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Consider: A System of Linear Differential Equations with Discrete Delays

Problem: Stability

Given specific A; € R"" and 7; € R,
and arbitrary initial condition xy,

does lim;_, o x(t) = 07
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Standard Test Case
. 0 1 00
T(t) = [_2 0.1] x(t) + [1 0] x(t —T)

Determine the minimum and maximum stable 7.

Tmin Tmax

Numeric|.10017 | 1.7172
Analytic | .10017 | 1.71785

Table 1: 7,,,, and 7,
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Consider:

For a given functional f : C; — R", f defines a system of functional differential equations:

r(0) =x(t+0) 0el|-T1,0

N State x;,

o We call x; € C; the full state of the system at time .

e x(t) is the present state of the system at time t.
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A Specific Case: Differential Systems with a Delay in the State

)

.............................. Statex;

"‘?"“f"ﬁ((t) ,,,,,
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Lyapunov Functions:

Lyapunov functions can be used to prove stability of functional differential equations.

Theorem 1 A functional differential equation is stable if there exists a V. : C, — R and
€ > 0 such that for all z; € C-, we have

Vi) = el|z(t)]
V(z) <O0.

V is the Lie derivative.

The set of positive functionals is convex.
The set of negative functionals is convex.
= If the map V' +— V is linear, then stability analysis is convex optimization...

more to come.
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Linear Systems Have:

Suppose f is linear and defines a stable system.

Then in most cases there exists some positive linear map A : C, — C;
such that the Lyapunov function

Vixy) = (xy, Azy)

proves stability of the system.

e For linear systems with delay,

Vi(ze) = (24, Bay)

and the map A — B is linear.
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Is it NP-Hard?
Problems in P:
e The shortest path
e Stability of linear systems in finite dimensions
e Linear Programming

e Semidefinite programming?

Problems in NP+:
e The traveling salesman

e Matrix Copositivity

e Positivity of Polynomials

° U

e Delay-Independent Stability
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Convex Optimization

Problem:

max bx
subject to Ax € C

The problem is convex optimization if

e (U is a convex cone.

e b and A are affine.

Computational Tractability: Convex Optimization over C' is, in general, tractable if

e There is an efficient set membership test for x € C
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Semidefinite Programming(SDP)

Problem:

max bl z

m
subject to Ay + Z Ajx; = 0

1=1

/

Here

e r € R™ and the A; are symmetric matrices.

e > 0 denotes membership in the cone of positive semidefinite matrices.

Computationally Tractable
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Semidefinite Programming(SDP):

e Stability

ATX + XP <0
X =0

e Stabilization

AX +BZ+ XAT +7TBT <0
X >0

e H5 Synthesis
min T'r (W)

A B)] [)Z(] + X Z7] [gg] + BB <0

X CX +D2z)!
[(CX+DZ) ( % | ] =V

e KYP Lemma
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Polynomial Programming

Problem:

max CTCU

n

subject to Ay(y) + Z riAi(y) = 0 Yy

?

The A; are matrices of polynomials in y. e.g. Using multi-index notation,

Az(y) = Z Ai,a y"

Computationally Intractable
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Polynomial Programming:

e Stability of Nonlinear Systems

fy)'Vply) <0
p(y) >0

e Matrix Copositivity
y' My —g(y)'y >0

g(y) =0
e Integer Programming
max y
poy)(y — f(y) — (v = f)* + X pi(y)(y; — 1) > 0
po(y) = 0

e Also 1

Positivstellensatz results are commonly used to set up these problems.
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Sum-of-Squares(SOS) Programming

Problem:

max CTZU

subject to  Ag(y) + Z r;Ai(y) € 3

e Y, is the cone of sum-of-squares matrices. If S € Y., then for some G; € R|z],
S(y) = Gily) Gily)
i=1

Computationally Tractable: S € X, is an SDP constraint.
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Why is M € >, an SDP?
Define Z;(x) to be the vector of monomial bases in dimension n of degree d or less.
For example, if n =1, and = € R2, then
Zg(a:)T — [1 T Ty T1Toy T3 :1:%]
If n =2, and z € R?, then

l z1 x
Z1<x)T: [ b 1 372]

Lemma 1 Suppose M is polynomial of degree 2d. M € Y., iff there exists some () > (
such that

M(x) = Zd(:v)TQZd(x).

Note: Sometimes we won't mention d explicitly.
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Example

My, z) =

Problem: Is M € >.;7

Step 1: Write
M<y7 Z) — NZ4<y7 Z)

Step 2: Construct B such that if N = B vec(Q), then

NZ4<y7 Z) — ZQ<y7 z>TQZQ<y7 Z)
This only depends on Z5 and Z4

Step 3: Find Q > 0 such that N = B vec(Q)



Solution
My, 2) [
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How to Construct SOS Programs?

Few questions are naturally expressed as polynomial programs.

e Instead consider optimization over semialgebraic sets

Special cases include:

e Matrix Copositivity:

e Integer programming:

max f(x) :
pi(x) >0
gi(z) =0

minz! Mz -
x>0

max f(x) :

€T —
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Positivstellensatz

Let

Theorem 2 (Putinar) Suppose P is ‘compact+". Suppose f(x) > 1 for x € P.
Then there exist s; € >, and t; € R|x] such that

k m

f(z) — Z si(x)pi(x) + Zti(ﬂ?)%(l‘) € X

There are many other formulations
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Robust Lyapunov Stability

Problem: Is i(t) = f(o, z(t)) stable for a« € A == {a: ||a]|* < 1}7?

Equivalently:

SOS Program:

find V' : forany a € A,
Vi) >0
V(z) <0

find V(z) = Z c;ixt

fla,2)! VV(z) <0 fora € A
V(z) > elz|

find V :

— fla,z)" V.V (z) — s(o, 2)(||a]|* = 1) € &,

V(z) — €||z]]* € X, s(a,x) € X
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Positivity of Part 1

Theorem 3 Let M be piecewise-continuous, then following are equivalent

1. There exists some € > 0 so that

/ | [ing(S) [EO§] ds > |

2. There exists a function T" and € > 0 such that

0
/ T(s)ds=0 and M(s)+ [Tés) 8] =€l
Computationally Tractable:
* Assume M and 1" are polynomials e The constraint fETm T(s)ds = 0 is linear

e For the 1-D case, X, is exact.
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Positivity of Part 2

Theorem 4 Suppose N(s,t) is a polynomial. Then the following are equivalent:

/ / (s)' N (s, t)x(t)dsdt > 0 for all x € C

e There exists a () > 0 such that
N(s,t)+ N(t,s) = Z(s)'QZ(t)

Notes:

e Map is affine e NV is separable
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Positive Integral Operators

If
107 1 =11 o]0
Ni(s, 1) = l—t—s+2st 1—s—st’| |s 0 -1 2 -1 =11t 0O
SUT L 1t —s2 14822 | |01 1 -1 1 0/l ]o1
_032_ 0 -1 0 1 _0t2_
107" ) 1 0] )
s 0 1 =110 [t=110][to| [1—s 1] [1—¢t1
— 10 1 0 —101] |0 =1010 1| | —s s? .
_O 82_ _O t2_
Then
0 0 0 0
//x(S)TN(S,t)x(t)dsdt:/ / z(s) G(s)' G(t)z(t)dsdt

_ / ()Gl ds [ Gyt = KK > 0
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Positivity of Part 2 Continued

Lemma 2 Suppose

Q(s) > 0
Now Define
[]]\Zzléivs‘f’;))T %;zg:z:ggl = 27 Q(s)Z(6)
Let

0 t 1
ky(t.0) = / Nop(t. 5. 6)ds + / Ny(t. s.0)Tds + / Ny(t, 5, 0)ds
0 0 t

t 6 1
kg(t, (9) = / Ngg(t, S, H)ds + / ng(t, S, Q)dS + / Nn(t, S, Q)dS
0 t 0
and define

Kt s) — ki(t,s) 0<s<t<1
e ko(t,s) 0<t<s<1

// (s)'k(s, t)x(t)dsdt > 0

Then for any x € C
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Standard Test Case 2 - Multiple Delays

We now consider a system with multiple delays.
. -2 0 —1 0 1 7. 19
T(t) = [ 0 9] x(t) + [_1 _1] [%x(t — 5) + Q—Oaz(t —7)

10

A bisection method was used and results are listed below.

Our Approach Piecewise Functional

d Tmin Tmax N 2 | Tmin Tmax

1 20247 1.354 || 1 |.204 1.35

2 20247 11.3722 | 2 1.203| 1.372
Analytic | .20246 | 1.3723

Table 2: 7,4, and 7,,,;,, using a piecewise-linear functional and our approach and compared
to the analytical limit.
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Result: We can construct parameter-dependent Lyapunov functionals.

Approach: We replace the semidefinite programming constraint

Q=0
with the SOS programming constraint

Qo) € 3.
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Standard Test Case 1 Revisited

By including 7 as an uncertain parameter in the Lyapunov functionals, we can prove

stability over the interval [Ty, Tinax] directly.

dint |dinf| Ty Tmax
1 1 1002 | 1.6246
1 2 1002 | 1.717

Analytic 10017 |1.71785

Table 3: Stability on the interval |70, Timax] VS.

functional

degree using a parameter-dependent
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Example: Remote Control

Suppose we are given a specific type of PD controller that
we want to implement.

#(t) = —az(t) — %x‘(t)

The controller is stable for all positive a. Now suppose we want to maintain control from
a remote location. When we include the communication delay, the equation becomes.

#(t) = —az(t — 1) — ga’;(t 1)

For what range of a and 7 will the controller be stable. The model is linear,
but contains a parameter and an uncertain delay.
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Example: Remote Control

Recall that we considered an inertial system controlled remotely using PD control

#(t) = —az(t — 1) — g:t(t —7)

Question: For what range of a and 7 will the controller be stable?

e We use parameter-dependent functionals.

0.5

o - stable

0 4 8 12 16
control gain(a)
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An new approach to solving the Lyapunov inequality

Linear with Time-Delay
Numerically well-conditioned and convergent

We can show that relatively large linear time-delay systems are stable

Uncertain with Time-Delay

We can prove stability over ranges of operating conditions

Nonlinear with Time-Delay

Provides an easy way of testing stability of very complicated systems
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Theory

e Stabilizing Controllers

e Partial Differential Equations

Applications

Industrial and Electrical:

e Communication Systems

e Manufacturing

e Optimal Controller Synthesis
e The KYP lemma

Biological:

e Cancer Therapy
e HIV Therapy



39 M. Peet, Seminar

Recall the general optimization problem:
max f(x) :
pi(z) =0
qi(x) =0
Reformulate the problem using semi-algebraic sets.
min -y :
P=0
Po=1{u: fx) = > 0,px) > 0,q(x) = 0}

Example: Integer Programming

min -y :
P =0
P:={r:f(z)—~v>02—1=0}
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Positivstellensatz

Theorem 5 (Stengle) The following are equivalent

’ pZ<ZC>ZOZ:1,,]€ o
{"’7' =0j=1,... }_(b

o There exist t; € R|x]|, s;,7ij,... € X5 such that
—1= Ztaz‘+So+ZSz‘pi+ZT7;jpipj T
i i

i#J
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Nonlinear Time-delay systems

Consider nonlinear systems which have a single delay.

o(t) = f(x(t),z(t —1),...,z(t — 7))

Here we assume x(t) € R" and f is polynomial.

We use a generalization of the compete quadratic functional of the following form.

0 0

Vig):= [ file(0),6(6),6)d0 + / F(6(0), 6(w), 8, w)dBd

—TK TK Y —TK

_ / Z($(0), 6(0))" M (0)Z(6(0), 6(6))do

T

—T

+/ K/_TK Z(¢(0)) R(6,w)Z(¢(w))dOdw

We represent M and R using results generalized from the linear case.
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Example: Epidemiological Model of Infection

‘1‘1

Consider a human population subject to non-lethal infection by a cold virus. The disease
has incubation period (7). Cooke(1978) models the percentage of infected humans(y)
using the following equation.

y(t) = —ay(t) + by(t — 7)[1 — y(t)]

Where

e a is the rate of recovery for infected persons

e b is the rate of infection for exposed people

The model is nonlinear and contains delay. Equilibria exist at y* = 0 and y* = (b —a)/b.
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Epidemiological Model

Recall the dynamics of infection are given by

y(t) = —ay(t) +by(t — 7)1 — y(t)]

Cooke used the following Lyapunov functional to prove delay-independent stability of the
0 equilibrium for a > b > 0.

1

Vo) = 56007+ [ as(ofas

Using semidefinite programming, we were also able to prove delay-independent stability
for a > b > 0 using the following functional.

V(p) = 1.75¢(0)% + / : (1.47a + .28b)¢(6)%d0

-7

When the rate of recovery is greater than the rate of infection, the epidemic
will die out.



