
High Quality and Secure Privacy-Preserving
Record Linkage using Random Hashing

Submitted for double-blind review

No Institute Given

Abstract. Record linkage is the task of identifying records that refer
to the same entities from several databases. When databases are linked
across organizations, privacy and confidentiality leaks become possible,
because linkage commonly relies upon sensitive information such as the
names, addresses, and other personal details of individuals. Research into
privacy-preserving record linkage (PPRL) aims to develop techniques for
linking databases such that no private or confidential information has to
be revealed from the sensitive source data, and only limited information
about matched records is disclosed at the end of the linkage process. In
this paper we propose a novel PPRL approach based on random hashing
which exhibits both improved privacy characteristics as well as better
linkage quality compared to existing PPRL techniques based on Bloom
filters. We provide an analysis of the privacy characteristics of our ap-
proach and conduct an experimental evaluation on several real-world
data sets which validate the superiority of random hashing over Bloom
filters.

Keywords: Random maximum margin hashing; Hamming distance; Bloom fil-
ter; privacy; data matching; entity resolution.

1 Introduction

Record linkage, also known as entity resolution or data matching [4], is the
process of identifying and linking records about the same real-world entity from
several databases. This process is widely used in the data preparation phase of
data mining projects that require data from various sources to be integrated
before they can be analyzed. Linked data can facilitate a large variety of studies
that are not feasible on single databases. Traditionally, record linkage has been
employed for national censuses and in the health sector, while more recently it
has seen application in a wide range of areas including e-commerce, the social
sciences, crime and fraud detection, and national security [4].

Record linkage is challenging because it is rare for global unique entity iden-
tifiers (like, say social security numbers) to be available in the databases to be
linked. Linkage therefore has to rely on private identifying attributes, such as
the names and addresses of people. As a result, when databases are linked across
organizations, privacy and confidentiality leaks become possible, because linked



databases can reveal highly sensitive information about individuals [22] and the
use of personal information is restricted by laws in many countries.

As an example of the benefits of linking, unifying information about indi-
viduals in hospital, doctors, police, car, and health insurance databases would
allow a public health researcher to identify people who had serious car accidents
and study their health following their accidents, thereby identifying unknown
patterns that cause serious accidents. Such research could potentially lead to
improved road safety measures and help to save many lives [5]. However, having
access to all these databases would also reveal criminal histories which should
remain private to those without a need to know.

To overcome this privacy challenge, the last two decades have seen research
in the emerging area of privacy-preserving record linkage (PPRL) [22]. The aim
of PPRL is to conduct linkage in such a way that no sensitive data ever needs to
be communicated between the parties involved in a linkage, and at the end of a
PPRL process all that is revealed is which records refer to the same entity. For
the above example, this could be accident and injury details together with basic
demographic information of the individuals who had a serious car accident, but
not their names, addresses or other identifying details.

A variety of PPRL techniques have been developed over the years, ranging
from simple one-way hash encoding, to multi-dimensional embedding and se-
cure multi-party computation (SMC) based techniques. Several recent surveys
provide more details on these techniques [3,7,22]. One specific technique that
has seen much attention in recent years is based on Bloom filters [2,6,14,16,19],
where sensitive attribute values are encoded into bit-strings by the database
owners using a secret key only known to them. A major advantage of Bloom
filter encoding is that it allows approximate matching of string as well as numer-
ical attribute values [16,20]. Having access to only these Bloom filters and not
knowing the secret key makes it possible (though computationally expensive) to
re-identify a few frequent attribute values, as has been shown by several recent
crypt-analysis attack methods [11,12,17].

However, as the first practical applications of supposedly privacy-preserving
record linkage algorithms are being deployed in real-world settings [3,15], it is
crucial to ensure these algorithms provide adequate protection from potential
privacy-infringing attacks. If even a single sensitive attribute value can poten-
tially be re-identified using such an attack, a PPRL technique might not be
acceptable.

Contributions: Our novel PPRL approach aims to overcome the weaknesses
of Bloom filter-based encodings to provide significantly improved privacy while
still achieving similar quality guarantees in linking compared to Bloom filters.
Our approach is based on character q-grams extracted from attribute values, that
are then used as features for a random projection hashing approach [8]. The basic
idea of the approach is for each database owner to train a set of support vector
machines (SVMs) on randomly selected sub-sets of records and with random
class labels attached, to then exchange the coefficients of these trained SVMs
among the database owners, which then generate one binary vector for each



database record where one SVM contributes one bit of such a vector. These
binary vectors are then sent to a third party for comparison and classification.
We evaluate this approach on several real-world data sets.

We review related work, and then describe our approach in detail in Sect. 3.
We discuss the approach and analyze it with regard to privacy, computational
complexity, and linkage quality in Sect 4, and experimentally evaluate it in
Sect. 5, before concluding the paper in Sect. 6 with a summary and outlook
to future work.

2 Related Work

As recently surveyed [22], techniques for PPRL have been in development since
the mid 1990s. The first generation of PPRL techniques allowed for secure exact
matching only (using one-way hash functions such as MD5 or SHA), while more
recently developed techniques allow for approximate matching of attribute values
while also considering scalability to enable PPRL on large databases.

Bloom filters were first proposed by Schnell et al. [16] in 2009 as an efficient
and secure encoding method to enable approximate matching of string values
in PPRL. Based on this idea, a variety of Bloom filter based encoding methods
(including for other data types [20]), hardening techniques, and blocking and
matching protocols have been developed [6,14,17,19].

Several crypt-analysis attack methods [11,12,17] have been developed with
the aim to re-construct the sensitive values encoded in Bloom filters. The main
weaknesses that can be exploited in Bloom filter encoding are that the frequency
distributions of Bloom filters, as well as the frequencies of bit patterns within
Bloom filters, can be correlated with the frequencies of attribute values [11].
An attacker can obtain such attribute frequency distributions for example from
large public databases such as telephone directories. Currently, known Bloom
filter encoding techniques are vulnerable to such frequency-based attacks, and no
provably secure encoding method for Bloom filters has thus far been developed.

In this paper we aim to develop an alternative approach to Bloom filters
that also enables accurate approximate matching for PPRL, but provides much
improved privacy compared to Bloom filters.

Our work builds directly on the method proposed by Joly and Buisson [8],
whose goal it is to find similar records in large databases by using machine
learning methods on the attributes that determine similarity. For example, in
a database of D records, suppose that similar values of attributes a1, . . . , ak
suggest that a collection of records are similar. Suppose that D is very large.
The method consists of creating n � D SVMs, each constructed by taking say
m = 1, 000 of the D records, assigning 1/0 labels randomly to them, and then
training one SVM on those m records. Then, using each of those n trained SVMs,
assign n 0/1 labels to all D records. If two records have similar labels then their
values on a1, . . . , ak are likely to be similar. From a privacy point of view, in the
absence of the coefficients of the SVMs, the 1/0 vector characterizing a record



Feature vector

SVM classification

Feature vector

SVM classification

RA5: ’patti clark’

RA4: ’mary meier’

RA3: ’peter smith’

RA1: ’tim grant’

RA2: ’joe tylor’

Database A

RB3: ’john doe’

RB4: ’suzi wu’

RB5: ’ben black’

RB1: ’peter smyth’

RB2: ’marie meyer’

Database B

RA1: [1,1,1,1,0,1]

RA2: [0,1,0,1,1,0]

RA3: [1,0,1,0,1,1]

RA4: [0,1,1,1,0,1]

RA5: [1,0,0,1,0,0]

Linkage unit:

Compare classification

vectors and calculate

Hamming similarity

(RA3,RB1): 0.83

(RA4,RB2): 0.83

1

0

0

0

1

RB1: [1,0,1,0,1, ..., 0,1,1]

RB2: [0,0,1,1,0, ..., 0,0,1]

RB3: [1,1,0,1,1, ..., 1,1,0]

RB4: [1,0,0,1,0, ..., 0,1,1]

RB5: [0,1,1,1,0, ..., 1,0,1]

RA3: {er,et,it,mi,pe,sm,te,th}

RA2: {jo,lo,oe,or,ty,yl}

RA1: {an,gr,im,nt,ra,ti}

RA4: {ar,ei,er,ie,ma,me,ry}

RA5: {ar,at,cl,la,pa,rk,ti,tt}

0

1

1

1

0

RA1: [1,1,0,0,0, ..., 1,0,1]

RA2: [1,0,1,0,1, ..., 0,1,0]

RA3: [1,1,0,1,0, ..., 0,1,1]

RA4: [0,1,0,0,1, ..., 1,0,0]

RA5: [0,0,1,0,1, ..., 0,1,0]

selected feature vectors
(3) Train SVMs on randomly

(4) Exchange SVMs among
database owners

binary classification

classification vectors

pairs as matches

(5) Use SVMs to generate

(6) Calculate Hamming

(7) Classify similar record

distance between binary

vectors and send to LU

Protocol steps:

(1) Convert into q−grams

random class labels
feature vectors and add

(2) Convert into binary

class labels A
Feature vectors and Feature vectors and

class labels B

Classification vectors A Classification vectors B

SVMs A SVMs B

o

o
oo

o o o

1

1

1
1

1

1
1

1

1

o

1
1

o

o
o

o

11

1

1
o
o

o 1

1

1

o o
1

1

1

1

1

ooo

(1) (1)

(2) (2)

(3) (3)

(4)(4)

(5) (5)

RB1: [1,0,1,0,0,1]

RB2: [0,1,1,1,0,0]

RB3: [0,1,1,0,1,0]

RB4: [0,0,0,1,1,1]

RB5: [0,0,1,1,0,0]

(7)
(6)(6)

Q−gram sets B

RB1: {er,et,my,pe,sm,te,th,yt}

RB2: {ar,er,ey,ie,ma,me,ri,ye}

RB3: {do,hn,jo,oe,oh}

RB4: {su,uz,wu,zi}

RB5: {ac,be,bl,ck,en,la}

Q−gram sets A

Fig. 1. Outline of our random projection hashing based PPRL protocol as described in
Sect. 3. Each database owner (DO) computes support vector machines (SVMs) using
random labels on a subset of the records. The DOs only exchange SVM coefficients, and
the Linkage Unit (LU) only sees the vectors resulting from applying the joint SVMs
on all records in the two databases.

reveals nothing about the a1, . . . , ak attributes of that record. We show later
that those vectors are not correlated any more than random 1/0 vectors.

3 Random Projection Hashing based PPRL

We now define the PPRL problem we aim to solve, and then provide a detailed
description of our approach to tackle this problem. The steps of our protocol, as
described below, are illustrated in Figure 1.

Without loss of generality, we assume two organizations (database owners,
DO), named Alice and Bob, each owning a database, DA and DB , respectively.
Alice and Bob wish to identify records in DA and DB that have a high similarity
on a selected set of common attributes, A, without revealing the actual sensitive
values in DA and DB . We formally define the problem of PPRL [22] as:



Definition 1. Privacy-preserving record linkage: Assume Alice and Bob
are the owners of their respective databases DB and DB. They wish to determine
which of their records RA

i ∈ DA and RB
j ∈ DB refer to the same entity according

to a classification model C(RA
i , R

B
j ). Alice and Bob are not allowed (or do not

wish) to share sensitive values in their RA
i and RB

j with each other or with any
other organization. Thus the intended effect of the exchange of data is for Alice
and Bob to learn only which records they have in common according to C, and
nothing else.

The model C(RA
i , R

B
j ) classifies record pairs into the class M of matches

(pairs where both records refer to the same entity) and U of non-matches (pairs
where the two records refer to different entities). At the end of the PPRL process,
Alice and Bob may be prepared to disclose to each other, or to an external party
(such as a researcher), the actual values of some selected attributes of record
pairs in class M to allow further analysis [22].

To achieve the goal of PPRL, the records in DA and DB need to be en-
coded in some form to prevent the actual attribute values in RA

i and RB
j to be

revealed. Various encoding functions have been proposed in the past [22]. The
requirements of such encoding functions are that they must (1) allow approxi-
mate matching (due to typographical variations and errors in attribute values),
(2) be computationally efficient (to allow matching of very large databases), and
(3) not be vulnerable to any attacks by adversaries that aim to identify the sen-
sitive values in DA and DB . We analyze how our approach addresses these three
requirements in Sect. 4.

In common with other PPRL protocols, we assume a semi-trusted linkage
unit (LU) [16,22], an organization such as a government linkage agency that
does not have a database to be linked itself, but which conducts the linkage of
the encoded data sent to it by the database owners.

Our novel approach to PPRL applies random projection hashing [8] on the
values in attribute(s) A in RA

i and RB
j . As will be detailed below, we assume

the DOs have agreed upon the set of attributes, A, to use for the linkage, the
value of q (length of q-grams), the mapping of q-grams into feature vectors, and
the SVM penalty parameter C.

For our approach we employ linear SVMs. In the linear case we can exchange
the hyperplane normal w and the value of b between the two DOs because
the SVM classifier can be explicitly expressed as h(x) = w · x + b, where w
is a weighted sum of the support vectors xi, but we do not need to explicitly
exchange these xis to be able to compute the classifier. In the kernelized case, on
the other hand, there is no explicit formulation of w and the classifier can only
be expressed as a function of the support vectors xis: h(x) =

∑
wi · k(x, xi) + b

and therefore the xi need to be exchanged between the DOs. This will reveal to
each DO the features (and thus q-grams) of a set of records of the other DO,
thus making the approach not secure.

The protocol consists of the following steps (as illustrated in Fig. 1).

1. The two DOs, Alice and Bob, convert the values in the attributes A in their
records RA

i ∈ DA and RB
j ∈ DB , respectively, into sets of character q-grams



(sub-strings of length q), QA
i and QB

j (one set per record). This step is the
same as done with PPRL techniques based on Bloom filters [6,16,14]. We
denote with QA and QB the set of all q-gram sets generated from records
in DA and DB , respectively, with |DA| = |QA| and |DB | = |QB |.

2. Each q-gram set QA
i ∈ QA and QB

j ∈ QB is mapped into a binary feature

vector BA
i and BB

j , respectively, of length l = |Σ|q where Σ is the alphabet
of all characters that occur in any value in any attribute in A in any record
in DA or DB . Each q-gram is assigned a unique position in these feature vec-
tors, either alphabetically sorted (for example for q = 2 and Σ = {a, . . . , z}:
‘aa′ → 0, ‘ab′ → 1, . . ., ‘zz′ → 650), or using a random permutation agreed
upon between (and known only to) the database owners.

3. Alice and Bob now each train n SVM classifiers in the following way:

(a) Each DO individually selects n (preferably) non-overlapping training
subsets, TA

k and TB
k , 1 ≤ k ≤ n, each consisting of m binary feature

vectors, BA
i and BB

j respectively, they hold, where each could be taken
by random sampling without replacement (with a random seed known
only to itself). The set of feature vectors for each size m training subset
corresponds to m records from DA and DB , respectively.
The DOs can each select different values for m, with the only constraint
that n×m should be less than the number of records in their database
to allow sampling without replacement. Note that each DO keeps this
random selection process of training sets secret from any other party (i.e.
no other party learns either how a DO has selected its training sets, nor
the size of these training sets).

(b) For each of the feature vectors BA
i ∈ TA

k and BB
j ∈ TB

k , a class label
of 1 or 0 is randomly assigned to that vector with equal probability (i.e.
half of the vectors in each TA

k and TB
k are labeled as being in class 1

and half as being in class 0).
(c) Each DO then trains n SVMs, one on each of the training sets, TA

k and
TB

k , respectively, using the BA
i and BB

j and their corresponding 0 and

1 class labels as training data. We denote these n trained SVMs as SA
k

and SB
k , respectively, with 1 ≤ k ≤ n.

4. The two DOs now exchange their trained SVMs, SA
k and SB

k , with each other
(specifically, their coefficients), and each generates two lists of n SVMs, one
list with its own SVMs and the other list with the other DO’s SVMs.

5. Each database owner now independently applies each of these 2 × n SVMs
on all of its own records RA

i ∈ DA and RB
j ∈ DB , respectively, as converted

into binary feature vectors BA
i and BB

j in step 2. The two resulting binary

vectors, CA
i and CB

j , of length n for each record are then combined into a new

vector, CX
i , by applying a bit-wise XOR operation: CX

i [b] = CA
i [b]⊕CB

i [b] =
(CA

i [b]∨CB
i [b])∧¬(CA

i [b]∧CB
i [b]), 1 ≤ b ≤ n. Each position in such a vector

is the combined binary classification outcome of applying one specific SVM
from Alice and one from Bob to the feature vectors BA

i or BB
j . We denote

the sets of all classification vectors as CA (from DA) and CB (from DB),
respectively.



The two DOs then send their sets CA and CB of classification vectors to-
gether with encrypted record identifiers to the linkage unit (LU) to allow
comparison of these vectors.

6. Using a privacy-preserving blocking protocol [1,9,14,18], record pairs that
are similar according to their binary classification vectors CA

i and CB
j are

inserted into the same block and compared by calculating the Hamming
distance hd between them, where hd is defined as the number of bit positions
where the value of CA

i [b] 6= CB
j [b]: hd(CA

i , C
B
j ) =

∑n
b=1 |CA

i [b]− CB
j [b]|.

7. Pairs of records that have a Hamming distance below a certain threshold
value t, or equivalently a Hamming similarity value above a certain threshold,
are considered to be matches and are added to the match set M.

We next discuss key aspects of our protocol in more detail, and provide an
analysis of the protocol with regard to privacy, complexity, and linkage quality.

4 Discussion and Analysis of the Protocol

As with any PPRL protocol, the overall usefulness of our protocol is determined
by the linkage quality it achieves, the privacy protection it provides, and its
computational complexity and parallelizability. The key component which de-
termines all three aspects is the choice of parameter used for the SVMs employed
in our protocol, and how these SVMs are trained, as we discuss in detail next.

4.1 Privacy Analysis

As with many other PPRL approaches, we assume all parties follow the honest-
but-curious adversary model [22] in that they follow the steps of the protocol and
do not behave in a malicious manner. We also assume the LU does not collude
with either of the two database owners. However, each party aims to learn as
much as possible about the other parties’ sensitive data from the information it
receives from the other parties. In our protocol, information is exchanged when
the two DOs agree upon the set of attributes, A, to use for the linkage, which
does reveal to each DO that they have this common set of attributes, but reveals
nothing about sensitive values in these attribute. Exchanging the value of q, and
the mapping of q-grams into binary feature vectors does not reveal any sensitive
information.

In step 4 of the protocol the two DOs exchange the coefficients of their re-
spective n trained linear SVMs. The main question here is if it would be possible
for Alice to learn anything about the q-gram sets (and thus sensitive attribute
values) used by Bob in his n training sets TB

k , and vice versa. As described
in step 3 (a) of our protocol above, each DO keeps the random selection pro-
cess secret, and therefore the other DO knows neither how many records were
used for training each SVM (i.e. m is not known), how they were selected, the
randomly set 0/1 class labels, nor any characteristics of these records. To learn
anything about the binary feature vectors used for training a single SVM, an at-
tacker would need to be able to reconstruct m (with m unknown) binary vectors



from the coefficients of this SVM, and repeat this process for all n SVMs. Be-
cause (ideally) sampling without replacement was used to generate the training
sets, TA

k and TB
k respectively, there are no frequency distributions that could be

exploited. Even the frequency distributions of coefficients in the trained linear
SVMs does not reveal any direct information about the binary feature vectors
used in training these SVMs.

These random choices done individually by the two DOs also reduce the
risk of their sensitive data being revealed to the other DO in case of collusion
between the linkage unit (LU) and one of the two DOs, as not knowing the
random selection process does not allow a re-identification of sensitive attribute
values. That said, if the LU knew the coefficients of the SVMs, then it could
manufacture records to see whether they match the output of the SVMs.

At the end of step 5, both DOs send the binary classification vectors for
their full databases to the LU. As with crypt-analysis attacks on Bloom fil-
ters [11,12,17], the LU could try to analyze the frequency distribution of 1-bits
in these binary vectors, as well as the distribution of 1-bits for each position
in these vectors. If we assume the set A contains several attributes, it is un-
likely that more than one database record results in the same bit pattern (this
would only happen if two database records have exactly the same values in all
attributes in A). This is in line with record-level Bloom filters which have shown
to be more secure than attribute-level Bloom filters [6,11,17].

Even if a frequency analysis would provide some information for the LU to
investigate, unlike with Bloom filters based PPRL, where individual bit positions
in a Bloom filter correspond to one or more hash-mapped q-grams, in our ap-
proach each bit position does not directly correspond to any q-gram but rather
to the classification of two SVMs (one from each DO, as explained in step 5 of
our protocol), i.e. the randomly trained SVMs are an intermediate step between
database records and the binary classification vectors sent to the LU. Therefore,
crypt-analysis attacks such as those successful on Bloom filters [11,12,17] would
not be possible with our approach.

In step 5, the LU can learn the number of SVMs, n, used by each DO from
the length of the classification vectors CA and CB , but this will not reveal any
sensitive information. To make our approach possibly more secure, in step 3 of
our protocol, instead of taking the binary feature vectors to train the SVMs,
the DOs could first encode feature vectors into Bloom filters (again resulting in
binary vectors), and these Bloom filters could then be used as training records
for the SVMs. However, given Bloom filters lead to false positives [16], this will
likely result in a reduction in linkage quality.

Intuitively, assuming a set A of several attributes is used for the linkage, our
proposed protocol exhibits improved privacy compared to Bloom filter based
PPRL protocols because the random selection of the training data and the ran-
dom selection of class labels provides an extra level of indirection between the
sensitive attribute values and any information that is communicated between
parties. We will experimentally evaluate the privacy of our approach in Sect. 5.



Table 1. Characteristics of data sets used in experiments.

Data set names Number of records Number of true matches

NCVR 224,073 / 224,061 124,597
DBLP-GS 2,616 / 64,263 get

ACM-DBLP 2,294 / 2,616 get

4.2 Computational Complexity

Assume N = (|DA| + |DB |)/2 is the average number of records in each of the
two databases DA and DB , and G = (

∑
QA |QA

i |+
∑

QB |QB
j |/2N is the average

number of q-grams generated for each record in step 1 of our protocol.
The communication complexity of exchanging parameter values between the

two DOs is O(1), while in step 4 each DO sends the coefficients of n trained SVMs
to the other DO, leading to one message of size O(nm) assuming the number
of coefficients is of the order of training records m In step 5 of our protocol,
each DO sends its set of N binary classification vectors to the LU, where each
of those is of length n, leading to a communication complexity of O(nN).

Peter: Alexis could perhaps help us here. The computational complex-
ity of steps 1 and 2 of our protocol is both O(GN), while training the n linear
SVMs in step 3 has a complexity of O(nm2) assuming a quadratic complexity of
training a SVM in the number of training records, m. In step 5, the generation
of the N binary classification vectors (each of length n) is of O(Nnm) if we
assume each SVM has m coefficients and there are n SVMs. Finally, if the LU in
step 6 applies a blocking approach which splits the databases into B equal sized
blocks, then B blocks of size N/B need to be compared, resulting in B ∗ (N/B)2

calculations of Hamming distances on binary vectors of length n, leading to a
complexity of O(nN2/B). Note that this comparison-complexity is the same as
the comparisons of Bloom filter based PPRL approaches, however the length of
the compared binary vectors (n) is likely to be less than the length of the Bloom
filter vectors, leading to a faster comparison by the LU.

4.3 Linkage Quality

The quality of linkage achieved by our PPRL protocol depends mainly on how
well the binary classification vectors created in step 5 represent the actual at-
tribute values in their corresponding records. As the linear SVMs trained in step
4 are used to create these vectors, the quality of these SVMs on how well they
classify ...

determined mainly by m and n, as well is choice of SVM kernel and other
SVM parameters - Joly suggested m = 32 ?

sample size and num samples are main settings We experimentally ..

5 Experiments and Discussion

We used several real-world data sets, as summarized in Table 1, to evaluate our
novel approach for PPRL and compare it with Bloom filter based PPRL.



The North Carolina Voter Registration ‘NVCR’ data sets1 contain real voter
records including names and addresses. We used two sub-sets of NCVR collected
at different points in time, and extracted records about individuals that included
changes between the two sub-sets (such as changed surnames or addresses, or
corrected name variations and misspellings). The ‘DBLP-GS’ (DBLP linked with
Google Scholar) and ‘ACM-DBLP’ (ACM Digital Library linked with DBLP)
data set pairs both contain bibliographic records (details of publications and
authors) and have previously been used in various record linkage studies [10].

As baseline, we used a state-of-the-art Bloom filter encoding approach [6,17,21]
and following these earlier works set the Bloom filter length to l = 1, 000 and the
number of hash functions for Bloom filters such that their percentage of 1-bits
was around 50%. For both Bloom filters and random projection hashing we con-
verted attribute values into bigrams, i.e. q = 2. We employed a locality sensitive
hashing (LSH) based indexing approach [9] to efficiently reduce the number the
comparisons between Bloom filters to only those that potentially have a high
similarity (i.e. pairs of Bloom filters that do not have many 1-bit positions in
common are not compared).

We implemented our approach as well as Bloom filter encoding using Python
2.7.3, and ran all experiments on a server with 64-bit Intel Xeon 2.4 GHz CPUs,
128 GBytes of memory and running Ubuntu 14.04. We used the Scikit-learn
machine learning package [13] for the SVM classifier. To facilitate repeatability,
the programs and test data sets are available from the authors.

Quality Evaluation how we set parameters BF len, um hash functions num
svm, sample size, lin kernel, C=0.01, 0.1,1

how to measure linkage quality: prec, recall, f-measure
plots using NCVR balanced, as well as small bibliographic data sets 3 BF

plots for different BF len values (500, 1000, 2000), several RP bars for different
number of SVM/sample size values (for small data sets include both with /
without replacement sampling)

Scalability Evaluation bar plots for NVR different sizes (10K, 33K, 100K,
333K, 1M), where x-axis is data set size, y-axis is F-measure (one plot) or stacked
bar plots with encoding / blocking and comparison times (2nd plot) each of these
bar plots has one bar for BF and one for best RPH (same parameters across data
sets)

Privacy Evaluation While a variety of methods have been proposed to mea-
sure privacy for PPRL (such as information gain, disclosure risk and probability
of suspicion) [21], no single privacy measure for PPRL is currently available.

Our aim here is to compare the privacy provided by our novel approach
compared to Bloom filter based PPRL approaches. These are known to have

1 http://dl.ncsbe.gov/

http://dl.ncsbe.gov/


10K 32K 100K 316K
Data set size

101

102

103

104

105

T
im

e 
(s

ec
)

(a) Run time for different data set sizes
Encode BF
Block+Comp BF
Encode RP
Block+Comp RP

10K 32K 100K 316K
Data set size

0.0

0.2

0.4

0.6

0.8

1.0

A
ve
ra
g
e 
F-
m
ea
su
re

(b) F-measure for different data set sizes

BF
RP

0.5 0.6 0.7 0.8 0.9 1.0
Similarity threshold

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

(c) F-measure for different data set sizes
BF 10K
RP 10K
BF 32K
RP 32K
BF 100K
RP 100K

Fig. 2. Scalability results on sub-sets of the ‘NCVR’ data set with different numbers
of records and well performing encoding parameter settings for the two encoding tech-
niques (BF of length 1, 000 and RP with 50 SVMs and sample size of 100. Our proposed
approach outperforms BF both with regard to run time as well as linkage accuracy. For
run-time, as can be seen in plot(a), RP is over one magnitude fast than BF, and most
of the time is spent in the encoding phase while the blocking and comparison phase
is faster due to the shorter bit vectors used by RP. And as plots (b) and (c) show,
RP also achieves significantly higher linkage quality over a wider range of similarity
thresholds (these thresholds set if a compared pair of bit vectors is classified as a match
or a non-match).

vulnerabilities for certain parameter settings as has been shown in several re-
cent crypt-analysis attacks [11,12,17]. These attacks are based on the frequency
distributions of bits in Bloom filters. A certain bit position in a set of Bloom
filters that contains a 1-bit for many Bloom filters very likely corresponds to a
q-gram that occurs often in a certain attribute in a population database. This
information can be used to iteratively map individual bit positions to certain
q-grams [11,12], thereby revealing details of the encoded attribute values.

Therefore, the distribution of 1-bit frequencies in a set of binary vectors
(Bloom filters or the classification vectors CA

i and CB
j in our approach) should

be as close to a set of uniformly distributed random vectors (with a certain
percentage of 1-bits).

We analyzed these 1-bit frequencies experimentally and present selected re-
sults in Fig. 3. We used 100,000 records from the NCVR data sets for these
experiments, set the Bloom filter length and number of SVMs to 1,000 to allow
comparison, the SVM sample size m = 50 and the number of hash functions for
Bloom filters such that the percentage of 1-bits was around 50%. As baseline we
also generated random binary vectors with 50% 1-bits uniformly distributed. To
evaluate the correlation between the number and frequency of attribute values
and corresponding 1-bit patterns, we only used the one or five most frequent
value(s) of one attribute (first name).

As can be seen from Fig. 3, our random projection hashing approach leads
to 1-bit frequency distributions much closer to uniform random, thereby mak-
ing any frequency-based crypt-analysis attack more difficult compared to Bloom
filter encoded values. The distributions for Bloom filters also show a set of bit
positions where all records have a 1-bit, indicating to an attacker certain q-
grams occur in all records (for the case where we only used the most frequent
first name value). On the other hand, no such pattern is observable for random



projection hashing. Additionally, not visible in these plots, is that for Bloom
filters commonly there were several bit positions with not only the same number
of 1-bits, but also the same bit pattern over the set of encoded values, provid-
ing an attacker with information about correlated bit positions and therefore
correlated q-grams. For random projection hashing, on the other hand, for all
our experiments no bit pattern occurred more than once, and having a certain
number of 1-bits occurring more than once was very rare.

Based on this frequency analysis, we conclude that crypt-analysis attacks that
have shown to be possible on Bloom filter encoded data sets will be much more
difficult on data sets encoded using our random projection hashing approach. We
will investigate more formal methods for measuring and comparing the privacy
of our approach as future work.

6 Conclusions and Future Work

We presented...
Peter: I don’t think the other kernels will affect the privacy but they might

affect the quality. Alexis might have insight into that. As future work we plan to
explore the use of other SVM kernel functions and how these affect the linkage
quality as well as the privacy of our approach, and to investigate other methods
to more formally assess the privacy provided by our approach.

Peter: I’m not sure about this because then the LU could learn everything by
building fake records an testing them. We aim to develop a multi-party version
of our approach, where one central organization, such a government linkage unit
(LU), is training a large enough number of SVMs on a large population database,
and sends these SVMs to all database owners. The database owners can then
use them to generate their binary classification vectors and send these back to
the LU for calculating the similarities between records from different database
owners. Such an approach does not require any communication between the
database making the approach more secure.

References

1. Al-Lawati, A., Lee, D., McDaniel, P.: Blocking-aware private record linkage. In:
IQIS. pp. 59–68. Baltimore (2005)

2. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM 13(7), 422–426 (1970)

3. Boyd, J., Randall, S., Ferrante, A.: Application of privacy-preserving techniques
in operational record linkage centres. In: Medical Data Privacy Handbook (2015)

4. Christen, P.: Data Matching – Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer (2012)

5. Clark, D.E.: Practical introduction to record linkage for injury research. Injury
Prevention 10, 186–191 (2004)

6. Durham, E.A., Kantarcioglu, M., Xue, Y., Toth, C., Kuzu, M., Malin, B.: Compos-
ite bloom filters for secure record linkage. IEEE TKDE 26(12), 2956–2968 (2014)



7. Hall, R., Fienberg, S.: Privacy-preserving record linkage. In: Privacy in Statistical
Databases, Springer LNCS 6344. pp. 269–283. Corfu, Greece (2010)

8. Joly, A., Buisson, O.: Random maximum margin hashing. In: IEEE CVPR. pp.
873–880. Colorado Springs (2011)

9. Karapiperis, D., Verykios, V.S.: A fast and efficient hamming lsh-based scheme for
accurate linkage. Springer KAIS 49(3), 1–24 (2016)

10. Köpcke, H., Rahm, E.: Frameworks for entity matching: A comparison. Data and
Knowledge Engineering 69(2), 197–210 (2010)

11. Kuzu, M., Kantarcioglu, M., Durham, E., Malin, B.: A constraint satisfaction
cryptanalysis of Bloom filters in private record linkage. In: PET. pp. 226–245 (2011)

12. Niedermeyer, F., Steinmetzer, S., Kroll, M., Schnell, R.: Cryptanalysis of basic
Bloom filters used for privacy preserving record linkage. JPC 6(2) (2014)

13. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al.: Scikit-learn: Machine learning in Python. JMLR 12, 2825–2830 (2011)

14. Ranbaduge, T., Vatsalan, D., Christen, P., Verykios, V.: Hashing-based distributed
multi-party blocking for privacy-preserving record linkage. In: PAKDD (2016)

15. Randall, S., Ferrante, A., Boyd, J., Bauer, J., Semmens, J.: Privacy-preserving
record linkage on large real world datasets. JBI 50, 205–212 (2014)

16. Schnell, R., Bachteler, T., Reiher, J.: Privacy-preserving record linkage using
Bloom filters. BMC Med Inform Decis Mak 9(1) (2009)

17. Schnell, R., Borgs, C.: Randomized response and balanced bloom filters for privacy
preserving record linkage. In: ICDMW. Barcelona (2016)

18. Vatsalan, D., Christen, P.: Sorted nearest neighborhood clustering for efficient
private blocking. In: PAKDD. pp. 341–352. Gold Coast, Australia (2013)

19. Vatsalan, D., Christen, P.: Scalable privacy-preserving record linkage for multiple
databases. In: ACM CIKM. Shanghai (2014)

20. Vatsalan, D., Christen, P.: Privacy-preserving matching of similar patients. JBI 59,
285–298 (2016)

21. Vatsalan, D., Christen, P., O’Keefe, C.M., Verykios, V.S.: An evaluation framework
for privacy-preserving record linkage. JPC 6(1) (2014)

22. Vatsalan, D., Christen, P., Verykios, V.S.: A taxonomy of privacy-preserving record
linkage techniques. Elesevier IS 38(6), 946–969 (2013)



0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m

b
er

 o
f 
1
-b

it
s

(most frequent value for "first name" only)

BF (len=1000, 53 hash funct)
RPH (2000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m

b
er

 o
f 
1
-b

it
s

(most frequent value for "first name" only)

BF (len=1000, 31 hash funct)
RPH (2000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name, city

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m
b
er
 o
f 
1
-b
it
s

(most frequent value for "first name" only)

BF (len=1000, 24 hash funct)
RPH (2000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name, city, zip code

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m
b
er
 o
f 
1
-b
it
s

(5 most frequent values for "first name")

BF (len=1000, 50 hash funct)
RPH (2000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m

b
er

 o
f 
1
-b

it
s

(5 most frequent values for "first name")

BF (len=1000, 30 hash funct)
RPH (2000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name, city

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m
b
er
 o
f 
1
-b
it
s

(5 most frequent values for "first name")

BF (len=1000, 24 hash funct)
RPH (2000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name, city, zip code

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m

b
er

 o
f 
1
-b

it
s

(20 most frequent values for "first name")

BF (len=1000, 49 hash funct)
RPH (2000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m

b
er

 o
f 
1
-b

it
s

(20 most frequent values for "first name")

BF (len=1000, 30 hash funct)
RPH (2000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name, city

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m
b
er
 o
f 
1
-b
it
s

(20 most frequent values for "first name")

BF (len=1000, 24 hash funct)
RPH (2000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name, city, zip code

Fig. 3. Comment Peter: I don’t think we need to keep the plots for both 5 and 20, they
are too similar, so best only to keep 20 I think The distribution in descending order
of the percentage of 1-bits at each position in each vector for randomly generated 1/0
vectors (the ideal baseline in green), random projection hashing (blue), and Bloom
filters (red). A sub-set of 100,000 records from the NCVR data set was used for these
experiments, where for the ‘First name’ attribute only the one (top row) or five (bottom
row) most frequent values were used. Because the blue distribution is very similar to the
green baseline, a frequency-based crypt-analysis attack would reveals little about the
content of the values encoded in the corresponding binary vectors. In contrast, the more
skewed distributions for Bloom filters could more likely permit the re-identification for
certain q-grams, and thus attribute values, for certain bit positions.



0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m

b
er

 o
f 
1
-b

it
s

(most frequent value for "first name" only)

BF (len=1000, 53 hash funct)
RPH (1000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m

b
er

 o
f 
1
-b

it
s

(most frequent value for "first name" only)

BF (len=1000, 31 hash funct)
RPH (1000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name, city

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m
b
er
 o
f 
1
-b
it
s

(most frequent value for "first name" only)

BF (len=1000, 24 hash funct)
RPH (1000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name, city, zip code

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m
b
er
 o
f 
1
-b
it
s

(5 most frequent values for "first name")

BF (len=1000, 50 hash funct)
RPH (1000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m

b
er

 o
f 
1
-b

it
s

(5 most frequent values for "first name")

BF (len=1000, 30 hash funct)
RPH (1000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name, city

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m
b
er
 o
f 
1
-b
it
s

(5 most frequent values for "first name")

BF (len=1000, 24 hash funct)
RPH (1000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name, city, zip code

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m

b
er

 o
f 
1
-b

it
s

(20 most frequent values for "first name")

BF (len=1000, 49 hash funct)
RPH (1000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m

b
er

 o
f 
1
-b

it
s

(20 most frequent values for "first name")

BF (len=1000, 30 hash funct)
RPH (1000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name, city

0 200 400 600 800 1000
Bit positions sorted by number of 1-bits

0

20K

40K

60K

80K

100K

N
u
m
b
er
 o
f 
1
-b
it
s

(20 most frequent values for "first name")

BF (len=1000, 24 hash funct)
RPH (1000 SVMs, 50 samples)
UR (50% random 1-bits)

First name, last name, city, zip code

Fig. 4. Using concatenation of SVMs instead of XORing.


	High Quality and Secure Privacy-Preserving  Record Linkage using Random Hashing

