
Locality Optimization for Data Parallel Programs

Eric Hielscher
hielscher@cs.nyu.edu

Alex Rubinsteyn
alexr@cs.nyu.edu

Dennis Shasha
shasha@cs.nyu.edu

Computer Science Department New York University New York, NY, 10003

ABSTRACT
Productivity languages such as NumPy and Matlab make
it much easier to implement data-intensive numerical algo-
rithms. However, these languages can be intolerably slow for
programs that don’t map well to their built-in primitives.

In this paper, we discuss locality optimizations for our sys-
tem Parakeet, a just-in-time compiler and runtime system
for an array-oriented subset of Python. Parakeet dynam-
ically compiles whole user functions to high performance
multi-threaded native code. Parakeet makes extensive use
of the classic data parallel operators Map, Reduce, and
Scan. We introduce a new set of data parallel operators,
TiledMap, TiledReduce, and TiledScan, that break up
their computations into local pieces of bounded size so as
better to make use of small fast memories. We introduce a
novel tiling transformation to generate tiled operators auto-
matically. Applying this transformation once tiles the pro-
gram for cache, and applying it again enables tiling for reg-
isters. The sizes for cache tiles are left unspecified until
runtime, when an autotuning search is performed. Finally,
we evaluate our optimizations on benchmarks and show sig-
nificant speedups on programs that exhibit data locality.

1. INTRODUCTION
Productivity languages such as NumPy [19] and Mat-

lab [18] make it much easier to implement data-intensive
numerical algorithms. However, these languages rely on li-
brary functions to attain acceptable performance and can
become intolerably slow for programs which don’t map well
on to precompiled primitives. In this paper, we discuss our
system Parakeet [22], a just-in-time compiler and runtime
system for an array-oriented subset of Python. Parakeet
dynamically compiles whole user functions to high perfor-
mance multi-threaded native code. This paper focuses on
our use of data parallel operators as a basis for locality en-
hancing optimizations. We present a high-level syntactic
transformation which enables tiling for better use of cache
and registers.

The data parallel model allows programmers to expresses
algorithms by creating and transforming collections using
high level constructs. For example, whereas an imperative
language would require an explicit loop to sum the elements
of an array, a data parallel language might instead imple-
ment summation via some form of reduction operator. The
enduring appeal of data parallel constructs lies in the flexi-
bility of their semantics. A data parallel transformation only
specifies what the output should be, not how it is computed.
This makes data parallel programs amenable to paralleliza-
tion (as the name suggests), both in terms of coarse-grained
data partitioning and fine-grained SIMD vectorization.

In our system, we transform programs written with the
classic data parallel operators (Map, Reduce, and Scan)
to process small local pieces of data at a time. To express
this locality we have introduced three new data parallel oper-
ators: TiledMap, TiledReduce, and TiledScan. These
operators are not exposed to the programmer but rather are
automatically generated by a tiling transformation. For pro-
grams which can benefit from spatial or temporal locality of
memory access, applying this transformation can result in
signficant performance gains.

In summary, the contributions of this paper are:

• A novel code transformation that tiles data parallel
programs to improve both cache and register usage.

• An online autotuning search to select tile sizes.

• A just-in-time optimizing compiler for an array-oriented
DSL embedded in Python, which can readily outper-
form naive C implementations on a variety of tasks.

2. THE PARAKEET DSL AND COMPILER
Using Parakeet can be as simple as calling a Parakeet

library function from within existing Python code. For ex-
ample, the first call to parakeet.mean(matrix) will compile a
small program to efficiently average the rows of a matrix in
parallel. Repeated calls will not incur further compilation
costs. If a Python function is wrapped with the @parakeet.jit

decorator, then its body will be parsed by Parakeet and pre-
pared for later compilation. When such a function is finally
called, its untyped syntax will be specialized for the types of
the given arguments and then compiled and executed. For
example, consider the simple function given below:

@parakeet.jit
def add1(x):

return x+1

Listing 1: Simple Parakeet function

If add1 is called with an integer argument, then it will be
compiled to return an integer result. If, however, add1 is
later called with a floating point input then a new native
implementation will be compiled that computes a floating
point result.

This example does not make use of any data parallel oper-
ators. In fact, it is possible to generate code with Parakeet
using only its capacity to efficiently compile loops and scalar
operations. However, even greater performance gains can be
achieved through either the explicit use of data parallel op-
erators or, commonly, the use of constructs which implicitly
generate data parallel constructs. For example, if you were
to call add1 with a vector, then Parakeet would automati-
cally generate a specialized version of the function whose
body contains a Map over the elements of x. This can also
be written explicitly:

@parakeet.jit
def add1_map(x):

return parakeet.map(lambda xi: xi +1, x)

Listing 2: Add 1 to every element

In addition to its core data parallel operators Map, Reduce,
and Scan, Parakeet also supports derived data parallel oper-
ators. For example, the generalized outer product AllPairs
is ultimately translated into to a nested pair of maps, but
can be more covenient to use.

Functions which contain data parallel operators are ag-
gressively optimized and executed across multiple cores. Aside
from the tiling transformation described later, we also per-
form operator fusion [29], as well as more standard com-
piler optimizations such as common subexpression elimi-
nation, loop unrolling, and scalar replacement. Parakeet
generates native code using the LLVM compiler infrastruc-
ture [16]. The Parakeet source is available for download
at http://github.com/iskandr/parakeet. We are working
toward an official, publicized release in the next few months.

expression ::= Const
| x
| e1 � e2

| [e1, . . . , en]
| e1[e2]
| λx1, . . . , xn.block
| Mapα(f, e1, . . . , en)
| Reduceα(f,⊕, einit, e1, . . . , en)
| Scanα(f,⊕, femit, einit, e1, . . . , en)

statement ::= x = e
| return e
| if econd then blocktrue else blockfalse

| for x in eseq blockbody

block ::= statement+

Figure 1: Parakeet’s Internal Representation

3. TILED OPERATORS
When the data access pattern of a program involves sig-

nificant locality – temporal, spatial, or both – this enables
a number of different performance optimizations. Temporal
locality enables much better data cache behavior, as accesses
to a data item after the first can result in relatively cheap

X:

Tiled X: 0, 1, . . . , n,

Figure 2: Decomposition of an Array Into n k-length Tiles
Plus An s-length Straggler Tile

• TiledMap(f , fk, X):

fk(0) ++ . . .++ fk(n) ++ f()

• TiledReduce(f , fk, ⊕, X):

fk(0)⊕ · · · ⊕ fk(n)⊕ f()

• TiledScan(f , fk, ⊕, X):

result0 := fk(0)

resulti=1..n := last el. of resulti−1 ⊕ fk(i)

resultn+1 := last el. of resultn ⊕ f()
return result0 ++ . . .++ resultn+1

Figure 3: Visual Semantics of Tiled Data Parallel Operators

cache hits as opposed to expensive reads from RAM. Spa-
tial locality can also improve cache performance, as data is
stored in caches in units called cache lines that are typically
on the order of 16 words of memory. When data is accessed
in a pattern that uses entire cache lines at a time, all but the
first read to an item in the line is serviced by a cheap cache
hit. Locality is also important for good use of processor reg-
isters. It is often very beneficial for performance when data
is reused repeatedly in the inner loop of a computation to
load a small amount of data into registers and then to per-
form the inner loop on the registers. This way, every access
after the first involves using a register as opposed to a trip
to slower levels of the memory hierarchy.

In order to provide a convenient single abstraction for
dividing data parallel operator computations into locality-
friendly pieces, we introduce tiled data parallel operators,
one for each regular data parallel operator. Tiled data par-
allel operators are a natural generalization of data parallel
operators that, rather than applying their nested function
to each element of their input arrays, instead break their in-
put arrays up into groups of elements of bounded size called
tiles and execute their nested functions on these tiles. Users
never program directly with tiled data parallel operators –
they are strictly internal syntax for use in locality optimiza-
tions. The Parakeet compiler automatically generates them
from untiled code via a tiling transformation described later
in Section 4.

Figure 2 shows the decomposition of an array X into n
tiles each of length k, with an additional tile of length s that
contains the leftover elements of X if its length isn’t evenly
divisible by k. Figure 3 gives a visualization of the semantics
of tiled data parallel operators. Tiled data parallel opera-
tors can take multiple arguments and axes just like regular
data parallel operators, but we omit them from this picture
for clarity. For example, a TiledMap decomposes its input
arguments into tiles, executes its nested function on each

tile (including the straggler tile), and then concatenates the
results. The semantics of TiledReduces and TiledScans
are similarly direct generalizations of their untiled counter-
parts.

Tiled data parallel operators also take two versions of their
nested functions – one specialized for the specific tile size k
(denoted fk), and one generic to array length (simply de-
noted f) which is used to process the straggler tile. Knowl-
edge that the fk nested function will be called only on arrays
of a fixed size allows Parakeet to optimize it in various ways,
for example by removing boundary checks. In addition, reg-
ister tiling optimizes the fk functions even further.

Decomposing data parallel operators in this way allows
the Parakeet compiler to perform both cache tiling and reg-
ister tiling via the same abstraction. The decomposition
step alone is enough to enable cache tiling, provided that
the values of k are chosen properly such that the working
set of each function call fits into cache. When Parakeet tiles
for cache locality, the values of k are left undetermined until
runtime when an online search is performed to choose good
values for them.

By contrast, in order for Parakeet to use tiled data parallel
operators to perform register tiling, we fix the k values to
small compile-time constants based on a heuristic that takes
into account the number of registers on the target machine.
Parakeet then lowers fk into a loop and completely unrolls
it, which is possible due to its fixed length. Afterward, scalar
replacement is applied to remove as many direct memory
accesses to the tile’s elements as possible, instead keeping
them in registers.

4. TILING TRANSFORMATION
In this section, we present our algorithm for automati-

cally translating a Parakeet function with data parallel op-
erators into a version with tiled data parallel operators. The
basic idea should be intuitive – we wrap data parallel op-
erators in tiled versions of themselves (say, a Map in a
TiledMap) – and in this way use the tiled data parallel
operator to break up the original computation into locality-
friendly pieces. The original data parallel operators become
the nested functions of the tiled data parallel operators, as
the original computation still needs to be performed on each
tile. However, there are a number of issues that make things
somewhat more complicated.

Let us use summing the rows of a 2D matrix as a simple
running example. Parakeet code for this is given in Listing
3. The iteration pattern through the elements of the array
for this version is shown on the left side of Figure 4 – the
Reduce iterates over each row in its entirety before the
Map moves on to the next row.

Such a program has the potential to benefit from cache
tiling due to the cache line effect discussed in Section 3. For
example, if the data is layed out such that adjacent elements
of columns (rather than rows) are adjacent in memory, then
whenever an element of the array is read some number of
neighboring elements in its column will also be brought into
cache as they’ll be in the same cache line as the read element.
If the rows are larger than the size of the cache however,
these neighboring elements will have been evicted by the
time it is their turn to be read. Thus what could have been
a cheap cache hit if the program were tiled instead becomes
a costly trip to RAM. Let us walk through the steps required
to tile this program for cache.

Figure 4: Iteration Order of Untiled (left) and Tiled (right)
2D Row Sums

def add2(a, b):
return a+b

def sum_row(row):
return Reduce(lambda x:x, row , init=0,

combine=add2 , axes =[0])

def sum_rows(Xs):
return Map(sum_row , Xs, axes =[0])

Listing 3: Sum Each Row of a 2D Array

We would like to break up both the Map and the Re-
duce by adding tiled versions of them. To break up the
Map, we wrap the entire computation in a TiledMap that
groups the rows of the array into tiles. These row tiles are
represented on the right side of Figure 4 by the bold boxes
around groups of rows. To tile the Reduce, we then break
these row tiles further via the use of a TiledReduce that
divides the rows in each row tile into a series of partial rows.
The divisions added by the TiledReduce are represented in
the figure by the dashed lines. The iteration order through
each of the final tiles is represented on the right side of the
figure by the arrows. Note that this procedure lets us break
every dimension of the input into pieces of bounded size.
Thus regardless of the size of any of the dimensions of the
input array Xs, with properly chosen tile sizes we can en-
sure that the amount of data in the smallest tiles fits into
whatever size cache is being targeted for optimization.

The final tiled code for summing the rows of a 2D array is
given below in Figure 5. Let’s break it down piece by piece
to explain how our algorithm produces this code.

4.1 Visited Operators List
First, notice that at a high level the code is as we would ex-

pect – a TiledMap is contained in the outermost function
tiledsum_rows, whose nested function tiledsum_row contains a
TiledReduce, whose nested function sum_rows in turn con-
tains the original computation. The first thing our algorithm
must do is keep track of the nesting of data parallel opera-
tors encountered as it steps through a program so as to be
able to create a tiled copy of that nesting.

A formalized description of our entire algorithm is given
in figures 6, 7, and 8. In the formal description, the se-
quence of encountered data parallel operators is represented
by σ. The generic operation of tiling a statement, a block
of statements, or a data parallel operator is represented by
the JK operator. Recall that the entry point into Parakeet
is always either a data parallel operator or an outermost
function called from Python. Tiling an outermost function
involves simply tiling its block of statements.

The rest of the parameters of the TiledMap match those
of the original Map – it iterates over the variable Xs on axis
0. Thus our algorithm can simply copy these parameters
from the original Map and use them for the tiled version.

def identity(x):
return x

def add2(a,b):
return a+b

def sum row(rowTile):
return Reduce(identity, rowTile, init=0,

combine=add2, axes=[0])

def sum rows(XsTile):
return Map(sum row, XsTile, axes=[0])

def tiledadd2(as,bs):
return Map(add2, as, bs)

def tiledsum row(XsMapTile):
return TiledReduce(sum rows, XsMapTile, init=0,

combine=tiledadd2, axes=[1])

def tiledsum rows(Xs):
return TiledMap(tiledsum row, Xs, axes=[0])

Figure 5: IR for Tiled Sum Each Row of a 2D Array

Next, let’s examine the tiledsum_row function and its Tile-
dReduce. It iterates over the XsMapTile, analagous to the
original Reduce iterating over row, and its initial value of 0
is the same as that of the Reduce. Its nested function is the
original sum_rows function that was tiled, which is what we
would expect since it is the final tiled data parallel operator
in the nesting. However, its axes and combine parameters
require further explanation.

4.2 Axes of Tiled Operators
The TiledReduce’s iteration axis for the XsMapTile is 1,

not 0 like in the original Reduce. To understand why, look
again at the iteration order shown in Figure 4. Notice that
each XsMapTile is a two dimensional group of rows, whereas
the original reduce iterated over single 1D rows. A key differ-
ence between tiled data parallel operators and regular data
parallel operators is that tiled data parallel operators al-
ways operate on tiles of the outermost arguments that are
the same rank as the entire outermost arguments themselves.
In contrast, regular data parallel operators operate on pieces
of the arguments with progressively decreasing rank, as each
regular operator slices away one dimension. Thus the axes
of iteration for regular operators have a local view on the
input arguments to the outermost function – they only see
the dimensions of the arguments that remain after any pre-
vious operators have sliced some dimensions away. This is
why, even though the Reduce in the original code iterates
over what is axis 1 of the outermost 2D input argument Xs,
its axis of iteration over its 1D row is 0.

In order to properly update the axes of variables such that
they fit the tiled operators, we need to keep around some
state for each variable we encounter. For this we maintain a
mapping from variables to the axes at which prior adverbs
in the nesting have sliced them. In the formal description,
this mapping is denoted by ∆. Using these lists of axes, we
can map from the local axis of the original adverb back to

the global axis of the entire tile/outer variable as required.

4.3 Tiled Combine Functions
The combine function of the TiledReduce in Figure 5

also needs further explanation. Recall that the purpose of a
combine function is to provide a way to combine two partial
results of a reduction. For a TiledReduce, we need the
combine function to combine two partial results of executing
the nested function on tiles.

Let’s walk through expanding the TiledReduce’s com-
bine function. The number of data parallel operators in
the visited data parallel operators list σ is one adverb prior
to this point: the Map. Thus we’ve expanded the argu-
ments to the TiledReduce’s nested function as well as the
nested function’s return value by 1 rank. Hence we need to
increase the rank of the arguments and results of the Re-
duce’s combine function by 1 in order to create a combine
function suitable for the TiledReduce. We do this by call-
ing a helper function we name BuildTree. This function
wraps the Reduce’s combine function add2 in one Map, as
shown in Figure 5.

The purpose of this Map is to“peel off” the rank that was
added by the previous adverb having been tiled. This way,
we can get to arguments of the rank that the original com-
bine function expects, and then call the original function on
those arguments. By mapping across the extra dimensions
added (one in this case), we ensure that we call the combine
function on each element of the tiles, thus maintaining the
semantics of the original program.

Since there are no more data parallel operators to tile,
we are now ready to insert the original computation as the
nested function of the final tiled data parallel operator, and
the tiling transformation terminates. The reader follow-
ing along with the formal algorithm will notice that a Re-
duce or a Scan always terminates the tiling algorithm. This
is because it is not safe in general to split the results of one
reduction and have these partial results form the input to
another one (for example, the partial results of the mini-
mum of an array aren’t meaningful). In addition, notice
that the insertion of the original computation in the formal
algorithm actually involves another use of the BuildTree
function. This is in order to support nested non-operator
statements, as described next.

4.4 Nested Statements
One last issue not covered in the summing rows example

is what happens in the presence of statements that don’t
include data parallel operators inside functions being tiled
(for example, scalar operations, indexing into variables, or
control flow). In the case of the outermost function, these
statements are simply left alone. However, inside a nested
function of a tiled operator, we must be careful to maintain
the semantics of the original program. If we simply added
these statements both to the nested functions of the tiled
operators in addition to keeping them in the nested func-
tions of the inner regular operators, this may result in an
error. For example, in the case of indexing into a variable,
this would amount to indexing into a tile, and then in the
innermost computation, indexing again into a piece of that
tile. This would index once too many times, and break the
program’s semantics.

To solve this issue, we do two things. First, we disal-
low control flow in functions being tiled; if control flow is

α ::= Axes along which an adverb slices
each of its arguments

σ ::= Ordered sequence of visited adverbs
∆ ::= Maps variables to the list of axes remaining

of the original variables of which they
are a piece

ε ::= Maps variables to the nesting depths
at which they were tiled

ε[x] ::= 〈〉 if x /∈ ε or if x is a constant
FV(e) ::= The set of free variables in expression e

BuildTree(σ, ε, x1, . . . , xn,
block) ::= σ0(vars0, λvars0.

σ1(vars1, λvars1.
. . .
σd(varsd, λvarsd.block) . . .))

where
d = |σ|
varsi = {xj |i ∈ ε[xj]}

Jf = λx1, . . . , xn.bodyK 7−→ f ′ = λx1, . . . , xn.body′

where
σ = 〈〉
∆[xi] = 〈0, 1, . . . , rank(xi)− 1〉
ε = {}
body′ = JbodyKσ,∆,ε

Figure 6: Tiling Transformation, Definitions

Statement and Expression Transformations

Jreturn eKσ,∆,ε 7−→ ε, return JeKσ,∆,ε

Jx=eKσ,∆,ε 7−→ ε′, x = e′

where
ε′[x] =

⋃
{ε[y] | y ∈ FV(e)}

if e contains an adverb:
e′ = JeKσ,∆,ε

else:
σ′ = 〈Map0,Map0, . . .〉 such that

|σ′| = |ε′[x]|
e′ = BuildTree(σ′, ε′,FV(e),

〈return e〉)

JblockKσ,∆,ε 7−→ block′

where
block′ = 〈〉
ε′ = ε
for s ∈ block :

ε′, s′ = 〈JsKσ,∆,ε
′
〉

block′ = block′ ++ s′

JeKσ,∆,ε 7−→ e (if e is not an adverb)

Figure 7: Tiling Transformation, Statements

Adverb Transformations

JMapα(v1, . . . , vn, f)Kσ,∆,ε 7−→ TiledMapα′ (v1, . . . , vn, f
↑)

where
x1, . . . , xn = args(f)
d = |σ|
ε′[xi] = ε[vi] ++ 〈d〉
σ′ = σ ++ 〈Mapα〉
α′i = ∆[vi][αi]
∆′[xi] = ∆[vi] with element

∆[vi][αi] removed
If f contains adverbs,

body↑ = Jbody(f)Kσ
′,∆′,ε′

Otherwise,

body↑ = BuildTree(σ′, ε′, x1, . . . , xn,
body(f))

f↑ = λx1, . . . , xn.body↑

JReduceα(v1, . . . , vn, f,⊕)Kσ,∆,ε 7−→ TiledReduceα′(v1, . . . , vn, f
↑,⊕↑)

where
x1, . . . , xn = args(f)
d = |σ|
ε′[xi] = ε[vi] ++ 〈d〉
σ′ = σ ++ 〈Reduceα〉
α′ = ∆[vi][αi]

body↑ = BuildTree(σ′, ε′, v1, . . . , vn,
body(f))

f↑ = λx1, . . . , xn.body↑

σ′′ = 〈Map0,Map0, . . .〉
such that |σ′′| = d

c1, . . . , ck = args(⊕)
= maxi(ε[vi])
ε′′[cj] = 〈0, 1, . . . , l − 1〉
⊕↑ = BuildTree(σ′′, ε′′, args(⊕),

body(⊕))

JScanα(v1, . . . , vn, f,⊕)Kσ,∆,ε 7−→ Same as Reduce but with
Scan and TiledScan

Figure 8: Tiling Transformation, Adverbs

found, the tiling transformation is undone and the code is
left untiled. Control flow can be handled in these cases by
predication [3], but we leave this for future work.

Next, we place all of the other non-operator statements
only in the nested functions of the tiled adverbs, and re-
move them from the copy of the original program that in-
cludes the original operators. In the case of indexing, e.g.,
this is the only legal possibility, as if the indexing were de-
layed until the inner regular operators executed, portions
of the original variables could be present and iterated over
that weren’t visible the original program. Note that we only
remove statements that have an adverb in the same scope.
The innermost computation, which can contain arbitrary
non-operator code, is left untouched.

When we get to the last operator in the tree and want to
splice in the altered version of the original program, we take
the innermost nested function (that contains no operators),
and call the BuildTree function on its body. This function
doesn’t wrap the body in Maps as in the case of tiled com-
bine functions. Instead, it wraps the block in the tree of
operators from the original program. Thus we create a tree
with the original operators, but devoid of any non-operator
statements.

One thing we must ensure, however, is that the proper
variables are passed as arguments to each operator in this
tree. For this we keep track of the list of nesting depths at
which each variable was an argument to a data parallel oper-
ator. In the formal algorithm, this additional mapping is de-
noted by ε. Often variables are passed into nested functions
as closure arguments for use in deeper levels of a program’s
nesting. We don’t want to alter the behavior of the program
by adding these as arguments to the operators. Hence for
each operator we need to add we look up in the ε mapping
which free variables of the innermost block were arguments
to an operator at that nesting depth. This allows us to
add the proper arguments to each operator, and we pass the
other needed arguments through as closure arguments to the
operator’s nested function.

Finally, we must tile the non-operator statements as well.
This is because they are present in tiled functions, and so
will receive tiles as arguments instead of those of the original
ranks. To do this, we compile a list of the statement’s free
variables, and from this a list of all nesting depths at which
these variables were arguments to adverbs. We then call the
BuildTree function on the statement to wrap it in a number
of Maps equal to the number of such nesting depths. We
use the depths in the same way as in building the inner
computation to pass the correct variables to each Map. This
has the effect of peeling off the extra ranks as discussed in
the case of tiled combine functions.

This method of dealing with scalar statements has the po-
tential to be wasteful in that it generates array temporaries
when originally there were none. It has the benefit of mak-
ing the algorithm simpler as roughly the same unpacking
logic can be applied to all cases of extra ranks due to tiling.
If many of these expanded scalar statements exist in a func-
tion, data parallel operator fusion is able to combine them
all into a single tree of Maps, mitigating some of this cost.
An alternative would be to keep the statements for which
it is safe (such as scalar operators) in the inner functions of
the tiled computation so as not to generate the temporaries.
We leave this for future work.

5. TILE SIZES
We run our transformation twice, once to general a level

of tiles for the L1 cache, and once to generate tiles for reg-
isters. The register tiles are set statically at compile time
using a heuristic that attempts to use as many of the regis-
ters available on the target machine without exceeding that
number. There are two methods used to set cache tile sizes
in the literature: statically via models, and empirically via
autotuning.

5.1 Statically Estimating Tile Sizes
A body of work exists on attempting to devise models for

general tiling or tiling for specific domains that allows for
good static setting of tile size parameters [7, 23, 33, 34].
However, in our experiments we weren’t able to get any of
the static models to perform as well as a dynamic tile size
search, which backs up the continued widespread use of au-
totuning. In our setup, we use the DL and ML algorithms
from [23] as low and high initial guesses for tile sizes. The
DL algorithm is designed to provide a pessimistic estimate
of cache behavior and thus minimum values for tile sizes,
while the ML algorithm provides optimistic maximum tile
size estimates. These algorithms provide a surface of mini-
mum and maximum tile sizes respectively in the tile search
space. We generate square-shaped tiles on each boundary
surface and use these as starting points for a dynamic tile
size search, described in the next section.

5.2 Online Autotuning Tile Sizes
A common algorithm for searching across tile sizes used

in the literature is the Parallel Rank Ordering algorithm
(PRO), similar in flavor to the Nelder-Mead method [25].
In this method, a simplex of tile sizes is maintained with
2 points in the tile space for each tile parameter. In each
step of the algorithm, a reflection through each point of the
simplex is evaluated by executing the program with the tile
sizes corresponding to the point. As many such points are
evaluated as possible in parallel. Then the reflection is either
accepted or rejected, and further shrinking or expanding of
the simplex is potentially done.

In our experiments, we weren’t able to get this method
to work well enough as it had too high overhead compared
to the benefit of reaching better tile sizes. In our setup, we
aren’t trying to find the best possible tile size, as we’re tun-
ing tiling online for user code rather than tuning it offline
for a standard matrix multiplication library. Thus, we need
our algorithm to converge quickly to a fairly good tile size,
and then stop searching and exploit the good tile size for
the rest of the run. Each set of tile sizes tested is relatively
expensive, as if the sizes are bad they slow down the whole
run. Further, for many of the benchmarks we tested, the
performance relative to tile size settings involved a region of
tile size settings that had good performance, surrounded by
settings where performance was bad (shown for matrix mul-
tiplication in Figure 9). The performance variation within
the good region wasn’t high enough to justify further tuning
once it was reached.

Thus we opted for a different search algorithm that re-
quired fewer samples to reach the good region of the tile
size space. In each time step, we take the current best per-
forming point, initialized to the average of the DL and ML
estimates discussed in the previous section. For each tile
size, we take a Gaussian sample with standard deviation

Figure 9: Matrix Multiply Performance vs Tile Size

equal to the half the difference between these estimates. A
sample for each tile size forms a candidate setting of tiles,
and a number of these is evaluated in parallel on different
cores of the machine. If any perform better than the previ-
ous best point, they become the new best. We set heuristics
for determining what percentage of the total computation
should be spent searching, how long to let each candidate
evalutation run, and how many times no change in best point
should lead to a termination of the search.

6. EVALUATION
We evaluate our cache and register tiling optimizations on

K-Means Clustering and Matrix Multiplication. We have
implemented a number of different programs in Parakeet –
for example, Gaussian blurring and O(N2) N-Body simula-
tions – but must omit their results for lack of space.

We evaluate our benchmarks on a system with an Intel
i7 960 3.2GHz processor and 16GB of RAM. This processor
has 4 hyperthreaded cores, each with a 32KB L1 data cache
with 64 byte cache lines. Parakeet reads these hardware
characteristics from the /proc and /sys/devices filesystems
and uses them to configure both the cache tiling and register
tiling optimizations.

In all of these performance results, register tiling and
cache tiling were turned on and off together. In the interest
of space, and since we don’t vary any parameters for regis-
ter tiling across any of the runs, we don’t present separate
numbers for register tiling. It was very substantial for per-
formance however, accounting for 60% of the speedups due
to tiling on average. Also, aside from those in the section
on Compile Time, no performance results include compile
times.

6.1 Matrix Multiplication
In this section, we present results for a 2D matrix multi-

plication benchmark, the actual Parakeet code for which is
in Listing 4. Note that AllPairs is Parakeet syntactic sugar
for two nested Maps each of which iterates over one of the
arguments to the AllPairs. Note that for these numbers,
we pre-transposed the matrices such that they are both laid
out for the best performance. This is actually the worst-case
scenario for our tiling optimizations, as they would provide a
substantially larger (roughly 12X) performance boost when

run on improperly laid out data.

def dot(x, y):
return x*y

def mm(Xs, Ys):
return AllPairs(dot , Xs, Ys)

Listing 4: Parakeet Matrix Multiply

6.1.1 Overall Performance
In Figure 10, we present Parakeet’s performance on ma-

trix multiplication as compared against NumPy’s. NumPy
uses an implementation of BLAS, a standard linear algebra
interface, to perform matrix multiplications. We configure
NumPy to use two different BLAS versions – one written
as naive C consisting of three nested for loops; and a stock
ATLAS [30] implementation that comes with Ubuntu Linux.
For optimal performance, one needs to do a lengthy auto-
tuning of ATLAS for a particular machine. We use the stock
version as we simply want to provide a rough reference point
for calibrating the meaning of our results. In each of these
graphs, we used our online autotuner to find good cache tile
sizes.

On the left-hand side of the figure, the number of rows in
the left-hand matrix vary along the X axis. The length of
rows and the number of rows in the right-hand matrix are
held fixed 3000. In this figure, we see that our tiling opti-
mization improves performance between 26.3% and 30.8%
over not tiling. On the right-hand side of the figure, we fix
the number of rows in both matrices to be 3000 and vary
the length of the rows. Here, the tiling speedup varies be-
tween 21.1% and 24.8%. In both cases, Parakeet is around 2
times slower than our ATLAS version, which recall has been
heavily hand-optimized.

6.1.2 Autotuning Performance
In Figure 11, we break down the performance of the auto-

tuner by showing Parakeet times both with the autotuning
search as well as Parakeet times using the fixed tile sizes
found in a previous search. We compare these with using
the fixed tile sizes for the DL and ML algorithms from [23],
as well as the performance when using the average of the
DL and ML estimates as the fixed tile sizes.

By comparing the difference between the runtime with
the search and with cached tile sizes, we see that the over-
head of performing the search is very small. The time to
switch between different tile sizes during a search is close to
0, and so any overhead is almost entirely due to the penalty
from running worse tile sizes than those that are eventu-
ally found. We also see that, while the autotuner leads to
the best runtimes especially on larger data sizes, the per-
formance boost it adds over the ML estimates in particular
isn’t very large. On average, the autotuner increases per-
formance around 2.3% for all benchmarks and data sizes we
tried. While this is only a modest performance boost, it is
consistent, and if there are any other programs for which the
tile estimates perform badly, the autotuner should be able
to increase performance even more by finding better tiles.

6.1.3 Performance vs. Other Compilers
To provide a test of Parakeet’s performance relative to

other compilers, we compare Parakeet’s performance to a

(a) Runtimes with varying rows in left-hand matrix (b) Runtimes with varying lengths of rows
Figure 10: Matrix Multiply Runtimes

Array Size Parakeet (with search) Parakeet (cached tile sizes) DL sizes ML sizes DL&ML Avg
3000x3000 4.58s 4.51s 5.03s 4.55s 4.61s
10000x3000 15.16s 15.11s 16.89s 15.33s 15.51s
10000x500 2.57s 2.57s 2.99s 2.67s 2.72s

Figure 11: Matrix Multiply Autotuner Performance

Figure 12: Matrix Multiply Performance Compared To C

hand-optimized C version with manual cache and register
blocking compiled with both gcc and clang (the LLVM C
compiler), including all relevent optimization flags. We also
include a naive for loop C version with only the -O3 flag for
reference. All of these versions were launched on 8 threads
on the Parakeet runtime’s backend. The results are shown
in Figure 12.

First, notice that Parakeet’s performance roughly matches
that of clang, while both are roughly 1.5X slower than gcc.
We take this as evidence that we are approaching a per-
formance wall due to the underlying performance of LLVM.
We discovered that roughly half of gcc’s relative performance
gain over clang is due to gcc having a better vectorizer. We
hope that in the future, we can either add a vectorizer to
Parakeet or that LLVM’s vectorizer will improve.

Number of NumPy Parakeet Parakeet
Data Points (No Tiling) (Tiling)

10000 48.01s 12.91s 12.46s
12500 59.95s 16.05s 15.51s
15000 71.83s 19.16s 18.51s
17500 83.78s 22.28s 21.40s
20000 97.61s 25.53s 24.45s
22500 107.62s 28.54s 27.35s
25000 119.56s 31.66s 30.41s
27500 131.57s 34.82s 33.37s
30000 143.32s 37.89s 36.42s

Figure 13: K-Means Performance with k = 1000, 500 fea-
tures, and 10 iterations

6.2 K-Means Clustering
We present results for K-Means Clustering in Figure 13.

Here we see that Parakeet is dramatically faster than NumPy,
with almost a 4X performance improvement. The perfor-
mance benefit of tiling on this benchmark is only 4% on
average however. This is due to it spending a lower percent-
age of its computation in operations with much data reuse,
and the length of its rows (equal to k, or the number of cen-
troids) being smaller than in much of the matrix multiply
benchmark.

6.3 Compilation Time
In Figure 14, we give the Parakeet compilation times for

the benchmarks without tiling, with only cache tiling, and
with both cache and register tiling. Cache tiling adds a
modest amount of compilation time, while register tiling
adds around 1 second for each benchmark. We believe that
the extra loop unrolling accounts for most of this added
time. Our compiler was written entirely in Python and we
haven’t spent any effort optimizing its compile times, so we

Matrix Multiply K-Means
No Tiling 0.19s 0.10s

Cache Tiling 0.27s 0.31s
Cache Tiling +
Register Tiling 1.26s 1.29s

Figure 14: Parakeet Compilation Times

are hopeful that these numbers can be brought down in the
near future. In addition, we imagine a common use case for
Parakeet to be repeated calls to a Parakeet function inside
a large numerics computation. In these cases such compile
times would only contribute a tiny fraction of overall pro-
gram runtimes.

7. RELATED WORK
Our work builds upon a range of existing fields of study

including optimization of data parallel and array programs,
just-in-time compilation, loop optimizations, analytic per-
formance modeling, and autotuning. Our system is unique
in that it is the first to unify: high level, dynamic array
languages, JIT compilation, high level tiling, and online au-
totuning into one system.

The first language to feature data parallel abstractions
was APL [14], whose central programming constructs in-
volved high-level manipulation of n-dimensional arrays. The
eminent parallelizability of the language’s core operators in-
spired early research in vector processors [27] and paral-
lelization [17]. As computers with massively parallel hard-
ware became more common in the 1980s, many languages
such as C [?], Fortran [10], and Lisp [24] were retrofitted
with data parallel extensions. More recently, data parallel
constructs have appeared repeatedly as core primitives for
high level languages and libraries which compile to FPGA
descriptions [12], GPU programs [26, 5], and even the coor-
dination of distributed computations [35].

There have been numerous projects that accelerate high
level languages, be it via high performance library calls as
in NumPy [9]; via JIT compilation as in LuaJIT [20], Ma-
JIC [1], and the fledgling Numba project [8]; or via dynamic
compilation to C++ as in Copperhead [5]. Parakeet lies in
some sense in between Numba and Copperhead, but .

There has been extensive research on loop optimizations,
including cache tiling, register tiling, data copying, data
padding, and loop unrolling optimizations (e.g. [15, 31]).
Much of this work uses the polyhedral model, a sophisti-
cated technique that transforms the iteration space of a loop
nest via algebraic manipulation [4, 31]. This includes work
on combining analytic models for selecting tile sizes with
offline autotuning [21] and work on on generating parame-
terized tiles for imperfectly nested loops [13].

There have been a host of analytic models for determin-
ing parameter settings for dense matrix multiplication [7,
33, 34]. Wolf et al. developed an analytic model for use in
a compiler to determine tiling and loop unrolling settings
statically for sequential C and Fortran programs [32]. Re-
cent work on analytical bounds for optimal tile sizes [23].

In recent years, offline autotuning has emerged as the ac-
cepted best practice for optimizing numerical code [2]. Li-
braries such as ATLAS for dense linear algebra [30] and
FFTW for Fourier transforms [11] deliver the best perfor-
mance available across a wide range of architectures and
platforms for their specific problem domains via an exten-

sive offline search performed at installation time. Other au-
totuning systems include Chill [6] and Active Harmony [28].

8. CONCLUSION
We have presented tiled data parallel operators, novel

high-level syntactic constructs for breaking up data parallel
programs into locality-friendly pieces. Our tiling transfor-
mation automatically generates tiled versions of programs
from programs written using regular operators in Parakeet,
a high level array-oriented DSL embedded in Python. We
apply this transformation twice, once to enable cache tiling
and a second time to enable register tiling. Our system
includes an autotuner that, after estimating candidate tile
sizes using published algorithms, tunes these while the pro-
gram runs, resulting in a modest performance boost. We
evaluate our optimizations on two benchmarks and show
significant performance improvements over untiled code and
favorable performance compared to C versions.

9. REFERENCES
[1] G. Almási and D. Padua. MaJIC: Compiling

MATLAB for speed and responsiveness. In PLDI ’02:
Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Languages Design and
Implementation (PLDI), pages 294–303, 2002.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The landscape of parallel computing research: A view
from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, Dec 2006.

[3] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen,
and C. Bastoul. The polyhedral model is more widely
applicable than you think. In Proceedings of the 19th
International Conference on Compiler Construction
(CC), pages 283–303, 2010.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In PLDI ’08:
Proceedings of the 2008 ACM SIGPLAN Conference
on Programming Languages Design and
Implementation (PLDI), pages 101–113, 2008.

[5] B. Catanzaro, M. Garland, and K. Keutzer.
Copperhead: Compiling an embedded data parallel
language. In Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming
(PPoPP), pages 47–56, 2011.

[6] C. Chen, J. Chame, and M. Hall. Combining models
and guided empirical search to optimize for multiple
levels of the memory hierarchy. In Proceedings of the
2005 International Symposium on Code Generation
and Optimization (CGO), pages 111–122, 2005.

[7] S. Coleman and K. S. McKinley. Tile size selection
using cache organization and data layout. In PLDI
’95: Proceedings of the 1995 ACM SIGPLAN
Conference on Programming Languages Design and
Implementation (PLDI), pages 279–290, 1995.

[8] Continuum Analytics. Numba.
http://numba.pydata.org.

[9] P. F. Dubois, K. Hinsen, and J. Hugunin. Numerical
python. Computers in Physics, 10(3), May/June 1996.

[10] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,
U. Kremer, C.-W. Tseng, and M.-Y. Wu. Fortran d
language specification. Technical report, 1990.

[11] M. Frigo and S. G. Johnson. The design and
implementation of FFTW3. Proceedings of the IEEE,
93:216–231, 2005. Special Issue on ”Program
Generation, Optimization, and Adaptation”.

[12] M. Gokhale and R. Minnich. Fpga computing in a
data parallel c. In FPGAs for Custom Computing
Machines, 1993. Proceedings. IEEE Workshop on,
pages 94 –101, apr 1993.

[13] A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen,
S. Krishnamoorthy, B. Norris, J. Ramanujam, and
P. Sadayappan. Parametric multi-level tiling of
imperfectly nested loops. In Proceedings of the 2009
ACM International Conference on Supercomputing
(ICS), pages 147–157, 2009.

[14] K. E. Iverson. A programming language. In
Proceedings of the May 1-3, 1962, spring joint
computer conference, AIEE-IRE ’62 (Spring), pages
345–351, 1962.

[15] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The
cache performance and optimizations of blocked
algorithms. In ASPLOS ’91: Proceedings of the 4th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
63–74, 1991.

[16] C. Lattner. LLVM: An infrastructure for multi-stage
optimization. Master’s thesis, Computer Science
Dept., University of Illinois at Urbana-Champaign,
Urbana, IL, Dec 2002. See http://llvm.cs.uiuc.edu.

[17] N. Lincoln. Parallel programming techniques for
compilers. SIGPLAN Not., 5(10):18–31, Oct. 1970.

[18] MATLAB. version 7.10.0 (R2010a). The MathWorks
Inc., Natick, Massachusetts, 2010.

[19] O. Oliphant. Python for scientific computing.
Computing in Science and Engineering, 9:10–20, 2007.

[20] M. Pall. LuaJIT. http://luajit.org.

[21] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen,
J. Ramanujam, and P. Sadayappan. Combined
iterative and model-driven optimization in an
automatic parallelization framework. In Proceedings of
the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage,
and Analysis (SC), pages 1–11, 2010.

[22] A. Rubinsteyn, E. Hielscher, N. Weinman, and
D. Shasha. Parakeet: A just-in-time parallel
accelerator for Python. In Proceedings of the 4th
USENIX Conference on Hot Topics in Parallelism
(HotPar), 2012.

[23] J. Shirako, K. Sharma, N. Fauzia, L.-N. Pouchet,
J. Ramanujam, P. Sadayappan, and V. Sarkar.
Analytical bounds for optimal tile size selection. In
Proceedings of the 21st International Conference on
Compiler Construction (CC), pages 101–121, 2012.

[24] G. Steele Jr and W. Hillis. Connection machine lisp:
Fine-grained parallel symbolic processing. In
Proceedings of the 1986 ACM conference on LISP and
functional programming, pages 279–297. ACM, 1986.

[25] V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth.
Parallel parameter tuning for applications with
performance variability. In Proceedings of the 2005

ACM/IEEE International Conference for High
Performance Computing, Networking, Storage, and
Analysis (SC), 2005.

[26] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: Using
data parallelism to program GPUs for general-purpose
uses. In ASPLOS ’06: Proceedings of the 12th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
November 2006.

[27] K. J. Thurber and J. W. Myrna. System design of a
cellular apl computer. IEEE Trans. Comput.,
19(4):291–303, Apr. 1970.

[28] A. Tiwari and J. K. Hollingsworth. Online adaptive
code generation and tuning. In Proceedings of the 25th
IEEE International Parallel And Distributed
Computing Symposium (IPDPS), pages 879–892, 2011.

[29] P. Wadler. Applicative style programming, program
transformation, and list operators. In Proceedings of
the 1981 conference on Functional programming
languages and computer architecture, FPCA ’81, pages
25–32, New York, NY, USA, 1981. ACM.

[30] C. Whaley, A. Petitet, and J. J. Dongarra. Automated
empirical optimization of software and the ATLAS
project. Parallel Computing, 27:3–35, Jan 2001.

[31] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. In PLDI ’91: Proceedings of the 1991 ACM
SIGPLAN Conference on Programming Languages
Design and Implementation (PLDI), pages 30–44,
New York, NY, USA, 1991. ACM.

[32] M. E. Wolf, D. E. Maydan, and D.-K. Chen.
Combining loop transformations considering caches
and scheduling. In Proceedings of the 29th annual
ACM/IEEE International Symposium on
Microarchitecture (MICRO), pages 274–286, 1996.

[33] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong,
M. Garzaran, D. Padua, K. Pingali, P. Stodghill, and
P. Wu. A comparison of empirical and model-driven
optimization. In PLDI ’03: Proceedings of the 2003
ACM SIGPLAN Conference on Programming
Languages Design and Implementation (PLDI), pages
63–76, 2003.

[34] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua,
K. Pingali, and P. Stodghill. Is search really necessary
to generate high-performance BLAS? Proceedings of
the IEEE, 93(2):358–386, 2005.

[35] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: a system for
general-purpose distributed data-parallel computing
using a high-level language. In Proceedings of the 8th
USENIX Conference on Operating Systems Design
and Implementation (OSDI), pages 1–14, 2008.

