
Better Burst Detection

Xin Zhang Dennis Shasha
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

{xinzhang,shasha}@cs.nyu.edu

Abstract

A burst is a large number of events occurring within a
certain time window. Many data stream applications re-
quire the detection of bursts across a variety of window
sizes. For example, stock traders may be interested in bursts
having to do with institutional purchases or sales that are
spread out over minutes or hours. Detecting a burst over
any ofk window sizes, a problem we callelastic burst de-
tection, in a stream of lengthN naively requiresO(kN)
time. Previous work [18] showed that a simple Shifted Bi-
nary Tree structure can reduce this time substantially (in
very favorable cases near toO(N)) by filtering away ob-
vious non-bursts. Unfortunately, for certain data distribu-
tions, the filter marks many windows of events as possible
bursts, even though a detailed check shows them to be non-
bursts.

In this paper, we present a better framework for elastic
burst detection: a family of data structures that generalizes
the Shifted Binary Tree. We then present a heuristic search
algorithm to find an efficient structure among the many of-
fered by the framework, given the input. We study how dif-
ferent inputs affect the desired structures. Experiments on
both synthetic and real world data show a factor of up to 35
times improvement compared with the Shifted Binary Tree
over a wide variety of inputs, depending on the data distri-
bution. We show an example application that identifies in-
teresting correlations between bursts of activity in different
stocks.

1. Introduction

Detecting bursts is useful in many applications:

• A burst of trading volume in some stock might indi-
cate insider trading.

• A burst of gamma rays may reflect the occurrence of a
supernova.

• A burst of methane may anticipate a coming volcanic
eruption.

If the lengthw of the time window when a burst occurs
is known in advance, detecting a burst can easily be done
in linear time by keeping a running count of the number of
events in the lastw time units. However, in many situations,
the window length is unknowna priori. For example, inter-
esting gamma ray bursts could last several seconds, several
minutes or even several days.

The elastic burst detectionproblem [18] is to detect
bursts across multiple window sizes. Formally:

Problem 1 Given a data source producing non-
negative data elementsx1, x2, ..., a set of window
sizes W = w1, w2, ..., wm, a monotonic, associa-
tive aggregation functionA (such as ”sum” or ”max-
imum”) that maps a consecutive sequence of data el-
ements to a number (it is monotonic in the sense that
A[xt · · ·xt+w−1] ≤ A[xt · · ·xt+w], for all w), and thresh-
olds associated with each window size,f(wj), for
j = 1, 2, ..., m, the elastic burst detection is the prob-
lem of finding all pairs(t, w) such thatt is a time point and
w is a window size inW andA[xt · · ·xt+w−1] ≥ f(w).

A naive algorithm is to check each window size of inter-
est one at a time. To detect bursts over thek window sizes
would then requireO(kN) time. This is unacceptable in a
high-speed data stream environment.

In [18], the authors show that a simple data structure
called theShifted Binary Tree (SBT)could be the basis of
a filter that would detect all bursts, and perform in time in-
dependent of the number of windows when the probability
of bursts is very low.

A Shifted Binary Tree is a hierarchical data structure in-
spired by the Haar wavelet tree. The leaf nodes of this tree
(denoted level 0) correspond to the time points of the incom-
ing data; a node at leveli + 1 aggregates two nodes at level
i, so includes2i+1 time points. The Shifted Binary Tree in-
cludes a shifted sublevel to each level above level 0. In the
shifted subleveli, the corresponding windows are still of



length2i but those windows are shifted by2i−1 from the
base sublevel. Figure 1 shows an example of a Shifted Bi-
nary Tree.

The overlap between the base sublevels and the shifted
sublevels guarantees that all the windows of lengthw,
w ≤ 1 + 2i, are included in one of the windows at level
i + 1. Because the aggregation functionA is monoton-
ically increasing,A[xt · · ·xt+w−1] ≤ A[xt · · ·xt+w+c],
for all w and c. So if A[xt · · ·xt+w+c] ≤ f(w), then
surelyA[xt · · ·xt+w−1] ≤ f(w). The Shifted Binary Tree
takes advantage of this monotonic property as follows: each
node at leveli + 1 is associated with the threshold value
f(2 + 2i−1). If more thanf(2 + 2i−1) events are found in
a window of size2i+1, then a detailed search must be per-
formed to check if some subwindow of sizew, 2 + 2i−1 ≤
w ≤ 1+2i, hasf(w) events. All bursts are guaranteed to be
reported, while many non-burst windows are filtered away
without need of a detailed check when the burst probabil-
ity is very low.

However, some detailed searches will turn out to be fruit-
less (i.e. there is no burst at all). For example, assume the
threshold for window size 4 is 100, for 5 is 120, and for 8
is 150. Because each node at level 8 covers window size 4
and 5, if there are 101 events within a level 8 window, a de-
tailed search has to be performed. But there may not be any
window of size 4 exceeding the threshold 100. In this case,
the detailed search turns out to be fruitless.

After applying the Shifted Binary Tree in several set-
tings, we have observed two difficulties:

1. When bursts are rare but not very rare, the number of
fruitless detailed searches grows, suggesting that we
may want more levels than the Shifted Binary Tree
provides.

2. Conversely, when bursts are exceedingly rare we may
need fewer levels than the Shifted Binary Tree pro-
vides.

In other words we want a structure that adapts to the input.
In this paper, we present a family of multiresolu-

tion overlapping data structures, calledShifted Aggre-
gation Trees, which generalizes the Shifted Binary Tree
and includes many other structures. We present a heuris-
tic search algorithm to find an efficient Shifted Aggregation
Tree given the input time series and the window thresh-
olds. We theoretically analyze and empirically study how
different data distributions and different window thresh-
olds affect the desired structures and the probability to trig-
ger a detailed search. Experiments on both synthetic
data and real world data show that the Shifted Aggrega-
tion Tree outperforms the Shifted Binary Tree over a vari-
ety of inputs, yielding up to a factor of 35 times speedup in
some cases.

Level 0

Level 1

Level 2

Level 3

Level 4

(a) Shifted Binary Tree

Level 0

Level 1

Level 2

Level 3

Level 4

(b) Embed a Shifted Binary Tree in an aggrega-
tion pyramid

Figure 1. A Shifted Binary Tree embedded in
an aggregation pyramid. Each shaded/grayed
cell in the aggregation pyramid corresponds
to a node in the Shifted Binary Tree.

The paper is organized as follows. Section 2 introduces
the concept of aggregation pyramid, which acts as a host
data structure in which all Shifted Aggregation Trees are
embedded. Section 3 introduces the Shifted Aggregation
Tree and a generalized detection algorithm. Section 4 de-
scribes a heuristic state-space search algorithm to find an
efficient Shifted Aggregation Tree given the inputs. Section
5 studies how different inputs affect the desired structures
and presents experiments and results tested on both syn-
thetic and real world data. Section 6 reviews related work.
Section 7 concludes our work.

2. Aggregation Pyramid

2.1. Aggregation Pyramid

Our generalized framework is based on a dense data
structure called theaggregation pyramid (AP). All data
structures in our framework contain a small subset of the
cells of an aggregation pyramid.

An aggregation pyramid (AP) is anN -level isosceles
triangular-shaped data structure built over a time window
of sizeN .

• Level 0 hasN cells and is in one-to-one correspon-
dence with the original time series.



1 4 0 3

5 4 3

5 7

8

t

w

Figure 2. An aggregation pyramid on a win-
dow of size 8

• Level 1 hasN − 1 cells, the first cell stores the aggre-
gate of the first two data items (say, data items 1 and 2)
in the original time series, the second cell stores the ag-
gregate of the second two data items (data items 2 and
3), and so on.

• Levelh hasN − h cells, theith cell stores the aggre-
gate of theh + 1 consecutive data in the original time
series starting at timei.

In all, an aggregation pyramid stores the original time se-
ries and all the aggregates for every window size starting at
every time point within this sliding window. Each cell cor-
responds to one window, called theshadowof the cell. Fig-
ure 2 shows an aggregation pyramid built on a sliding win-
dow of size 8.

By construction, an aggregation pyramid has the follow-
ing properties.

• All the cells along the45o diagonal have the same
starting time. All the cells along the135o diagonal
have the same ending time.

• A cell ending at timet at levelh, denoted bycell(h, t),
stores the aggregate for the lengthh + 1 window start-
ing at timet − h and ending at timet.

• The shadow window of any cellc in the subpyramid
rooted at cellr is covered by the shadow of cellr. We
sayc is shaded byr. By monotonicity, the aggregate in
cell c is guaranteed to be bounded by the aggregate in
cell r.

• The overlap of two cells is a cellc at the intersection of
the135o diagonal touching the earlier cellc1 and the
45o diagonal touching the later cellc2. The shadow
window for cellc is the intersection of the shadows of
cellsc1 andc2.

2.2. Embedding the Shifted Binary Tree into the
Aggregation Pyramid

Recall that in a Shifted Binary Tree, level 0 stores the
original time series, and leveli stores the aggregates of win-

Figure 3. The shadow property and the de-
tailed search region in a Shifted Binary Tree.
The quadrilateral-shaped region of a specific
pattern is the detailed search region for the
corresponding node having the same pat-
tern.

dow size2i. Each node in a Shifted Binary Tree has a corre-
sponding cell in the aggregation pyramid. Thus the Shifted
Binary Tree can be embedded in the aggregation pyramid.
Figure 1 shows how. The grayed cells in the aggregation
pyramid correspond to the nodes in the Shifted Binary Tree.

An important property of a Shifted Binary Tree is that a
window of lengthw, w ≤ 1 + 2i, is contained in one of the
windows at leveli+1. This is illustrated in Figure 3. By in-
duction, a window of lengthw, w ≤ 1 + 2i−1 is contained
in one of the windows at leveli. Thus, after a node at level
i+1 is updated, if it exceeds the threshold for size2+2i−1,
i.e.f(2+2i−1), then the detailed search has to be performed
for all the cells having sizes between2 + 2i−1 and1 + 2i.
Also when a node at leveli + 1 is updated at timet, we
need to search only the cells ending after timet − 2i, be-
cause the cells ending at or before timet − 2i have been
covered by the preceding node at leveli + 1. We call this
quadrilateral-shaped region — bounded by the window size
range[2 + 2i−1, 1 + 2i] and the time range[t− 2i + 1, t] —
thedetailed search region (DSR), please see Figure 3.

Obviously, there are many other possible subsets of the
aggregation pyramid. As long as a subset includes the level
0 cells and the top-level cell, it can be used together with
this update-search framework to detect bursts. By using dif-
ferent structures on different data inputs, we can achieve
optimal performance by trading off structure maintenance
against filtering selectivity.

3. Shifted Aggregation Tree

3.1. Shifted Aggregation Tree

Like a Shifted Binary Tree, aShifted Aggregation Tree
(SAT)is a hierarchical tree structure defined on a subset of
the cells of an aggregation pyramid. It has several levels,
each of which contains several nodes. The nodes at level 0
are in one-to-one correspondence with the original time se-



SBT SAT
Number of children 2 ≥ 2

Levels of children for i ≤ i
level i + 1

Shift at leveli + 1: Si+1 2 ∗ Si k ∗ Si, k ≥ 1
Overlapping window window size ≥ wi

size at leveli + 1: Oi+1 at leveli: wi

Table 1. Comparing the Shifted Aggregation
Tree (SAT) with the Shifted Binary Tree (SBT)

ries. Any node at leveli is computed by aggregating some
nodes below leveli. Two consecutive nodes at the same
level overlap in time.

A Shifted Aggregation Tree is different from a Shifted
Binary Tree in two ways:

• The parent-child structure
This defines the topological relationship between a
node and its children, i.e. how many children it has
and their placements.

• The shifting pattern
This defines how many time points apart two neighbor-
ing nodes at the same level are. We called this distance
theshift.

In a Shifted Binary Tree (SBT), the parent-child struc-
ture for each node is always the same: one node aggregates
two nodes at the level lower. The shifting pattern is also
fixed: two neighboring nodes in the same level always half-
overlap. In a Shifted Aggregation Tree (SAT), a node could
have 3 children and be 2 time points away from its preced-
ing neighbor, or could have 64 children and be 128 time
points away from its preceding one. Table 3.1 gives a side-
by-side comparison of the difference between a SAT and a
SBT. Clearly, a SBT is a special case of a SAT. Figure 4
shows some examples of Shifted Aggregation Trees.

3.2. Shifted Aggregation Tree Shadows and Detec-
tion

A Shifted Aggregation Tree has similar properties to a
Shifted Binary Tree:

Any window of sizew, w ≤ hi − si + 1, is shaded by a
node at leveli.

Wherehi is the corresponding window size of leveli,
andsi is the shift of leveli. Becausehi − si is the length
of the overlapping shadow between two neighboring nodes
at level i, the thresholds of all windows of lengths up to
hi − si + 1 have to be handled by one of the nodes at level
i. By induction, all levels up tohi−1 − si−1 + 1 have to be
shaded by one of the nodes at leveli − 1.

(a) a Shifted Aggregation Tree of size 16

(b) a Shifted Aggregation Tree of size 18

Figure 4. Examples of Shifted Aggregation
Trees

The Shifted Aggregation Tree detection algorithm is
similar to that of the Shifted Binary Tree, as shown in Fig-
ure 5.

The detailed search regionDSR(i, t) in a Shifted Aggre-
gation Tree is bounded by the window size range[hi−1 −
si−1 + 2, hi − si + 1] and the time span[t − si + 1, t].
This generalizes the detailed search region in a Shifted Bi-
nary Tree. By binarily checking against the thresholds for
sizes betweenhi−1 − si−1 + 2 andhi − si + 1, we can
find anh, such thatf(h) ≤ node(i, t) < f(h + 1). The
cells with sizes greater thanh in theDSR(i, t) can be fur-
ther filtered away, because no burst will present in any win-
dow of size greater thanh. The detailed search is performed
by checking each cell one by one.

Because the shift for each level is fixed, at everysi time
points, a node at leveli is updated and its detailed search
region is checked if a threshold may have been exceeded.
Once a node at the top level is updated, all possible bursts
will have been checked. Therefore, a burst is reported no
later thanstop time points after it occurs, wherestop is the
shift for the top level.

The total running time of the detection algorithm is the
sum of the update time and the comparison/search time. In-
tuitively, if a Shifted Aggregation Tree has more levels and
smaller shifts, i.e. a denser structure, it will take a longer
time to maintain this structure, but the probability of an un-



for every time pointt starting from 1
i = 1;
while (a window at leveli ends at the current timet)

updatenode(i, t) by aggregating its children
if f(h) ≤ node(i,t) < f(h + 1), where

hi−1 − si−1 + 2 ≤ h ≤ hi − si + 1
then search the portion with sizesw, w ≤ h

in the detailed search regionDSR(i, t)
for real bursts

endif
+ + i;

end
end

Figure 5. Shifted Aggregation Tree detection
algorithm

necessary search and the cost of searches will both be re-
duced. A good Shifted Aggregation Tree should balance the
update time against the comparison/search time to obtain
the optimal performance. In the next section, we present a
heuristic state-space algorithm to find an efficient Shifted
Aggregation Tree given a sample of the input.

4. Heuristic state-space algorithm to search
an efficient Shifted Aggregation Tree

4.1. State-space Algorithm

Given the input series and the window thresholds, the op-
timization goal is to minimize the time spent both updating
the structure and checking for real bursts.

Finding an efficient Shifted Aggregation Tree (SAT) nat-
urally fits into a state-space algorithm framework if we see a
Shifted Aggregation Tree as a state and see the growth from
one SAT to another as a transformation. In a state-space al-
gorithm, the problem to be solved is represented by a set
of states and a set of transformation rules mapping states to
states. The solutions to the problem are represented by final
states which satisfy some conditions and have no outgoing
transformations. The search algorithm starts from one ini-
tial state, then repeatedly applies the transformation rules to
the set of states currently being explored to generate new
states. When at least one final state is reached, the algo-
rithm stops. There are different strategies to choose the or-
der to traverse the state space. Depth-first search, breadth-
first search, best-first search, andA∗ search are commonly
used ones[13].

• Initial state
Since every Shifted Aggregation Tree has to include

the original time series, the starting point is the SAT
containing only level 0.

• Transformation rule
If by adding a level to SATB, we can get another SAT
A, we say stateB can be transformed to stateA.

• Final states
Final states are those Shifted Aggregation Trees which
can detect bursts in all windows of interest. Since a
SAT having top window sizeh and shifts can cover
window sizes up toh − s + 1, it’s a final state if
h − s + 1 ≥ N , whereN is the maximum window
size of interest.

• Traversing strategy
In order to find an efficient structure, we use the best-
first strategy to explore the state space. Each state
is associated with a cost which will be discussed in
4.2. Since different Shifted Aggregation Trees (SATs)
cover different maximum window sizes and have dif-
ferent top-level shifts, the costs are normalized in or-
der for these SATs to be comparable, i.e. divided by
the product of the maximum window size and the top-
level shift. The state with the minimum cost is picked
as the next state to be explored.

• The final Shifted Aggregation Tree with the minimum
cost is picked as the desired structure.

Given a Shifted Aggregation Tree, there are many ways
it can grow. The next candidate level could aggregate mul-
tiple nodes from multiple different levels, and have differ-
ent shifts. For example, for a Shifted Aggregation Tree con-
taining only level 0, the next possible level could have size
2 and shift 1 or 2; alternatively, it could have size 100
and shift 1, 2 ... 99, and so on. Therefore, we introduce
some complexity-reducing constraints to avoid an exhaus-
tive breadth first search strategy.

Let the maximum window size of all the explored states
be L. AssumeS is the current state to be explored. In-
stead of generating all possible next states forS at once, we
generate only states whose maximum window sizes don’t
exceed2L. Then we putS in a list which stores all the
states not yet fully explored. Whenever a new state with a
larger window sizeW is generated,L is updated with the
new valueW . Then we go through each state in the list of
partially-explored states and generate new states for them
having maximum window sizes up to the new2L.

This avoids growing many highly unlikely Shifted Ag-
gregation Trees at the early stage (saying with a very large
size 10000 and shift 5000), but it allows us to gradually
grow the intermediate structures and explore the more rea-
sonable ones first. Note that this doesn’t prune the search
space, but controls the order of traversal of the search space.
Our experiments show that the best-first strategy works
well. (Fig. 12).



4.2. Cost model

The cost associated with each state is used to indicate
which structure to choose in term of running time. One can
use an empirical cost, i.e. the actual CPU running time when
running this Shifted Aggregation Tree on a small set of sam-
ple data. Another method is to use the expected number of
operations in a theoretical cost model. The advantage of the
theoretical cost model is that the cost of a state can be eval-
uated much faster, usually hundreds to thousands of times
faster depending on the amount of training data. Our model
is a simple RAM model: all operations (updates and com-
parisons) take constant time.

Let stop be the shift at the top level; recall that everystop

time points, a node at the top level is updated and bursts be-
low are covered. Thus, we need to consider only the number
of operations everystop time points, namely in one update-
searchcycle. The expected number of operations in one cy-
cle is the sum of the number of operations in the updating
phase, the comparison phase (to decide if a detail search is
needed) and the detailed search phase, respectively.

• Cost in the update phase
The number of updating operations is just the number
of nodes that exist everystop timepoints in the Shifted
Aggregation Tree.

• Cost in the comparison phase
For a node at leveli, we need to find outh, hi−1 −
si−1 + 2 ≤ h ≤ hi − si + 1, such thatf(h) ≤
node(i, t) < f(h + 1). This can be done using bi-
nary search. Thus the number of operations is

∑

i

(log2(hi − si − hi−1 + si−1 − 1) + 1)

• Cost in the search phase
The number of operations is the expected number of
cell accesses in the detailed search region. LetP (w|hi)
be the probability to check a cell of sizew given a node
at leveli with window sizehi, the expected number of
cell to be checked is

∑

i

∑

w

(P (w|hi))

P (w|hi) can be estimated from the statistics in the
sample data.

Our experiment (Fig. 6) shows that the theoretical cost
model models the actual CPU running time well. Because it
doesn’t suffer the sensitiveness to the fluctuation of the CPU
usage in the empirical model, the theoretical cost model
usually produces better results than the empirical model,
though not perfectly everywhere. The experiment setup is
explained in the next section. As a result, we can check
many different possible SATs very fast.

CPU times for different cost models - Poisson

0

5000

10000

15000

20000

25000

2 3 4 5 6 7 8 9 10

Burst probability p = 10^-k

C
lo

ck
 t

ic
k
s

Theo_L1

Emp_L1

Theo_L10

Emp_L10

(a) Two Poisson distributions withλ = 1, 10 re-
spectively

CPU time for different cost models - Exponential

0

5000

10000

15000

20000

2 3 4 5 6 7 8 9 10

Burst probability p = 10^-k

C
lo

ck
 t

ic
k
s

Theo_w250

Emp_w250

Theo_w500

Emp_w500

(b) Two exponential distributions with maximum
window sizes 250 and 500 respectively

Figure 6. Comparison of the theoretical cost
model and the empirical cost model on the
Poisson data and the exponential data

5. Empirical Results

In this section, we study how Shifted Aggregation Trees
perform under different data distributions and different win-
dow thresholds. We first test on a set of synthetic data drawn
from two classes of distributions common in the real world:
the Poisson distribution and the exponential distribution.
We analyze the alarm probability, then demonstrate em-
pirically how different distributions and different window
thresholds affect the Shifted Aggregation Tree structures,
which in turn affect the alarm probability. Later we test our
algorithms on two real world data sets: stock data and we-
blog data. The experiments show that the Shifted Aggre-
gation Tree-based detection always outperforms the Shifted
Binary Tree-based detection, sometimes by a multiplicative
factor of 35 (Fig. 8).

All the experiments were performed on a 2Ghz Pentium
4 PC having 512 megabytes of main memory. The operat-
ing system is Windows XP and the program is implemented
in C++. The theoretical cost model (i.e. the expected num-
ber of operations) is used in the experiments.



5.1. Shifted Aggregation Tree Density and Alarm
Probability

In order to see how the input affects the desired struc-
ture, we first define two variables to describe the charac-
teristics of a Shifted Aggregation Tree:densityandalarm
probability.

Let stop be the shift at the top level. As noted above, ev-
erystop time points, an update-search cycle is finished. The
densityD is defined as

D =
Number of nodes in the SAT every stop points

Number of cells in the AP every stop points

Intuitively, the density describes the ratio between the num-
ber of cells to be updated in the updating phase and the
number of cells to be filtered or searched in the detailed
search phase. As the name suggests, it describes how dense
a Shifted Aggregation Tree structure is.

While the density characterizes a static structural prop-
erty of a Shifted Aggregation Tree, the alarm probability de-
scribes the dynamic statistical property of a Shifted Aggre-
gation Tree running on a data set. Recall that if a node ex-
ceeds the minimum threshold within its detailed search re-
gion, it will raise an alarm and start a detailed search. The
alarm probabilityP i

a at leveli is defined as

P i
a =

Number of nodes raising alarms at level i

Number of nodes updated at level i

Since the actual CPU cost is positively related both to alarm
probability and to the size of the detailed search region, we
define the alarm probability of a Shifted Aggregation Tree
as the weighted sum of the alarm probability for each level
multiplied by the number of cells in their detailed search re-
gions. Intuitively, the larger the alarm probability, the more
detailed searches are performed requiring more CPU time.
This gives a dynamic statistical description of how a Shifted
Aggregation Tree performs on a data set.

5.2. Synthetic Data

Two classes of probabilistic distributions which have
been widely used to model many real world applications
were chosen to generate the synthetic data: the Poisson dis-
tribution and the exponential distribution. For each distri-
bution, we synthesized a set of data with different parame-
ters in a broad range. Each data set includes 5 million data
points. The first 20,000 data points are used as the train-
ing data in the state-space algorithm to find a desired struc-
ture. To make our task challenging, in these tests, we want
to find bursts for every window size between 1 and 250.

Because the Central Limit Theorem says that the sum
of N independent random variables with any i.i.d distribu-
tions follows the normal distribution whenN is large, we

Alarm probability for different levels

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21

Level in the SAT

A
la

rm
 p

ro
b
a
b
il

it
y

SAT

SBT

(a) Alarm probability as a function of window
size in the Shifted Binary Tree vs. the Shifted Ag-
gregation Tree

Bounding Ratio for different thresholds

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Level in the SAT

B
o
u

n
d
in

g
 R

a
ti

o

SBT

10^-3

10^-5

10^-7

10^-9

(b) The bounding ratio for different levels in
a Shifted Binary Tree and Shifted Aggregation
Trees for different burst probabilities

Figure 9. How the bounding ratio in a Shifted
Aggregation Tree adjusts as a function of
window size and the burst probability to re-
duce the alarm probability

will use the normal distribution in the following analysis of
the alarm probability.

Assume that each point in the input time series has a
number of events characterized by a meanµ and a stan-
dard deviationσ. Then a sliding window of the time series
of sizew has meanwµ and standard deviation

√
wσ. As-

sume that for each window size, the probability to exceed
the threshold should be some valuep. We can characterize
this by saying thatPr[So(w) ≥ f(w)] ≤ p, whereSo(w) is
the observed number of events for window sizew andf(w)
is the threshold for window sizew.

Let Φ(x) be the normal cumulative distribution function,
for a normal random variable X,

Pr[X ≥ −Φ−1(p)] ≤ p

We have

Pr[
So(w) − wµ√

wσ
≥ −Φ−1(p)] ≤ p



CPU time for different \lambda

0

5000

10000

15000

20000

0.001 0.01 0.1 1 10 100 1000

\lambda

C
lo

ck
 t

ic
k

SAT

SBT

Naive

(a) CPU time

Alarm probability for different \lambda

0

0.2

0.4

0.6

0.8

1

1.2

0.001 0.01 0.1 1 10 100 1000

\lambda

A
la

rm
 p

ro
b
a
b
il

it
y

SAT

SBT

(b) Alarm Probability

Density for different \lambda

0

0.01

0.02

0.03

0.04

0.001 0.01 0.1 1 10 100 1000

\lambda

D
e
n

si
ty

SAT

SBT

(c) Density (i.e. the ratio between the num-
ber of cells to be updated and the number of
cells to be filtered or detailed searched)

Figure 7. The effect of λ in the Poisson distribution

CPU time for different thresholds 

0

10000

20000

30000

40000

2 3 4 5 6 7 8 9 10

Burst probability p=10^-k

C
lo

ck
 t

ic
k

SAT

SBT

(a) CPU time

Alarm probability for different thresholds

0

0.5

1

1.5

2 3 4 5 6 7 8 9 10

Burst probability p=10^-k

A
la

rm
 p

ro
b
a
b
il

it
y

SAT

SBT

(b) Alarm Probability

Density for different thresholds

0

0.05

0.1

0.15

0.2

2 3 4 5 6 7 8 9 10

Burst probability p=10^-k

D
e
n

si
ty

SAT

SBT

(c) Density

Figure 8. The effect of burst probability in the Poisson dist ribution

Therefore,f(w) should set to bewµ −√
wσΦ−1(p).

The alarm probabilityPa for a window sizeW is
Pr[So(W ) ≥ f(w)]. Therefore,

Pa = Pr[So(W ) ≥ f(w)]

= Pr[
So(W ) − Wµ√

Wσ
≥ f(w) − Wµ√

Wσ
]

= Φ(−f(w) − Wµ√
Wσ

)

= Φ(
(W − w)µ√

Wσ
+

√
wσΦ−1(p)√

Wσ
)

= Φ((
√

T − 1√
T

)
√

w
µ

σ
+

Φ−1(p)√
T

)

whereT = W/w, denoted thebounding ratio. The smaller
T is, the tighter the bounding, and vice versa.

SoPa is determined by the distribution parametersµ and
σ, the threshold parameterp, the bounding ratioT and the
levelw in the underlying aggregation pyramid. We can draw
the following conclusions from the formula above.

• The larger the ratioµ
σ

is, the larger the alarm probabil-
ity Pa.
For a Poisson distribution with shape parameterλ, the
meanµ is λ and the standard deviationσ is

√
λ, so

the ratio is
√

λ. Differentλ ranging from10−3 to 103

were tested on the synthetic data. In this test, the burst
probability is set to be10−6. Figure 7 shows the CPU
times, the alarm probabilities and the densities for dif-
ferentλ.

As λ, i.e. (µ

σ
)2, increases,Pa increases. More de-

tailed searches are performed so the CPU time in-
creases. To mitigate this, the Shifted Aggregation Tree
must become denser in order to bring down the alarm
probability. Whenλ becomes very large, the alarm
probability is close to 1. So the Shifted Aggregation
Tree becomes sparse again to reduce the updating time,
but is essentially useless.

For an exponential distribution with scale parame-
terβ, bothµ andλ areβ, so the ratio is the constant 1.
This means that changingβ should have no effect on
the alarm probability. Due to space limitations, the fig-



ures for the exponential data are not shown here. Please
refer to [21] for the figures. The experiments show also
that there is no noticeable effect ofβ.

• The smaller the burst probabilityp, the larger the
threshold, the smallerPa.
Figure 8 shows the effect of different thresholds. The
burst probabilities range from10−2 to 10−10. As the
burst probabilities go down, both the alarm probabili-
ties and the densities decrease, because there are fewer
bursts to worry about, so speed depends on reducing
the updating time.

• As the sizew increases, so doesPa.
Figure 9.b shows the alarm probabilities at different
levels in a Shifted Binary Tree and a Shifted Aggrega-
tion Tree. The Shifted Binary Tree always has a high
alarm probability at the high levels, while in a Shifted
Aggregation Tree, by using a small bounding ratioT ,
the alarm probability remains low. Thus the Shifted
Aggregation Tree has more filtering power than the
Shifted Binary Tree.

• As the bounding ratioT decreases, so doesPa.
In a Shifted Aggregation Tree,T could be very close
to 1, e.g.W = w + 1, whereasT in a Shifted Bi-
nary Tree is designed to be about 4. Figure 9.a shows
the bounding ratios at different levels of a Shifted Ag-
gregation Tree and a Shifted Binary Tree under dif-
ferent burst probabilities. Notice how the bounding ra-
tio changes in a Shifted Aggregation Tree: it is high
at the lower levels where the window sizew is small,
while low at the higher levels where the window size
w is large, in order to bring down the alarm probabil-
ity. As the burst probability becomes smaller, there are
fewer bursts. Thus, the bounding ratio becomes a lit-
tle larger, and the Shifted Aggregation Tree becomes
sparser.

In summary, because the Shifted Aggregation Tree
can adjust its structure to reduce the alarm probabil-
ity, it achieves far better running time thatn the Shifted
Binary Tree (Fig. 8).

5.3. Real World Data

We have used two real world data sets to test the pro-
posed framework.

• The Sloan Digital Sky Survey (SDSS) Weblog data
This data set records all the web access requests to the
SDSS website from Jan. 1st, 2003 to Dec. 31st, 2003.
Each record includes the request time precise to the
second, the source IP address and the target URL. The
data set has 17,432,468 records. The distribution fol-
lows the Poisson distribution. The training data con-
sists of seven days of second-by-second data.

• The NYSE TAQ Stock Data
This data set includes tick-by-tick trading activities of
the IBM stock between Jan. 1st, 2001 to May 31st,
2004. There are a total of 6,134,362 ticks, and each
record contains the time precise to the second, as well
as each trade’s price and volume. The distribution is
close to the exponential distribution. A week’s (5 day)
worth of data is used as the training data.

5.3.1. Performance TestsWe are interested in comparing
the Shifted Aggregation Tree with the Shifted Binary Tree
under different settings.

• Different thresholds
The thresholds are set to reflect a burst probability
ranging from10−3 to 10−10. The maximum window
size is set to 300 for SDSS, 500 for IBM. Bursts at ev-
ery window size are detected. Figure 10.a shows the
results for both data sets. As the burst probability de-
creases, the CPU time for the Shifted Aggregation Tree
decreases quickly.

• Different maximum window sizes of interest
The maximum window sizes are set from 10 seconds
up to 1800 seconds. The burst probability is set to
10−6. Bursts at every window size are detected. Figure
10.b shows the results. As the maximum window size
increases, there are more possible levels to adjust the
bounding ratio, thus the speedup for the Shifted Ag-
gregation Tree over the Shifted Binary Tree increases.

• Different sets of window sizes
Instead of detecting bursts at every window size, we
want to see how the Shifted Aggregation Tree performs
with different sets of window sizes,n. Supposen is
set to be 1, 5, 10, 30, 60, 120 respectively. The burst
probability is set to be10−6 and the maximum win-
dow size is set to be 600 for SDSS, 3600 for IBM.
Figure 10.c shows that as the set of window sizes be-
comes sparser, there are fewer bursts to worry about,
thus both the Shifted Binary Tree and the Shifted Ag-
gregation Tree take less time.

5.3.2. Robustness testSince the structure of a Shifted
Aggregation Tree depends on the input used to train it, we
are interested in how sensitive the structure is to whether
training on one portion of the data gives good results when
tested on another portion.

We constructed three training sets for the SDSS data and
the IBM data. One set is taken from the testing data to be de-
tected. The second is taken from the same type of data, but
outside the testing data. For IBM, it’s taken from the trading
activities in 2000; for SDSS, it’s taken from the weblog of
2004. The third set is taken from the other type of data, i.e,
we use the IBM data to train a Shifted Aggregation Tree,
then use it to detect the SDSS data, and vice versa. Each



CPU time for different thresholds

0

50000

100000

150000

2 3 4 5 6 7 8 9

Burst Probability p=10^-k

C
lo

ck
 T

ic
k

SDSS_SAT

SDSS_SBT

IBM_SAT

IBM_SBT

(a) Thresholds

CPU time for different max window sizes of interest

0

200000

400000

600000

10 30 60 120 300 600 1800

Max window sizes of interest

C
lo

ck
 t

ic
k

s

SDSS_SAT

SDSS_SBT

IBM_SAT

IBM_SBT

(b) Maximum window size of interest

CPU time for different window sets

0

200000

400000

600000

800000

1000000

1 5 10 30 60 120

Window Steps

C
lo

ck
 t

ic
k

s

SDSS_SAT

SDSS_SBT

IBM_SAT

IBM_SBT

(c) Different set of window sizes of interest

Figure 10. Performance test: CPU time comparison for the Slo an Digital Sky Survey (SDSS) weblog
data and the IBM stock data

IS

O
S

O
T

Setting1

0

50000

100000

150000

Clock

ticks

Training sets

CPU time for different training sets - SDSS

Setting1

Setting2

Setting3

Setting4

(a) SDSS

IS

O
S

O
T

Setting1

0

10000

20000

30000

40000

Clock 

ticks

Training sets

CPU time for different training sets -IBM

Setting1

Setting2

Setting3

Setting4

(b) IBM

Figure 11. Robustness Test on the Sloan Dig-
ital Survey Weblog Data (SDSS) and the IBM
stock data (IS: in-sample, OS: out-of-sample,
OT: out-of-type)

1
0

5
0

2
5

0

7
5

0

S
B

T

IBM_w54

SDSS_w30
0

5000

10000

15000

20000

Clock 

ticks

Search parameters
Datasets

CPU Time for different search parameters
IBM_w54

IBM_w20

IBM_w138

SDSS_w40

SDSS_w50

SDSS_w30

Figure 12. Search parameter Test

training set contains 3 pieces of training data, each piece
contains one week’s record (7 days for SDSS and 5 days
for IBM). Figure 11 shows the CPU times for four differ-
ent testing scenarios on each training set.

When testing the structure created based on data from
the same data type but distinct from the test data, the per-
formance on the IBM data is about the same as using a
structure based on the testing data itself. The reason is that
the out-of-sample training set has similar statistics to the in-
sample training set. By contrast in the SDSS data, the statis-
tics in the out-of-sample training set are different from those
in the in-sample training set. Thus the structure based on
out-of-sample data costs about 20 percent more time than
one based on in-sample data.

A structure based on a different data type can perform
quite poorly. For example, a structure based on SDSS data
performs by a factor of 2 to 3 times slower for IBM data
than a structure based on out-of-sample IBM data.

5.3.3. Search parameter in the state-space algorithm
We want to study how different search parameters affect
the desired Shifted Aggregation Tree structures in the state-
space algorithm. We tested on different data settings with
different numbers of final states to see when there are di-



minishing returns to broadening the search. The number of
final states is set to be 10, 25, 50, 100, 250, 500, 750, 1000
respectively. Three pieces of training data are picked for the
SDSS data and the IBM data respectively. Due to space lim-
itations, details not shown here can be found in [21].

Figure 12 shows the CPU running times for the Shifted
Aggregation Trees using these parameters. It also shows the
CPU running time for the Shifted Binary Tree as a refer-
ence. The experiments show that even with small numbers
of final states, the Shifted Aggregation Trees discovered are
close to those discovered when the number of final states
is much larger. The best-first search strategy works well in
this situation. In practice, we believe that setting the num-
ber of final states to be 500 works well.

5.4. Sample Data Mining Application

We believe that high-performance burst detection could
be a preliminary primitive for further knowledge discovery
and data mining process. As an example, we look at the cor-
relation of bursts in stock data.

We collected the tick-by-tick TAQ stock data in 2003
for the Standard & Poor’s 100 stocks. We want to dis-
cover which stocks share similar volume characteristics, i.e.
when there is a burst of trading in one stock, which other
stocks also exhibit a burst? Because trading bursts can hap-
pen across different time resolutions, we monitor the corre-
lation at multiple time scales and set the window sizes of
interest to be 10, 30, 60, and 300 seconds. The burst proba-
bility is set to10−9.

Bursts are detected using a Shifted Aggregation Tree,
tuned as described above. The bursts detected are converted
to a 0-1 string where 0 means no burst and 1 means a burst.
The correlation is computed over these 0-1 strings.

These bursts tell an interesting story. First, stocks
within the same sector are correlated strongly e.g. Mi-
crosoft (MSFT), Oracle(ORCL) and Cisco(CSCO). Sur-
prisingly strong correlations of bursty behaviors can be
found across different industries also however. For ex-
ample, Pfizer Inc. (PFE, health care, Drugs, major
Pharmaceuticals), Pepsico Inc. (PEP, Beverage), Proc-
ter & Gamble Co. (PG, Non-Durables Household Products)
are highly correlated. Table 2 shows some highly cor-
related stocks at different window sizes. We are not
claiming these still anecdotal observations as a major re-
sult of our paper, but just as a suggestive example of
how burst detection can feed into data mining applica-
tions.

6. Related Work

There has been a lot of research in monitoring and min-
ing data streams as surveyed in [2, 7, 6]. Recently, moni-

Resolution Highly-correlated stocks
10s C/GE/XOM, CSCO/MSFT/ORCL
30s C/GE/XOM, CSCO/MSFT/ORCL,

PEP/PFE/PG
60s C/GE/XOM/PEP/PFE/PG/GE,

CSCO/MSFT/ORCL
300s C/GE/XOM/PEP/PFE/PG/GE,

CSCO/MSFT/ORCL, WFC/XOM/WMT,
KO/USB/VZ

Table 2. Some highly-correlated stocks at dif-
ferent resolutions

toring and mining bursty behaviors is attracting more and
more interests.

Wang et al. [20] model the bursty behavior in self-similar
time series to synthesize more realistic traces. Kleinberg
[10] studies the bursty and hierarchical structure in tem-
poral text stream. His interest is to discover how high fre-
quency words change over time. Our focus is a high perfor-
mance algorithm to detect bursts, thus complementing that
work.

Neill et al. [15, 16, 14] study the problem of detecting
significant spatial clusters in multidimensional space. They
consider a general density function which could be non-
monotonic, but are only interested in the region with the
highest density, while our work detects all regions exceed-
ing some threshold. They use an overlapping data structure
called the overlap-kd tree with a fixed overlapping struc-
ture. Thus their structure, like the Shifted Binary Tree, is
fixed regardless of the characteristics of the input data. Our
techniques could be applied to their data structure, an area
meriting further investigation.

Vlachos et al. [19] mine the bursty behavior in the query
logs of the MSN search engine. They use moving averages
to detect time regions having high numbers of queries. Only
two window sizes are considered, short term and long term.
The detected bursts are further compacted and stored in a
database to support burst-based queries. We share the view
that burst detection should be a preliminary primitive for
further knowledge mining process, but we deal with many
more window sizes.

Datar et al. and Gibbons et al. [5, 8] study a related prob-
lem: estimating the number of 1’s in a 0-1 stream and the
sum of bounded integers in an integer stream in the lastN
elements. They use synopsis structures called Exponential
Histograms and Waves respectively. Like our Shifted Ag-
gregation Tree, these are multiresolution aggregation struc-
tures, though with coarser aggregation levels for the past
and finer aggregation levels for recent data.

Burst detection belongs to a broader category of detec-
tion tasks: change/novelty/anomaly/outlier/surprise detec-



tion. Due to space limitations, we won’t compare them here.
Please refer to [9, 3, 12, 11, 1, 4, 17], etc, for related work
in this area.

7. Conclusion

In this paper, we propose a framework for adaptive and
therefore better elastic burst detection. We present a family
of data structures that generalizes the Shifted Binary Tree
and many others. We present a heuristic search algorithm to
find an efficient structure given the input time series and the
window thresholds. Experiments on both synthetic and real
world data show an improvement factor of up to 35 times
depending on the input.

Besides its immediate practical benefits, this framework
– aggregation pyramid along with a simple adaptive search
methodology – can be extended to spatial burst detection
and other applications. Applying this framework to time-
evolving time series is also the topic of future work. Fur-
ther, given rapid burst detection, new real-time data mining
applications may become possible.

References

[1] Charu C. Aggarwal and Philip S. Yu. Outlier detection
for high-dimensional data. Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data,
2001.

[2] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Mot-
wani, and Jennifer Widom. Models and issues in data stream
systems. Madison and Wisconsin, 2002. ACM SIGMOD-
PODS.

[3] Stephen D. Bay and Mark Schwabacher. Mining distance-
based outliers in near linear time with randomization and a
simple pruning rule. Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2003.

[4] Markus M. Breunig, Hans-Peter Krigel, Raymond T. Ng, and
Jorg Sander. Lof: Identifying density-based local outliers.
Proceedings of the 2000 ACM SIGMOD International Con-
ference on Management of Data, 2000.

[5] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Mot-
wani. Maintaining stream statistics over sliding windows.
SIAM, 31(6), September 2002.

[6] Christos Faloutsos. Indexing and mining streams tutorial.
Proceedings of the 2004 ACM SIGMOD International Con-
ference on Management of Data, 2004.

[7] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and
mining data streams: You only get one look. Proceedings of
the 2002 ACM SIGMOD International Conference on Man-
agement of Data, 2002.

[8] Phillip B. Gibbons and Srikanta Tirthapura. Distributed
stream algorithms for sliding windows. InProceedings of the
fourteenth annual ACM symposium on Parallel algorithms
and architectures, pages 63–72, 2002.

[9] E. Keogh, S. Lonardi, and W. Chiu. Finding surprising pat-
terns in a time series database in linear time and space. Pro-
ceedings of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2002.

[10] Jon Kleinberg. Bursty and hierarchical structure in streams.
pages 91–101. Proceedings of the 8th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 2002.

[11] E. M. Knorr, R. T. Ng, , and V. Tucakov. Distance-based out-
liers: algorithms and applications. Proceedings of 26th Inter-
national Conference on Very Large Data Bases, 2000.

[12] Edwin M. Knorr and Raymond T. Ng. Finding intensional
knowledge of distance-based outliers. Proceedings of 25th
International Conference on Very Large Data Bases, 1999.

[13] Zbigniew Michalewicz and David B. Fogel.How To Solve
It: Modern Heuristics. Springer, 2002.

[14] Daniel Neill and Andrew Moore. Rapid detection of signifi-
cant spatial clusters. Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2004.

[15] Daniel B. Neill and Andrew W. Moore. A fast multi-
resolution method for detection of significant spatial disease
clusters. InAdvances in Neural Information Processing Sys-
tems 16, Cambridge, MA, 2004. MIT Press.

[16] Daniel B. Neill, Andrew W. Moore, Francisco Pereira, and
Tom Mitchell. Detecting significant multidimensional spa-
tial clusters. InAdvances in Neural Information Process-
ing Systems 17, pages 969–976, Cambridge, MA, 2005. MIT
Press.

[17] S. Papadimitriou, H, Kitagawa, P.B.gibbons, and
C.Faloutsos. Loci: Fast outlier detection using the lo-
cal correlation integral. Proceedings of the 19th Interna-
tional Conference on Data Engineering, 2003.

[18] Dennis Shasha and Yunyue Zhu.High Performance Discov-
ery in Time Series: Techniques and Case Studies. Springer,
2003.

[19] Michail Vlachos, Christopher Meek, Zografoula Vagena, and
Dimitrios Gunopulos. Identifying similarities, periodicities
and bursts for online search queries. InSIGMOD ’04: Pro-
ceedings of the 2004 ACM SIGMOD international confer-
ence on Management of data, pages 131–142, New York,
NY, USA, 2004. ACM Press.

[20] Mengzhi Wang, Tara madhyastha, Ngai Hang Chan, Spiros
Papadimitriou, and Christos Faloutos. Data mining meets
performance evaluation: Fast algorithms for modeling bursty
traffic. Proceedings of the 18th International Conference on
Data Engineering, 2002.

[21] Xin Zhang and Dennis Shasha. High performance burst de-
tection.Technical Report, New York University, 2005.


