] and T [l(j)..j]. Again we have three cases.

1. S[i] is not in the mapping, then dist(i, j) = dist(i − 1, j) + d(i, 0).

2. T [j] is not in the mapping, then assume that j1, j2, . . . jk are the children of T [j], The best

mapping must map S[1..i] to one of the subtrees rooted at T [j]’s children. Suppose that S[1..i]

is mapped to the subtree rooted at T [jt]. Then the distance is the sum of the cost of mapping

S[1..i] to T [l(jt)..jt], the cost of mapping null to T [j] and the costs of inserting all the other

subtrees of T [j]. Therefore dist(i, j) = dist(i, jt)+d(0, j)+
∑t−1

i=1 dist(0, ji)+
∑k

i=t+1 dist(0, ji)

By lemma 3 dist(0, j) = d(0, j) +
∑k

i=1 dist(0, ji). So dist(i, j) = dist(i, jt) + dist(0, j) −

dist(0, jt). Hence we have following: dist(i, j) = dist(0, j) + mink
t=1{dist(i, jt)− dist(0, jt)}.

3. S[i] and T [j] are both in the best mapping then they must map to each other, by the ancestor-

descendant constraints on mappings. In this case S[1..i − 1] must mapped to a subtree

rooted at a child of T [j]. Suppose that it is mapped to subtree T [jt], then dist(i, j) =

d(i, j)+dist(i−1, jt)+
∑t−1

i=1 dist(0, ji)+
∑k

i=t+1 dist(0, ji) = d(i, j)+dist(i−1, jt)+dist(0, j)−

dist(0, jt) − d(0, j). Therefore we have following: dist(i, j) = d(i, j) + dist(0, j) − d(0, j) +

mink
t=1{dist(i − 1, jt) − dist(0, jt)}

Lemma follows by combining the above three formulas. 2

We are now ready to give our algorithm.

dist(0, 0) = 0;
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For i = 1 to n

dist(i, 0) = d(i − 1, 0) + d(i, 0);

For j = 1 to m (* T [j] has k ≥ 0 children j1, ..., jk *)

dist(0, j) = d(0, j) +
∑k

t=1 dist(0, jt)

For i = 1 to n

For j = 1 to m

if l(j) = j then (* T [j] has no child *)

dist(i, j) = min











dist(i, 0) + d(0, j)
dist(i − 1, j) + d(i, 0)
dist(i − 1, 0) + d(i, j)

else (* T [j] has k ≥ 1 children j1, ..., jk *)

dist(i, j) = min











dist(i − 1, j) + d(i, 0),

dist(0, j) + mink
t=1{dist(i, jt) − dist(0, jt)},

d(i, j) + dist(0, j) − d(0, j) + mink
t=1{dist(i − 1, jt) − dist(0, jt)}

Theorem 2 The algorithm correctly calculates the minimum distance between S and T in O(|S|·T |)

time.

Proof: Correctness is immediate from the preceding lemmas, Lemma 3 to 5.

Consider the time complexity. To compute dist(i, j), the time is bounded by O(degree(T [j])).

Therefore the time of the algorithm is bounded by
∑|S|

i=1

∑|T |
j=1(degree(T [j]) + 1) = (

∑|S|
i=1 1) ×

(
∑|T |

j=1 O(degree(T [j]))) = O(|S| · |T |) 2

Strings are trees with a single leaf. One might wonder how the complexity grows when comparing

an unordered tree with k leaves to a general unordered tree. Let us first consider the case where

k = 2. That is there are two leaves in T1 and an arbitrary tree T2. Let i0 be the node in T1 with

two children. Let its two children be i1 and i2. We can use the string-to-tree algorithm to compute

their distance to tree T2. Let us consider what happens when we compute distance T1[l(i0)..i0] to

T2[l(j)..j].

As usual, we have three cases:

1. Node i0 is not in the best mapping. Let us consider T [j],

(a) T [j] is in the mapping, then it can map to either T [i1] or T [i2]. This yields dist(i0, j) =

d(i0, 0)+ min{dist(i1, j)+dist(i2, 0), dist(i2, j)+dist(i1, 0)}= dist(i0, 0)+min{dist(i1, j)−

dist(i1, 0), dist(i2, j) − dist(i2, 0)}.

(b) T [j] is not in the best mapping. This yields dist(i0, j) = dist(l(i0)..i2, l(j)..j − 1) +

d(i0, 0) + d(0, j). (This turns out to be larger than case 3, so we don’t have to consider

it.)
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2. T [j] is not in the best mapping. The reasoning is similar to case 1, yielding dist(i0, j) =

dist(0, j) + mink
t=1{dist(i0, jt) − dist(0, jt)}.

3. T1[i0] and T2[j] are both in the best mapping. dist(i0, j) = dist(l(i0)..i2, l(j)..j−1)+d(i0, j).

Unfortunately, the first term is unknown since we must consider the mapping of both strings

to T2. There are two subcases pertaining to the calculation of that term.

(a) Only one string is in the best mapping. dist(l(i0)..i2, l(j)..j − 1)= min{dist(i1, l(j)..j −

1) + dist(i2, 0), dist(i2, j − 1) + dist(i1, 0)}.

(b) Both strings are in the best mapping.

• The two strings map to one subtree. dist(l(i0)..i2, l(j)..j − 1) = dist(0, j)− d(0, j)+

mink
t=1{dist(l(i0)..i2, jt) − dist(0, jt)}.

• Each string maps to a different tree, so we use bipartite matching to find the best

mapping.

From the above discussion, if we know all dist(l(i0)..i2, l(j)..j), where 1 <= j <= T2, then

we can proceed as in the string to tree algorithm. For fixed j, to compute dist(l(i0)..i2, l(j)..j),

we need 2 + degree(T2[j]) + 2! ∗ 3 ∗ (degree(T2[j]) + 1) = O(2! ∗ 3 ∗ degree(T2[j]) time. The most

expensive step is for bipartite matching, namely 2! ∗ 3 ∗ (degree(T2[j]) + 1). Therefore the total

time for dist(l(i0)..i2, l(j)..j), where 1 <= j <= T2, is sumT2

j=12! ∗ 3 ∗ degree(T2[j]) =2! ∗ 3 ∗ T2.

Hence the time complexity of a two leaf tree to a general tree is O(T1 ∗ T2 + 2! ∗ 3 ∗ T2).

If T1 has k leaves, we have to consider the case where we have a subforest in that tree. The

subforest consists of trees each of which has less than k leaves. There are at least 2k such forests.

Extending the matching techniques to groups of forests, we use bipartite matching to determine

which group in T1 maps to which different tree in T2. The resulting complexity is O(T1 ∗ T2 + k! ∗

2k ∗ (k3 + degree(T2) ∗ T2).

4 NP -completeness

In this section we show that the problem of computing the editing distance between unordered

labeled fixed-degree k ≥ 2 tree is NP -complete. For details of this section, please refer to [4] and

[6].

We will reduce Exact Cover by 3-Sets to computing unordered labeled tree editing distance.

Exact Cover by 3-Sets

INSTANCE: A finite set S with | S |= 3q and a collection T of 3-element subsets of S.
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Figure 2: Trees constructed from instance of exact 3-cover

QUESTION: Does T contain an exact cover for S, that is, a subcollection T ′ ⊆ T such that every

element of S occurs in exactly one member of T ′?

Given an instance of the exact 3-cover problem, let the set S = { s1, s2, ... sm }, where m = 3q.

Let T = {C1, C2, ... Cn}. Here each Ci = {ti1 , ti2 , ti3}, where tij ∈ S. Without loss of generality,

we assume that n > q.

We construct two trees as in Figure 2. The top portion of each tree is represented by a triangle.

Below the triangle are n subtrees for each tree. We use the triangle at the top to connect the n

subtrees into a tree. It has ceiling of log3(n) levels. It plays no further role in the construction. The

total number of nodes in the triangle is less than n. We assume that all the nodes in the triangle

have the same label, which may be arbitrary. We call a sequence of nodes with label φ, λ, si or tij

a segment. The length of each segment is f3(n) = 4n.

Inspection of the figure shows that T1 and T2 can be constructed from an instance of exact
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cover by 3-sets in polynomial time.

In the following we will assume that each edit operation has unit cost, i.e. γ(a → b) = 1 for all

a, b such that a 6= b, and that T1 and T2 are trees as in Figure 2.

Lemma 6 Let M be a mapping between T1 and T2, if there are d ≥ 0 nodes of T2 not in mapping

M , then γ(M)(T1, T2) ≥ 3(n − k)f3(n) + k(f3(n) − 1) + d.

Lemma 7 If there is an exact cover by 3-set, then δ(T1, T2) < 3(n−k)f3(n)+k(f3(n)−1)+f3(n).

Lemma 8 If δ(T1, T2) < 3(n−k)f3(n)+k(f3(n)−1)+f3(n), then there is an exact cover by 3-set.

Theorem 3 Computing the editing distance between unordered labeled degree three trees is NP -

complete.

For the editing distance between degree k > 3 trees, we can reduce the Exact Cover by k-sets to

it. However for degree two trees we can not use the Exact cover by 2-sets problem since it is in

P. We can still use exact cover by 3-sets with a minor modification of the trees in Figure 2. For

any node with out-degree 3, let the node be a and its children be b, c, and d, that is (a(b)(c)(d)).

We change it to two out-degree 2 nodes, namely (a(b)(a(c)(d))). Now if we replace f3(n) = 4n in

Lemma 6 to Lemma L5 by f2(n) = 6n We can prove the same results as in Lemma 6 to LemmaL5

and Theorem 3. For the problem of computing the editing distance between a degree d1 ≥ 2 tree

and a degree d2 ≥ 2 tree, we can similarly prove that it is NP complete [6].
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The previous results are based on the assumption that the size of the alphabet of the labels are

not bounded. However in applications the size of the alphabet is always a constant. When we fix

the size of alphabet, we can use different strings to encode different symbols. Therefore even if the

size of alphabet is two all the previous results are still true [6].

5 Conclusion

We have presented the following results concerning the calculation of the editing distance between

unordered trees:

• An algorithm to compare a string S with an unordered tree T in O(|S| · |T |) time.

• The essential details of an algorithm to compare an unordered tree T1 having k leaves with a

general unordered tree T2 in O(T1 · T2 + k! · 2k · (k3 + degree(T2)
2) · T2) time.

• A construction and proof sketch to show that the problem is NP -complete even when the

two trees are binary and the alphabet is of size two.
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