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Abstract

Detecting changes in data-streams is an impor-

tant part of enhancing learning quality in dy-

namic environments. We devise a procedure for

detecting concept drifts in data-streams that re-

lies on analyzing the empirical loss of learning

algorithms. Our method is based on obtaining

statistics from the loss distribution by reusing the

data multiple times via resampling. We present

theoretical guarantees for the proposed proce-

dure based on the stability of the underlying

learning algorithms. Experimental results show

that the method has high recall and precision, and

performs well in the presence of noise.

1. Introduction

Effective techniques for analyzing streaming data are re-

quired in many big data applications and pose new machine

learning challenges. One major challenge arises when the

underlying source generating the data is not stationary, in

which case the concept to be learned changes through time.

For example, in prediction tasks, such as fraud detection or

user preference prediction, the performance of a static pre-

dictor that was previously trained, is bound to degrade over

time, as the nature of fraudulent attacks, or personal prefer-

ences is evolving. A reliable detection of such changes can

be used to maintain high performance and meaningful anal-

yses of data streams. This work is concerned with detection

of change in the context of a prediction problem, and pro-

poses a detection scheme for online identification of times

along the stream in which such changes have occurred.

Changes of the prediction task can be caused by changes

in the input data, the target concept, or both. One option is

to try detecting the change in the data generating distribu-

tion, a renowned problem in statistics termed change-point
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detection; see Section 1.1 for further discussion. However,

while a drift in the generating distribution may result in

a change in the learning problem, this is not a necessity.

For example, if a sensor is damaged at some point, yet

these changes affect features with a low correlation with

the label, or the changes do not affect the decision bound-

ary of the predictor, they should be ignored. Detecting

these types of irrelevant changes, and consequently initi-

ating a new training phase, may degrade the quality of the

resulting predictor by unnecessarily shrinking the training

set size. Moreover, detection of any type of distributional

change is a challenging task, especially in high dimensional

data. Therefore, when high prediction quality is the goal,

we adopt the principle of Vapnik (1998) and propose to

solve the problem directly by monitoring the drift in the

prediction loss of the underlying predictor rather than the

intermediate problem of change-point detection.

The main idea is to consider concept change only with re-

spect to some hypothesis class. This approach enjoys no

false detection of changes that are irrelevant to the end task.

Using this approach, the sample and computation complex-

ity are conveniently controlled by the choice of the hypoth-

esis class. As an example consider the task of predicting

the rating of a stream of book reviews of a user, where the

genre of the books being reviewed changes with time, and

the hypothesis class is restricted to linear predictors with

constrained L1 norm. For simplicity of exposition consider

using a very small dictionary instead of the L1 norm con-

straint. If the dictionary is {bad, good, informative}, the

change from ‘fantasy’ to ‘educational’ books will be easily

detected, due to the correlation of the word “informative”

with a good educational book. If the dictionary is {bad,

good, kindle}, we won’t detect the change of the user to

kindle, as kindle is not correlated with the sentiment. How-

ever, if we inspect the distributional change in the input we

may detect an irrelevant change.

The idea of focusing on the change in the target concept

through the error of the underlying predictor instead of fo-

cusing on changes in the stream distribution has been pre-

viously proposed only in the context of classification; see
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Section 1.1 for details. Yet, a general-purpose model with

theoretical guaranties for any prediction task, be it classifi-

cation, regression, clustering etc., has not yet been consid-

ered, and is the focus of this work.

In this paper, we term changes in the prediction loss con-

cept drifts and focus on their detection in streaming data.

Our definition of a concept drift (see Definition 2) slightly

deviates from the standard definition, which associates

drifts only with changes in the target concept (Tsymbal,

2004), while our terminology links a concept drift also to

the learning algorithm and its function class.

Our main contribution is a general approach for detection

of change in a prediction problem for different types of

concept drifts. Our detection mechanism relies on the idea

of random permutations of the examples, which generate

multiple train-test splits from the stream. The proposed ap-

proach is invariant to the learning problem, specifically to

the loss function and to the learning algorithm. We analyze

the detection quality of the proposed scheme for different

types of changes in the prediction problem, from the sim-

plest scenario of an abrupt change to that of a slow noisy

gradual change. We also show empirically the success of

the permutation-based detection.

1.1. Related Work

A closely related problem to concept drift detection, pur-

sued in this paper, is that of change-point detection; the

goal of the first is to detect changes that affect the mapping

from the input space to the target concept, while the goal

of the latter is to detect changes in the generating distri-

butions of the time-series. A great deal of work has been

invested in methods for change-point detection; some ref-

erence books include (Basseville & Nikiforov, 1993; Chen

& Gupta, 2012), for parametric methods, and (Brodsky &

Darkhovsky, 1993), for non-parametric methods.

Change-point detection is associated with homogeneity

testing, in which, given two samples, one has to deter-

mine whether they were generated by the same distribu-

tion. Many attempts have been made to extend classical

statistical tests for homogeneity for detection of change in

time-series (Kifer et al., 2004; Lung-Yut-Fong et al., 2011).

Other methods are based on a predefined parametric model,

such as the generating distribution (Basseville & Nikiforov,

1993; Gustafsson, 1996; Lavielle & Teyssiere, 2006), au-

toregressive models (Takeuchi & Yamanishi, 2006), and

state-space models (Moskvina & Zhigljavsky, 2003; Kawa-

hara et al., 2007). Their success depends on the compat-

ibility of the preassigned model. Nonparametric alterna-

tives often rely on the estimation of density functions (Dasu

et al., 2006; Sebastião & Gama, 2007), which tends to be

problematic in high dimensional problems. A different di-

rection is to directly estimate the density ratio (Kawahara

& Sugiyama, 2012; Liu et al., 2013), while Desobry et al.

(2005) propose to segment the series using one-class sup-

port vector machine. Vovk et al. (2003) pursue a related

problem: exchangeability of the samples in the stream1.

The above list is merely a small sample of the numerous

attempts at the challenging change-point detection prob-

lem. We suggest to evade its complexity when the goal

is to detect concept drift. Existing approaches for detec-

tion of a concept-drift are commonly based on some heuris-

tic that utilizes the error rate, and draw upon intuition de-

rived from learning theory. For example, in Gama et al.

(2004), a change is detected when the error trend increases

as the size of the stream grows. Another detection method

(Baena-Garcı́a et al., 2006), detects a concept drift once

the distance between the classification errors decreases. A

third error-based method, compares the accuracy on a re-

cent window with the overall accuracy excluding the recent

window by applying a test of equal proportion (Nishida &

Yamauchi, 2007). Other methods search directly for the

“optimal” window (Klinkenberg & Joachims, 2000; Bifet

& Gavalda, 2007). For example, Klinkenberg & Joachims

search for a window that minimizes the approximate error

of an SVM classifier. The advantage of most error-based

methods is their simple employment as wrappers to any

classification algorithm. A limitation of known detection

schemes is that they only treat classification settings un-

der the zero-one loss. Theoretical guaranties for existing

schemes are also scarce.

Other approaches for learning in the presence of concept

drift don’t apply detection but adapt to the change or em-

ploy an ensemble of learners. Adaptation methods retrain

the learner after a fixed window size, or re-weigh instances

by appearance recency (Klinkenberg, 2003; 2004). The

choice of a proper window size balances a tradeoff be-

tween adaptation speed and generalization. Some adapta-

tion methods are tailored to a specific learning algorithm,

such as decision trees, and modify elements of the model

when drift is suspected by some heuristic strategy (Black &

Hickey, 1999; Hulten et al., 2001). In ensemble methods,

a weighted voting scheme of multiple learners, trained on

different windows over the stream is applied (Street & Kim,

2001; Stanley, 2003; Wang et al., 2003; Kolter & Maloof,

2007; Masud et al., 2009). There is no explicit detection of

the drift, but initiation of new classifiers.

2. Detection Scheme

A prediction problem is defined on an input space X , an

output space Y , and consists of finding a predictor h :
X → Y , from some fixed function class H. During the

1This work has a similar spirit to our approach as it also em-
ploys permutations, however, the hypotheses tested are distinct.
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Figure 1. Different types of concept drifts.

detection process we observe a sub-sequence Zn
.
= Zn

1 =
{z1, z2, ..., zn} of independent observations emitted from

a stochastic process called a stream, where each observa-

tion, zt ∈ Z = X × Y, is generated by some distri-

bution Dt over Z . Under this definition, even within a

single concept, the distribution generating different exam-

ples may vary. The risk of h ∈ H with respect to Dt is

RDt
(h) = Ez∼Dt

[ℓ(h, z)] , where ℓ(h, z) : Y×Y → [0, 1]
is a given bounded loss function. We denote the average

risk over an index set I , not necessarily an ordinal one, by

RI(h) = 1
|I|

∑

t∈I RDt
(h), and its empirical estimate by

R̂I(h) =
1
|I|

∑

t∈I ℓ(h, zt).

We would like to detect different types of concept changes.

In the following, we formulate different kinds of concept

changes, from a sharp abrupt change, to a more realistic

noisy change, and finally, a slowly evolving noisy gradual

change. For each type of change, we provide a suitable de-

tection algorithm and a corresponding statistical guaranty.

The presentation begins with the simplest and progresses

to the most difficult one. Note that the algorithm for noisy

gradual change also detects simpler drift types, and there-

fore may be applied as an all-purpose detection scheme.

We follow a hypothesis testing paradigm. Our null hypoth-

esis H0 is of equality or proximity of the average true risk

on sequential training and test segments. The alternative

H1 asserts that there is a substantial difference between the

two. Variations of this hypothesis, which are suited to dif-

ferent types of concept changes, are presented below.

2.1. Abrupt (noisy) change

The first, and most simplistic concept change is an abrupt

change, where we assume that within each concept the risk

is constant, and between the concepts, due to the concept

switch, there is a change in the risk’s value. The model

includes a parameter ∆ ≥ 0 that defines the rate of change

to be tested. The threshold ∆ serves as a sensitivity valve,

which provides the means to tradeoff small changes in the

concept with a growing training size. The top image in

Figure 1a shows an abrupt change, while the bottom image

presents a deviation that is under the threshold.

In the first step of our basic detection scheme the ob-

served sub-sequence Zn is divided into a training window

Sord = Zk
1 , 1 < k < n, and a test window S′

ord = Zn
k+1.

If a change is not detected, the test window is added to the

training window and a new test window is introduced. De-

tection is done by comparing the loss on the test window

with the loss of multiple test sets of the same size obtained

by random shuffling of the examples. This idea is formu-

lated in Algorithm 1. The shuffled train-test partitions of

the data are denoted by (S, S′), such that S consists of k
elements of Zn, and S′ is Zn \ S. The predictor AS ∈ H
is obtained by training algorithm A on a set S. We denote

by f
.
= ASord

the predictor obtained when A is trained on

the ordered training set.

In each iteration of Algorithm 1 we compare the risk on

the ordered train-test split, R̂ord = R̂S′

ord
(ASord

), with

the permutation loss R̂perm = ES∼Un
[R̂S′(AS)], where

Un denotes the uniform distribution over all possible
(

n
k

)

training sets of size k from the sample Zn. The permuta-

tion loss may be estimated over P ≤
(

n
k

)

random parti-

tions. The comparison between the losses obtained on the

ordered split and the shuffled splits is done by an hypoth-

esis test, denoted by “TEST” in Algorithm 1. The TEST

may be done by thresholding the difference between the

losses by applying the bound provided next in Theorem 3,

or by applying a permutation test detailed in Section 3.

The intuition behind this scheme is that if no concept

change has occurred, the prediction on the ordered split

should not deviate too much from that of the shuffled splits,

especially if the learning algorithm has algorithmic stabil-

ity. An advantage of using shuffled train-test splits over

other error based schemes, as in (Gama et al., 2004), is that

the training and test sets are disjoint. Therefore, the test

error is a valid estimation of the risk.2 In addition, by using

2In other methods, the online error is computed, in which case
the test errors are no longer independent, thus the classification

musta_000
Highlight

musta_000
Highlight

musta_000
Highlight

musta_000
Highlight

musta_000
Highlight

musta_000
Highlight



Concept Drift Detection Through Resampling

multiple train-test splits we gain a good estimation of the

error under the null hypothesis, as well as valuable infor-

mation regarding its variation.

Note that the model presented in this paper assumes tempo-

ral independence of the samples. In cases of dependency,

means to maintain exchangeability of the samples, such as

block-wise permutations along with removing the initial

part of each block, may be applied.

A generalization of abrupt change is noisy abrupt change,

where within each concept the risk may vary up to some

rate. These variations are common in most real-life sce-

narios, where the process generating the stream has small

changes, which affect the risk but should be disregarded.

We define these permitted variations as follows.

Definition 1 (η-permitted variations). A stream seg-

ment [t1, t2] is said to have η-permitted variations,

for some η ≥ 0, with respect to h ∈ H, if

maxi,j∈[t1,t2]

∣

∣RDi
(h)−RDj

(h)
∣

∣ ≤ η.

Figure 1b illustrates an η-permitted variation and a noisy

abrupt change. A concept change is defined by:

Definition 2 (Concept change w.r.t. h ∈ H). Let I, J be

two sequential stream segments with η-permitted variations

w.r.t. h. There is a concept change of size ∆ > η between

I and J if |RJ(h)−RI(h)| ≥ ∆.

The null and alternative hypotheses for a (noisy) abrupt

change are defined as follows. Let I = [1, k] and J =
[k + 1, n] define the ranges of two consecutive stream seg-

ments with η-permitted variations, corresponding to the

training and test set windows. Then,

H0 : |RI(f)−RJ(f)| ≤ ∆, (1)

H1 : |RI(f)−RJ(f)| ≥ ∆+ γ(η).

The function γ(η) ≥ 0 depends on the permitted variation

and other elements of the algorithm (see Theorem 3 below

for further details). Notice that the hypotheses are parame-

terized by the prediction function f , which is trained on the

training window I.

Our analysis relies on algorithmic stability (Bousquet &

Elisseeff, 2002), which is reviewed in the supplementary

material. The following theorem bounds the difference be-

tween the risks under the null and alternative hypotheses.

The proof is provided in the supplementary material. The

slack γ quantifies an area where a change cannot be de-

tected, as defined in (1); it shrinks as the algorithm is more

stable and the training and test sets are larger.

Theorem 3 (Detection of (noisy) abrupt change). Define

H0 andH1 as in (1). For an algorithm with βn = O( 1n ), a

slack γ =
12npβn(1−p)+2

√
2 log(4/δ)/np+2η

(1−p)(1+2p) , where p = |J|
n ,

error is not a random variable of a Bernoulli process.

Algorithm 1: Concept Drift Detection Scheme

Input: Algorithm A, window size m, number of

permutations P , ∆, significance rate δ.

Output: A set of change indices D.

Initialization: t1 ← 1, k ← m, D ← ∅

while not end of stream do

Sord ← Zk
t1 , S′

ord ← Zk+m
k+1

if detect(A,Sord, S
′
ord, P,∆, δ) is True then

t1 ← k, D ← D ∪ {k}.
k ← k +m

return D
Procedure detect(A,Sord, S

′
ord, P,∆, δ)

for i← 1 to P do

(Si, S
′

i)← random split of Sord ∪ S′
ord

return TEST(R̂ord, {R̂S
′

i
(ASi

)}Pi=1,∆, δ)

and any δ ∈ (0, 1), we have that underH0, with probability

of at least 1− δ,
∣

∣

∣
R̂ord − R̂perm

∣

∣

∣
≤ 6npβn(1−p)+

√

2 log(4/δ)/np

+∆(1− p)(1 + 2p) + η.

Under H1, the inverse inequality holds with probability of

at least 1− δ.

Theorem 3 states a threshold which differentiates between

the two hypotheses with high probability, and may be used

for the TEST routine in Algorithm 1. The role of each ele-

ment in the bound is as follows:

1. Test window size p = |J|
n : the larger the window is the

better concentration of the empirical risk around the risk

and consequently, a tighter bound is obtained. In practice,

the window size corresponds to the maximum detection de-

lay and therefore one should choose it as large as possible

while considering the tolerance to detection delay.

2. The significance rate δ bounds the miss detection and

false detection rates, usually set in the range 0.01− 0.05.
3. The hyperparameter ∆ denotes the rate of change one

wishes to ignore. The output of the test for different values

of ∆ may be computed after training the predictors once,

therefore, detection as a function of ∆ can be given instead

of a single binary value with no further computational cost.

4. The stability rate βn = O( 1n ) of the algorithm con-

trols the variability of the loss. For a stable algorithm

npβn(1−p) → 0 as n→∞.3

5. The rate η bounds the permitted variations of the risk

within an interval, and can be empirically estimated in ad-

vance. As can be expected, in the simplified scenario of an

abrupt change (η = 0), the bound is tighter.

3Examples of stable algorithms are k-Nearest Neighbors, soft
margin SVM, SVM regression (SVR), and Regularized Least
Squares (Bousquet & Elisseeff, 2002).
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2.2. Gradual drift

Another concept drift type is a gradual drift. In many real

life problems, the change between two concepts happens

gradually. For example, in fraud detection, the characteris-

tics of fraudulent actions may have a slow transition phase.

Gradual drifts may be modeled by a mixing stage, in which

an increasing weight is given to the next concept and a de-

creasing one to the prior concept.

We treat two cases of gradual drift: one which is faster,

where the change length is within the test window, and

another, corresponding to a gradual drift evolving very

slowly; see Figure 1c for an illustration. In the first case,

there is sufficient difference between the average risk in

the test window and the previous concept, thus, the abrupt

change algorithm may be used. In the second case, the drift

is slower, and therefore, the difference between the risks

may be insufficient to cross the threshold. When the drift

is slow, it is most challenging to detect, however, when it

is not detected, it can slowly degrade the quality of the pre-

dictor. To treat this drift type we provide a lookahead pro-

cedure presented in Algorithm 2. In this procedure, if the

hypothesis test determines that there may be a change, we

retain the same training window and move to test the next

test window. This process is continued until a drift is de-

tected, the test determines a false-alarm, or the maximum

number of lookahead iterations have been reached.

We define the null and alternative hypotheses for detect-

ing slow gradual change as follows. The hypotheses are

directly defined for the noisy setting, so all stream seg-

ments have η-permitted variations w.r.t. f (Definition 1).

Let m be the size of the test window, let I = [1, k] be the

training window and let Jq = [k+(q−1)m+1, k+qm], for

q = 1, . . . ,M, be the ranges of M test stream segments.

The hypotheses at the M ′ ≤M lookahead iteration are:

H0 : ∀q=1 . . .M ′
∣

∣RI(f)−RJq
(f)

∣

∣ ≤ ∆ (2)

H1 : ∀q=1 . . .M ′−1
∣

∣RI(f)−RJq
(f)

∣

∣ ≤ ∆

and
∣

∣RI(f)−RJM′
(f)

∣

∣ ≥ ∆+γ(η).

Recall that Sord denotes the training set. Denote the qth test

set by S′
ord,q = {zt : t ∈ Jq}. Let R̂perm,q be the average

empirical risk obtained on permutations of [Sord, S
′
ord,q].

The following theorem bounds the miss detection and false

alarm rates of a gradual drift at iteration M ′ ≤M .

Theorem 4 (Detection of slow gradual change). DefineH0

and H1 as in (2). For an algorithm with βn = O( 1n ), a

slack γ=
12npβn(1−p)+2

√
2 log(4M ′/δ)/np+2η

(1−p)(1+2p) , where p= m
n ,

we have that for any δ ∈ (0, 1) and

T = 6npβn(1−p)+
√

2 log(4M ′/δ)/np+∆(1−p)(1+2p)+η,

underH0, with probability of at least 1−δ,

∀q = 1, ...,M ′
∣

∣

∣
R̂S′

ord,q
(f)−R̂perm,q

∣

∣

∣
≤ T.

Algorithm 2: Slow Gradual Drift Detection Scheme.

See Algorithm 1 for detect procedure.

Input: Algorithm A, window size m, P permutations,

maximal lookahead iterations M , ∆, warning and

detection significance rates: δw, δd.

Output: A set of change indices D.

Initialization: t1 ← 1, k ← m, D ← ∅

while not end of stream do

exit← False, q ← 1
while exit is False and q ≤M do

Sord ← Zk
t1 , S

′
ord ← Zk+qm

k+(q−1)m+1

if detect(A,Sord, S
′
ord, P,∆, δd) is True

then

t1 ← k + 1, k ← k +m, D ← D ∪ {k}
exit← True

else if detect(A,Sord, S
′
ord, P,∆, δw) is

False then
k ← k +m, exit← True

q ← q + 1
return D

UnderH1, with probability of at least 1−δ,

max
q=1...M ′−1

∣

∣

∣
R̂S′

ord,q
(f)−R̂perm,q

∣

∣

∣
≤ T,

and
∣

∣

∣
R̂S′

ord,M′
(f)−R̂perm,M ′

∣

∣

∣
≥ T.

The proof of the theorem relies on the bounds in Theorem

3 and the union bound.

3. Test Procedure

Using Theorems 3 and 4 themselves as testing procedures,

with type-1 and type-2 error guarantees provided by the

bounds, may result in conservative tests, as the bounds are

based on large deviations results. In this section we pro-

pose another hypothesis testing procedure for the “TEST”

module in Algorithms 1 and 2. The theorems imply that

variability of the loss, encapsulated in the error stability of

the algorithm, should be taken into account in the test pro-

cedure. In this section, we present a different perspective

on these variations using permutation tests (Good, 2005).

Permutation tests are a well known methodology in statis-

tics to obtain most powerful statistical procedures, and will

provide tighter thresholds for the testing procedure.

Our test statistic is R̂ord, the loss over the ordered train-

test split. To test if a change has taken place, we use a

permutation test. The heart of the method is that under the

null hypothesis the samples are exchangeable and therefore

may be randomly shuffled. According to the null hypothe-

sis, the average risk before and after the tested change in-

dex k are ∆-close. Under this hypothesis, the samples are
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Algorithm 3: TEST(R̂ord,
{

R̂S′

i
(ASi

)
}P

i=1
,∆, δ)

Procedure for detection scheme

Input: R̂ord,
{

R̂S′

i
(ASi

)
}P

i=1
, ∆, significance rate δ

if
1+

∑P
i=1 1[R̂ord−R̂S′

i
(ASi

)≤∆]

P+1 ≤ δ then
detection← True

else detection← False

return detection

approximately exchangeable. Specifically, the more stable

the algorithm is and the smaller ∆ is, the more the exam-

ples are exchangeable. As the size of the training set grows,

which emanates when a change is not detected, stability of

the learner strengthens and ensures exchangeability.

By shuffling the data multiple times we can obtain an esti-

mate of the non-parametric distribution of the test statistic

R̂ord under the null hypothesis. Recall that R̂S′

i
(ASi

) is

the empirical error obtained for the ith shuffled split. If

there was a concept drift at time index k, we expect R̂ord

to be larger than if H0 was true. The larger value we

observe, the stronger is the evidence against H0. There-

fore, the achieved significance level of the procedure is

PSi,S′

i

[

R̂ord − R̂S′

i
(ASi

) ≤ ∆
∣

∣

∣
H0

]

. Algorithm 3 defines

this testing procedure. Optimally, to get the exact distribu-

tion of the statistic, we would need to examine all possible

train-test shuffles, but in practice much less are sufficient.

Also note that the train-test procedure of the multiple splits

can be straightforwardly parallelized.

In the gradual drift detection scheme, at iteration M ′, M ′

base hypotheses are combined, and therefore, there is a

need to correct for multiple comparisons. In Theorem 4,

this is done by the union bound, which is equivalent to the

Bonferroni correction in the statistical literature. In the per-

mutation test, we use the Benjamini-Hochberg correction

(Benjamini & Hochberg, 1995), which is less conservative.

4. Experiments

We compare the performance of our detection algorithm

in classification and regression settings with other concept-

drift detection methods, and baseline methods. We use syn-

thetic data and drifts synthesized in real data, thus control-

ling drift points and allowing precise performance analysis.

Detection Algorithms: We denote by PERM and grad-

PERM the application of Algorithm 1 and 2, respectively,

applied with the testing procedure in Algorithm 3. In clas-

sification problems, we compare PERM’s detection to three

known methods for concept drift detection: DDM (Gama

et al., 2004), early drift detection (EDDM) (Baena-Garcı́a

et al., 2006), and STEPD (Nishida & Yamauchi, 2007);

see Section 1.1. We also compare the performance with

learners with a fixed memory window (Window #, where

# is the window size), a full memory that trains on all

prior examples (No detection), and an “optimal” detector in

hindsight that detects a drift at its onset (Exact detection).

We set the sensitivity level of PERM and grad-PERM to

δ = 0.01,∆ = 0, the warning and detection thresholds

of STEPD to w = 0.05, d = 0.01, and the parameters of

EDDM to α = 0.95 and β = 0.90.4

Performance Measures: Performance comparisons are

done by evaluating detection quality and error rate. A True

Positive (TP) detection is defined as a detection within a

fixed delay range after the precise concept change time.

This range is taken to be the size of the window in PERM

and STEPD. A False Negative (FN) is defined as missing a

detection within the delay range, and a False Positive (FP),

as a detection outside this range or an extra detection in

the range. The detection quality is measured both by the

Recall =TP/(TP+FN) and Precision =TP/(TP+FP )
of the detector. The prediction on a test example is done by

a predictor trained on the previous examples.

4.1. Synthetic Data

In the following synthetic classification tasks the base al-

gorithm was K-Nearest Neighbors (k = 3), each stream

was randomly repeated 100 times, and P = 100 reshuf-

fling splits were used in PERM. The first stream, denoted

“Mixed”, represents abrupt drift with label noise. The fea-

tures are two boolean (v, w) and two numeric (x, y) at-

tributes; the examples are labeled as positive if at least two

conditions are met: v, w = 0, y < 0.5 + 0.3 sin(3πx).
The classification is reversed at each concept change. The

second dataset, denoted “Circles”, presents a more chal-

lenging concept drift with label noise. We sample data

uniformly from the unit square, and label an example as

positive/negative if it resides inside/outside a moving and

dynamically changing circle. We set the initial center and

direction of movement at random, and at each concept drift

gradually move the center and change the radius.5 The

third, most challenging synthetic dataset, is the rotating

“Checkerboard”(Elwell & Polikar, 2011), where the exam-

ples are sampled uniformly from the unit square and the

labels are set by a checkerboard with 0.2 tile width. At

each concept drift, the checkerboard is rotated in an angle

of π/20 radians.

4These hyper parameters were not optimized. The parameters
δ and d correspond to a P-value and are thus set to a standard
significance value. The parameters used for DDM and EDDM
were taken as recommended by their authors.

5When the radius is maximal (0.45), the circle shrinks (until it
reaches 0.15) and its direction changes.
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Table 1. Checkerboard dataset - gradual drift (100 repetitions).

Algorithm detection delay #runs/100
no detection

PERM 241.0±113.2 0

grad-PERM 137.2±115.7 0

DDM 569.6±54.7 0

EDDM 494.0±77.7 4

STEPD 455.3±106.8 15

The results on the different streams, each consisting of 10

drifts and concept lengths of 1000 samples, are presented

in Figure 2: rows correspond to datasets and columns to

performance measures. Both recall and precision of the

PERM algorithm are higher than the other methods. The

performance difference of the error-noise curves is smaller

on the Mixed and Circle datasets. These two problems are

not hard, and therefore, while DDM and EDDM encounter

many miss detections, their error rate remains low. In the

checkerboard dataset, the performance of PERM improves

as the window range grows. This can be anticipated be-

cause as the test size grows the variations of the error de-

creases, which reduces the false detection rate.

Our last synthetic drift was generated using the Checker-

board dataset. In this experiment, a single gradual drift

is initiated by increasing the label noise at time-indices

[1400, 1600, 1800, 2000] with corresponding noise-rates

[0.05, 0.1, 0.2, 0.3]. The growing label noise serves as a

gradual drift which slowly evolves. The window size in

PERM, grad-PERM and STEPD was 100 samples. Table 1

shows that grad-PERM obtained the best detection rate.

4.2. User Preference Prediction

We compare detection performance on a user preference

prediction task defined using the 20-news groups text

dataset6, consisting of 18, 846 documents and over 75, 000
features. We apply the TF-IDF weighting scheme on the

documents and partition the 20 groups to six subgroups ac-

cording to subject as presented in the repository. We define

two prediction problems: a binary classification problem

of identifying whether a user likes/dislikes the subject, and

a regression problem of rating user preference. In all our

experiments the time-series is generated by randomly re-

ordering all the documents. We use P = 500, and SVM

and SVR with linear kernel as the learning algorithms.7

We ran two experiments on the classification problem. In

the first, after 1000 documents (∼50 documents from each

newsgroup) a concept drift is activated, in which a random

6http://qwone.com/˜jason/20Newsgroups
7We used scikit-learn: Machine Learning in Python toolbox.

Cross-validation on a single random concept showed low sensi-
tivity to the choice of C on this dataset and therefore the default
value C = 1 was chosen.

Table 2. 20 Newsgroup - Binary classification (50 repetitions).

Detection of 10 drift points in a range of 100 samples after drift

onset. Detection error for exact windowing is .19±.01.
Algorithm Recall Precision Error

PERM 0.95±.06 0.92±.075 .19±.01
DDM 0.67±.18 0.24±.06 .21±.01

EDDM 0.70±.14 0.25±.08 .23±.02
STEPD 0.51±0.19 0.51±0.19 .21±.01

Window 500 - - .20±.01
Window 1000 - - .23±.02
No Detection - - .38±.04

Table 3. 20 Newsgroup - Binary classification with gradual drift

(100 repetitions).

Algorithm detection #runs/100 FA
delay no detection before drift

PERM 245±172 14 0.15±0.3
grad-PERM 169±160 5 0.16±0.3

DDM 321±140 42 0.75±0.7
EDDM 188±155 26 1.6±1.3
STEPD 358±199 62 0.6±0.5

third of the binary ratings are switched and the rest remain

as in the previous concept.8 In the second, we use the same

concepts but with a gradual drift: after 500 documents from

the first concept, sets of 100 documents are added with

mixing proportions [0.8|0.2, 0.6|0.4, 0.4|0.6, 0.2|0.8] from

the first and second concepts respectively. Another 500

documents from the second concept follow.

In the regression problem, the label is initiated randomly

to 1 − 10 and a concept drift is activated after 2000 doc-

uments. Two types of drifts are considered: (I) the label

of all six groups undergo a random walk step ±3, (II) four

groups randomly selected change rating of ±3. Scenario

(II) is more challenging as the drift is smaller. Performance

of PERM is compared only to that of “Window”, “No de-

tection”, and “Exact detection”, since DDM, EDDM and

STEPD are limited to zero-one classification problems.

The results are presented in Tables 2 to 4. The performance

of PERM for regular drift and grad-PERM for gradual drift,

are the highest in both classification and regression.

5. Discussion

We presented a resampling scheme for concept-drift detec-

tion with respect to the risk of a learning algorithm. One of

the advantages of the method is its applicability to any sta-

ble learning algorithm and any bounded loss function cho-

sen as the most suitable for the task at hand. For example,

weighted loss may be used in a data imbalance scenario.

8If at some point, a concept has all positive or all negative
labeling, the concept is reinitialized randomly.
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(b) Mixed: Precision-Noise
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(c) Mixed: Error-Noise
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(d) Circle: Recall-Noise
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(e) Circle: Precision-Noise
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(f) Circle: Error-Noise
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(g) Checkerboard:Recall-Range
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(h) Checkerboard:Precision-Range
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Figure 2. Synthetic datasets. Figures 2a to 2c - Mixed dataset with detection range of 50 samples. Figures 2d to 2f - Circle dataset with

detection range of 100 samples. A larger range was chosen to compensate for the class imbalance in this problem. Figures 2g to 2i -

Checkerboard dataset with different detection ranges.

Table 4. 20 Newsgroup-Regression (50 repetitions). Detection of

5 concept drifts, with detection range of 200 samples.
(a) Detection Rate of PERM

Recall Precision

(I) 0.93±.12 0.93±.10
(II) 0.87±.17 0.89±.11

(b) Error Rate. Exact detection: (I) 1.46±.16, (II) 1.48±.19.

PERM Window No
500|1000 Detection

(I) 1.50±.17 1.60±.17, 1.58±.13 2.30±.13
(II) 1.47±.19 1.59±.22, 1.50±.19 2.14±.21

Our detection algorithm outputs time indices of concept

changes that form windows of adaptive size, each compris-

ing of examples from a single concept. The detection times

may be used for initiating a new training phase, as done in

our experimental evaluation, but can also be used as a basis

for ensemble learners, by providing an informed choice of

the training windows for the ensemble’s members.

Our experiments show that the proposed scheme is more

robust to noise and has better precision and recall rates than

existing schemes. There is a bias-variance tradeoff in the

choice of window size in PERM. A larger window reduces

the variability which increases the accuracy of the test, but

causes a detection delay which may increase the error.

In future work we plan to implement an online setting for

the scheme, in which the learners of the reshuffled samples

are preserved and updated. While the current algorithm is

readily parallelized, this regime should enjoy a favorable

computation time.

Acknowledgments

This research was partially supported by the ISF under con-

tract 890015 and by the Intel Collaborative Research Insti-

tute for Computational Intelligence (ICRI-CI).

musta_000
Highlight

musta_000
Highlight



Concept Drift Detection Through Resampling

References
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