GraphMatching : An Unification of GraphGrep and Vi2 Algorithms

Outline

(1 - What Graph SubIsomorphism is.

- 2 - What GraphGrep is. How it works.
- 3-What VF2 Algorithm is.
∂ - The Need of a Benchmark.
© 5 - The Unification method and Results.
© 6 - Conclusions and Future works.

1.1 / 1.2 - Graphs SubIsomorphism (NP-complete problem)

GRAPH ISOMORPHISM

Two graphs are isomorphic if there is a one-to-one correspondence between their vertexes and there is an edge betweeen two vertexes of one graph if and only if there is and edge between the two corresponding vertexes in the other graph.

SUBGRAPH ISOMORPHISM

Like above but one graph is the subgraph of another graph.

GRAPHS SUBISOMORPHISM or MONOMORPHISM

Finding occurrences of a graph in another graph.

1.2 / 1.2 - Grephs SubIsomorphism (NP-complete problem)

Graph isomorphism

Subgraph isomorphism

MAPPING
(n1,m3)
(n2,m2)
(n3,m4)
(n4,m5)

Monomorphism

MAPPING
(n1,m3)
(n2,m2)
(n3,m4)
(n4,m5)
$\mathrm{n} 1, \ldots, \mathrm{n} 6, \mathrm{~m} 1, . ., \mathrm{m} 6$ not labels. No semantic attributes in general definition

2.1 / 2.9 - GraphGrep

- Nodes with label-node
- Edges are undirected and unlabeled

GraphGrep Algorithm

INPUT : Database of graphs, querygraph

- [PREPROCESSING] - Build the Database to represent the graphs as a sets of paths. (just once)
(1 - Filter the Database based on the submitted query to reduce the search space
(2 - Perform exact matching

$2.2 / 2.9$ - Sets of Paths

For each graph and for each node, find all paths that start at this node and have length one up to a constant value l_{p}

$$
\mathrm{lp}=4
$$

$$
\begin{aligned}
& \mathrm{A}=\{(1)\} \\
& \mathrm{AB}=\{(1,0),(1,2)\} \\
& \mathrm{AC}=\{(1,3)\} \\
& \mathrm{ABC}=\{(1,0,3),(1,2,3)\} \\
& \mathrm{ACB}=\{(1,3,0),(1,3,2)\} \\
& \mathrm{ABCA}=\{(1,0,3,1),(1,2,3,1)\} \\
& \mathrm{ABCB}=\{(1,2,3,0),(1,0,3,2)\} \\
& \mathrm{B}=\{(0),(2)\} \\
& \mathrm{BA}=\{(0,1),(2,1)\} \\
& \mathrm{BC}=\{(0,3),(2,3)\}
\end{aligned}
$$

2.3/2.9-Graphs fingerprint

Key	g_{1}	$\mathrm{~g}_{2}$	$\mathrm{~g}_{3}$
$\mathrm{~h}(\mathrm{CA})$	1	0	1
$\ldots \ldots$			
$\mathrm{~h}(\mathrm{ABCB})$	2	2	0

The keys of the hash table are the hash values of the label paths. Each row contains the number of id-paths associated with a key (hash value) in each graph.

2.4 / 2.9 - Glide: graph query languge

We need an interface to represent graphs.
Each node is presented only once.
It can be seen as a linear representation of a tree generated in a DFS

			a
			0
		a	b
			0
a	b	c	f
σ	0	0	0

Node
Edge
Path

Branches a/(h/c/)b/

2.5 / 2.9 - Glide: graph query languge

Cycle
c\%1/f/i\% $1 /$

Cycles
$\mathrm{a} \% 1 / \mathrm{h} / \mathrm{c} \% 1 \% / \mathrm{d} / \mathrm{i} \%{ }^{2}$
wildcards
1). $\quad a / . / c$
2) * $a / * / c /$
3) ? $\quad a / ? / c$
4) $+\quad a /+/ c$

$\mathrm{a} \% 1 /(. / * / \mathrm{b} /) . /$ c/d\%1/

2.6 / 2.9 - Parsing a query graph

Use small components of the query graph and of the database graphs to filter the database and to do the matching

$2.7 / 2.9$ - ifiltering

Key	Query
$h(C A)$	1
$\ldots \ldots$	
$h(A B C B)$	1

Key	g_{1}	g_{2}	g_{3}
$h(C A)$	1	0	1
$\ldots \ldots$			
$h(A B C B)$	2	2	0

2.8 / 2.9-Subgraph Matching

2.9/2.9 - Complexity

Building the Database (preprocessing)

- Linear in the size of the DB
) Linear in the number of the nodes in the graphs
- Polynomial in the valence of the nodes
- Exponential in the value of lp (small constant!)
$\mathrm{O}\left(\sum_{i}^{|\mathrm{D}|}\left(\mathrm{n}_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}^{\mathrm{p}}\right)\right)$ with m the maximum valence (degree)

Subgraph Matching

- Linear in the size of the database
- Exponential in $p \times l p$ with p the number of query graph patterns
- No exponential dependency on the data graph size
$\mathrm{O}\left(\sum_{i}^{|\mathrm{Df}|}\left(\left(\underline{n}_{i} \mathrm{~m}_{i}^{\mathrm{p}}\right)^{\mathrm{p}}\right)\right)$ with Df the size of DB after filtering and
$\underline{\mathrm{n}}$ the maximum number of nodes having tha same label
MEMORY cost is $\mathrm{O}\left(\sum_{1}^{|\mathrm{D}|}\left(I_{\mathrm{p}} \mathrm{n}_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}^{\mid \mathrm{p}}\right)\right)$

3.1 / 3.8 - Vr2 Graph Matching Algorithm

- Matching process is carried out by using a State Space Representation (SSR). A State represents a partial solution of the matching between 2 graphs and a transition between states corresponds to the addition of a new pair of matched nodes.
- A set of feasibility rules is introduced for pruning states corresponding to partial matching solutions not satisfying the required graph isomorphism

$3.2 / 3.8$ - SSR Approach

- Solutions to the matching problem could be obtained computing all the possible partial solutions and selecting the ones satisfying the wanted mapped type (Brute Force approach).
- In order to reduce the number of paths to be explored during the search, for each state on the path from s_{0} to a goal state, we impose that the corresponding partial solution verifies some coherence conditions, depending on the desired mapping type. States which don't satisfy a feasibility rule can be discarded from further expansions.

3.3 / 3.8 - The Matching Algorithm

```
INPUT:
OUTPUT:
BEGIN
    REPEAT
    FOREACH IN
    FOREACH IN
    ENDFOR
    ENDFOR
    UNTIL
    OR
END.
```

$C(s)$ is the local valid mapping.
$S(k)$ is the set of states computed at the k-th iteration, that is the states whose partial mapping invoves k nodes. At each iteration the algorithm determines all the coherent partial solutions that map $\mathrm{k}+1$ nodes

3.4 / 3.8 - The feasibilitity rules

Let us call feasibility function the function \mathbf{F} that express the f.r.
Note that \mathbf{F} is a function of s and the pair (n, m).

$$
Q(s)=\{(n, m) \Phi P(s) \mid F \text { holds }\}
$$

$F=F_{\text {syn }} \wedge F_{\text {sem }}, F_{\text {syn }}$ guarantees the syntactic coherence
The feasibility rules must be simultaneously verified to allow the insertion of the considered pair.

$$
F_{\text {syn }}=\text { Rcoherence } \wedge \text { Rprun1 } \wedge \text { Rprun2 }
$$

The semantic feasibility function $\mathrm{F}_{\text {sem }}$ is satisfied if the attributes of nodes and branches, corresponding in the found mapping, are equal

1 - iff for each node m ' connected to m in the partial mapping, the corresponding node n ' is connected to n
2 - iff the num of node connected to n that are in $T_{1}(s)$ is $\geq t o$ the num of node connected to m that are in $T_{2}(s)$
3 - iff the num of node connected to n that are neither in $C_{1}(s)$ nor in $T_{1}(s)$ is \geq to the num of node connected to m that are neither in $C_{2}(s)$ nor in $T_{2}(s)$

3.5 / 3.8 - Ixample coherence


```
C(s)={(n,m) & N xN N2 |n is mapped onto m in the current partial
solution}
C
```



```
T
P(s)= T(s) x T (s)
```


States:

$$
\begin{aligned}
& \mathrm{C}(\mathrm{~s})=\left\{\left(\mathrm{n}_{1}, \mathrm{~m}_{2}\right),\left(\mathrm{n}_{3}, \mathrm{~m}_{3}\right)\right\} \\
& \mathrm{C}_{1}(\mathrm{~s})=\left\{\mathrm{n}_{1}, \mathrm{n}_{3}\right\} \quad \mathrm{C}_{2}(\mathrm{~s})=\left\{\mathrm{m}_{2}, \mathrm{~m}_{3}\right\} \\
& \mathrm{T}_{1}(\mathrm{~s})=\left\{\mathrm{n}_{4}\right\} \quad \mathrm{T}_{2}(\mathrm{~s})=\left\{\mathrm{m}_{1}\right\} \\
& \mathrm{P}(\mathrm{~s})=\left\{\left(\mathrm{n}_{4}, \mathrm{~m}_{1}\right)\right\} \\
& \mathrm{Q}(\mathrm{~s})=\left\{\left(\mathrm{n}_{4}, \mathrm{~m}_{1}\right)\right\}
\end{aligned}
$$

State s:

$$
\begin{aligned}
& \mathrm{C}(\mathrm{~s})=\left\{\left(\mathrm{n}_{1}, \mathrm{~m}_{1}\right),\left(\mathrm{n}_{3}, \mathrm{~m}_{3}\right)\right\} \\
& \mathrm{C}_{1}(\mathrm{~s})=\left\{\mathrm{n}_{1}, \mathrm{n}_{3}\right\} \quad \mathrm{C}_{2}(\mathrm{~s})=\left\{\mathrm{m}_{1}, \mathrm{~m}_{3}\right\} \\
& \mathrm{T}_{1}(\mathrm{~s})=\left\{\mathrm{n}_{2}\right\} \quad \mathrm{T}_{2}(\mathrm{~s})=\left\{\mathrm{m}_{2}\right\} \\
& \mathrm{P}(\mathrm{~s})=\left\{\left(\mathrm{n}_{2}, \mathrm{~m}_{2}\right)\right\} \\
& \mathrm{Q}(\mathrm{~s})=\varnothing
\end{aligned}
$$

$3.6 / 3.8$ - Exsmple pruning

$$
\begin{aligned}
& \mathrm{C}(\mathrm{~s})=\left\{\mathrm{n}_{1}, \mathrm{~m}_{1}\right\} \quad \\
& \mathrm{C}_{1}(\mathrm{~s})=\left\{\mathrm{n}_{1}\right\} \quad \mathrm{C}_{2}(\mathrm{~s})=\left\{\mathrm{m}_{1}\right\} \\
& \mathrm{T}_{1}(\mathrm{~s})=\left\{\mathrm{n}_{3}\right\} \quad \mathrm{T}_{2}(\mathrm{~s})=\left\{\mathrm{m}_{4}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right\} \\
& \mathrm{P}(\mathrm{~s})=\left\{\left(\mathrm{n}_{3}, \mathrm{~m}_{4}\right),\left(\mathrm{n}_{3}, \mathrm{~m}_{2}\right),\left(\mathrm{n}_{3}, \mathrm{~m}_{3}\right)\right\}
\end{aligned}
$$

RULE 2

$\left(n_{3}, m_{3}\right) \quad 0 \geq 2$ PRUNING.

$$
C(s)=\left\{n_{1}, m_{1}\right\}
$$

$$
\mathrm{C}_{1}(\mathrm{~s})=\left\{\mathrm{n}_{1}\right\} \quad \mathrm{C}_{2}(\mathrm{~s})=\left\{\mathrm{m}_{1}\right\}
$$

$$
\mathrm{T}_{1}(\mathrm{~s})=\left\{\mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{5}\right\} \quad \mathrm{T}_{2}(\mathrm{~s})=\left\{\mathrm{m}_{4}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right\}
$$

RULE 3

$\left(\mathrm{n}_{2}, \mathrm{~m}_{2}\right) \quad 1 \geq 2$ PRUNING.

1 - iff for each node m ' connected to m in the partial mapping, the corresponding node n ' is connected to n
2 - iff the num of node connected to n that are in $T_{1}(s)$ is \geq to the num of node connected to m that are in $T_{2}(s)$
3 - iff the num of node connected to n that are neither in $C_{1}(s)$ nor in $T_{1}(s)$ is \geq to the num of node connected to m that are neither in $C_{2}(s)$ nor in $T_{2}(s)$

$3.7 / 3.8$ - Discussion

D Without the use of the feasibility rules: 228 states

- With $\mathrm{R}_{\text {coh }}: 40$ states
- Using all the rules: 21 states

$3.8 / 3.8$ - Complexity

- Cost to verify if the new state satisfies the feasibilty rules.
- Cost to calculate sets $\mathrm{T}_{1}, \mathrm{~T}_{2}$, etc
- Cost to generate $\mathrm{P}(\mathrm{s})$

It is proven that cost for the exploration of a single state is φN)

Best case

In each state only one of the potential successors satisfies the feasibility rules(in the hypothesis that an isomorphism exists). So number of states is N and complexity is $\varphi \mathrm{N}^{2}$). Spatial is $\varphi \mathrm{N}^{2}$).

Worst case

Each state must be explored. It is proven that complexity is $\oplus N!N)$. Spatial is $\left.\varphi N^{2}\right)$

4 - The need of a Benchmark

- We need to know the behavior or every algorithms on every kind of graphs, every combinations of nodes, labels, query, number of matches etc.

The following kinds of graphs have been considered:

1) Randomly Graphs with different values of the edge density μ
(where μ is the probability that an edge is present between two distinct nodes)
2) Regular Meshes with different dimensionality: 2D, 3D
3) Irregular Meshes with different dimensionality: 2D, 3D
(like regular with the addition of $\rho \mathrm{N}$ random edges uniformly distributed)
4) Bounded Valence Graphs with different values of valence
(every node has a number of edges lower than valence)
5) Irregular Bounded Valence Graphs
(like regular but 10% of all edges are moved)
6) Scale Graphs with $\alpha, \beta, \gamma \delta \mathrm{p}, \mathrm{q}$

$5.1 / 5.10$ - Unification Method and Resultis

- When we have a lot of matches GraphGrep performs better than VF2 because worst case of VF2

จ When we have a few of matches GraphGrep performs better because the pruning

Graphgrep + VF2 => Unification (new algorithm):

1) Use GraphGrep for pruning and apply VF2 to the pruned DataBase of graphs

5.2 / 5.10 - Unification Method and Results

| QueryName | Num Nodes | Num Edges | \|DB| after filtering | \#Matches |
| :--- | ---: | ---: | ---: | ---: |
| Query1 | 4 | 4 | 1000 | 4148 |
| Query2 | 8 | 10 | 908 | 758 |
| Query3 | 12 | 16 | 243 | 243 |
| Query4 | 16 | 24 | 243 | 158 |
| Query5 | 4 | 4 | 0 | 0 |
| Query6 | 50 | 84 | 0 | 0 |
| Query7 | 50 | 84 | 40 | 40 |

5.3 / 5.10 - Unification Method and Results

1000 Meshes2D 50 nodes 20 labels

QueryName Num Nodes Num Edges
Query1
Query2
Query3
Query4
Query5
Query6
Query7

QGrapto ep
 Verto
 Unification

4	4
8	10

$12 \quad 16$
$16-24$
$4 \quad 4$
50
50

5.4 / 5.10 - Unification Method and Results

| QueryName | Num Nodes | Num Edges | \|DB| after filtering | \#Matches |
| :--- | ---: | ---: | ---: | ---: |
| Query1 | 4 | 4 | 1000 | 2069 |
| Query2 | 8 | 10 | 665 | 418 |
| Query3 | 12 | 16 | 188 | 116 |
| Query4 | 16 | 24 | 75 | 75 |
| Query5 | 4 | 4 | 310 | 0 |
| Query6 | 50 | 84 | 0 | 0 |
| Query7 | 50 | 84 | 1 | 1 |

$5.5 / 5.10$ - Unification Method and Results

QueryName	Num Nodes	Num Edges	\mid DB \mid after filtering	\#Matches
Query1	4	4	1000	3365
Query2	8	10	280	482
Query3	12	16	233	178
Query4	16	24	78	33
Query5	4	4	1000	0
Query6	100	178	0	0
Query7	100	178	47	47

5.6 / 5.10 - Unification Method and Results

QueryName
Query1
Query2
Query3
Query4
Query5
Query6
Query7

Query7

Unitication

$5.7 / 5.10$ - Unification Method and Results

QueryName	Num Nodes	Num Edges	$\|\mathrm{DB}\|$ after filtering	\#Matches
Query1	4	4	880	1760
Query2	8	10	664	245
Query3	12	16	175	66
Query4	16	24	94	66
Query5	4	4	310	0
Query6	50	122	0	0
Query7	50	122	2	1

5.8 / 5.10 - Unification Method and Resulits

5.9 / 5.10 - Unification Method and Results

QueryName
Query1
Query2
Query3
Query4
Query5
Query6
Query7

Num Nodes	Num Edges
4	4
8	10
12	16
16	24
4	4
50	74
50	74

$\|D B\|$ after filtering
841
135
71
75
230
0
1

5.10 / 5.10 - Unilication Method and
 Resulits

6 - Conclusions and Future Work

- Extending GraphGrep for the inexact subgraph matching
- Extending GraphGrep for the others kind of mapping
- ...Implementing VF2 for undirected graphs

References

- D. Shasha, J.T-L Wang, R. Giugno, "Algorithmics and Applications of Tree and Graph Searching",Proceeding of the ACM Symposium on Principles of Database Systems (PODS), Madison, Wisconsin, June 2002
- R. Giugno, D. Shasha, "GraphGrep: A Fast and Universal Method for Querying Graphs", Proceeding of the IEEE International Conference in Pattern recognition (ICPR), Quebec, Canada, August 2002.
- L.P. Cordella, P. Foggia, C. Sansone,M. Vento,"An efficient Algorithm for the inexact Matching of ARG Graphs Using a Contextual Transformation Model", Proc. of the 13th International Conference on Pattern Recognition, Wien, Austria, vol. III, IEEE Computer Society Press, pp. 180-184, 1996.

D L.P. Cordella, P. Foggia, C. Sansone, F. Tortorella, M. Vento, "Graph Matching: A fast Algorithm and its Evaluation", Proc. of the 14th International Conference on Pattern Recognition, Brisbane, Australia, August, 16-20, pp. 1582-1584, 1998.

- L.P. Cordella, P. Foggia, C. Sansone,M. Vento,"Performance Evaluation of the VF Graph Matching Algorithm", Proc. of the 10th International Conference on Image Analysis and Processing, IEEE Computer Soc. Press, Los Alamitos (California), pp. 1172-1177,1999.

