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1.1 / 1.2 - Graphs SubIsomorphism 1.1 / 1.2 - Graphs SubIsomorphism 
(NP-complete problem)(NP-complete problem)

GRAPH ISOMORPHISMGRAPH ISOMORPHISM

Two graphs are isomorphic if there is a one-to-one correspondence between their 
vertexes and there is an edge betweeen two vertexes of one graph if and only if 
there is and edge between the two corresponding vertexes in the other graph.

SUBGRAPH ISOMORPHISMSUBGRAPH ISOMORPHISM 

Like above but one graph is the subgraph of another graph.

GRAPHS SUBISOMORPHISMGRAPHS SUBISOMORPHISM or MONOMORPHISMMONOMORPHISM

Finding occurrences of a graph in another graph.



1.2 / 1.2 - Graphs SubIsomorphism 1.2 / 1.2 - Graphs SubIsomorphism 
(NP-complete problem)(NP-complete problem)

n1,...,n6,m1,..,m6 not labels. No semantic attributes in general definition
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2.1 / 2.9 - GraphGrep2.1 / 2.9 - GraphGrep

➲ [PREPROCESSING] - Build the Database to 
represent the graphs as a sets of paths. (just 
once)

➲ 1 - Filter the Database based on the submitted 
query to reduce the search space

➲ 2 - Perform exact matching

● Nodes with label-node

● Edges are undirected and unlabeled

INPUT : Database of graphs, querygraph

GraphGrep Algorithm



2.2 / 2.9 - Sets of Paths2.2 / 2.9 - Sets of Paths

For each graph and for each node, find all paths that start at 

this node and have length one up to a constant value l
p
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2.3 / 2.9 - Graphs Fingerprint2.3 / 2.9 - Graphs Fingerprint
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The keys of the hash table are the hash values of the label paths. Each 
row contains the number of id-paths associated with a key (hash value) 
in each graph.



2.4 / 2.9 - Glide: graph query language2.4 / 2.9 - Glide: graph query language

We need an interface to represent graphs.
Each node is presented only once.
It can be seen as a linear representation of a tree generated in a DFS
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2.5 / 2.9 - Glide: graph query language2.5 / 2.9 - Glide: graph query language
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2.6 / 2.9 - Parsing a query graph2.6 / 2.9 - Parsing a query graph
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2.7 / 2.9 - Filtering2.7 / 2.9 - Filtering
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2.8 / 2.9 - Subgraph Matching2.8 / 2.9 - Subgraph Matching
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2.9 / 2.9 - Complexity2.9 / 2.9 - Complexity

➲ Linear in the size of the DB
➲ Linear in the number of the nodes in the graphs
➲ Polynomial in the valence of the nodes
➲ Exponential in the value of lp  (small constant!)

O(Σ 
i
|D| (ni mi

lp)) with m the maximum valence (degree)

➲ Linear in the size of the database
➲ Exponential in p x lp with p the number of query graph patterns

➲ No exponential dependency on the data graph size

O(Σ 
i
|Df| ((ni mi

lp)p)) with Df the size of DB after filtering  and

             n the maximum number of nodes having tha same label

MEMORY cost is O(Σ 
i
|D| (lpni mi

lp))

Building the Database (preprocessing)

Subgraph Matching



3.1 / 3.8 - VF2 Graph Matching 3.1 / 3.8 - VF2 Graph Matching 
AlgorithmAlgorithm

➲ Matching process is carried out by using a State Space 
Representation (SSR). A State represents a partial 
solution of the matching between 2 graphs and a transition 
between states corresponds to the addition of a new pair 
of matched nodes.

➲ A set of feasibility rules is introduced for pruning states 
corresponding to partial matching solutions not satisfying 
the required graph isomorphism



3.2 / 3.8 – SSR Approach3.2 / 3.8 – SSR Approach

➲ Solutions to the matching problem could be obtained 
computing all the possible partial solutions and selecting 
the ones satisfying the wanted mapped type (Brute Force 
approach).

➲ In order to reduce the number of paths to be explored 
during the search, for each state on the path from s0 to a 
goal state, we impose that the corresponding partial 
solution verifies some coherence conditions, depending on 
the desired mapping type. States which don't satisfy a 
feasibility rule can be discarded from further expansions.



3.3 / 3.8 - The Matching Algorithm3.3 / 3.8 - The Matching Algorithm

INPUT: The graphs G
1
 and G

2

OUTPUT: A mapping function
BEGIN
  C(s

0
):=Ø; S(0):={s

0
}; k=0; (* initialization *)

  REPEAT (* k indicates the current step in the algorithm *)
    S(k+1):=Ø;
    FOREACH state s IN S(k)

Compute the set P(s)of all possible pair of nodes of 
G
1
 and G

2
 not yet included in C(s), and set Q(s)⊆P(s) 

of the pairs that, if inserted into C(s), produce a 
coherent partial mapping;
FOREACH (n,m) IN Q

   Add to S(k+1) the state obtained adding (n,m) to C(s)
ENDFOR (n,m)

ENDFOR s
k := k+1;
UNTIL k=Card(N

2
) OR S(k)=Ø

END.

C(s) is the local valid mapping.
S(k) is the set of states computed at the k-th iteration, that is the states whose partial mapping invoves k 
nodes. At each iteration the algorithm determines all the coherent partial solutions that map k+1 nodes



3.4 / 3.8 - The feasibility rules3.4 / 3.8 - The feasibility rules

Let us call feasibility function the function F that express the f.r. 
Note that F is a function of s and the pair (n,m).

Q(s) = {(n,m)∈P(s) | F holds}

F = Fsyn ∧ Fsem  , Fsyn guarantees the syntactic coherence
     Fsem guarantees the semantic coherence

The feasibility rules must be simultaneously verified to allow the insertion of the considered 
pair.

Fsyn = Rcoherence ∧ Rprun1 ∧ Rprun2

The semantic feasibility function Fsem is satisfied if the attributes of nodes and branches, 
corresponding in the found mapping, are equal

1 - iff for each node m' connected to m in the partial mapping, the corresponding node n' is connected to n
2 - iff the num of node connected to n that are in T1(s) is ≥ to the num of node connected to m that are in T2(s)
3 - iff the num of node connected to n that are neither in C1(s) nor in T1(s) is ≥ to the num of node connected to m that are neither 
in C2(s) nor in T2(s)



3.5 / 3.8 – Example coherence3.5 / 3.8 – Example coherence
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3.6 / 3.8 – Example pruning3.6 / 3.8 – Example pruning
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1 - iff for each node m' connected to m in the partial mapping, the corresponding node n' is connected to n
2 - iff the num of node connected to n that are in T1(s) is ≥ to the num of node connected to m that are in T2(s)
3 - iff the num of node connected to n that are neither in C1(s) nor in T1(s) is ≥ to the num of node connected to m that are 
neither in C2(s) nor in T2(s)



3.7 / 3.8 - Discussion3.7 / 3.8 - Discussion

➲ Without the use of the feasibility rules : 228 states

➲ With Rcoh : 40 states 

➲ Using all the rules : 21 states
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3.8 / 3.8 - Complexity3.8 / 3.8 - Complexity

➲ Cost to verify if the new state satisfies the feasibilty rules. 

➲ Cost to calculate sets T1,T2,etc

➲ Cost to generate P(s)

It is proven that cost for the exploration of a single state is Θ(N)

Best case
In each state only one of the potential successors satisfies the feasibility 
rules(in the hypothesis that an isomorphism exists). So number of states 
is N and complexity is Θ(N2). Spatial is Θ(N2).

Worst case
Each state must be explored. It is proven that complexity is 
Θ(N!N). Spatial is Θ(N2)



4 - The need of a Benchmark4 - The need of a Benchmark

➲ We need to know the behavior or every algorithms on every kind of graphs, 
every combinations of nodes, labels, query, number of matches etc.

The following kinds of graphs have been considered:
1) Randomly Graphs with different values of the edge density µ,
(where µ is the probability that an edge is present between two distinct nodes)
2) Regular Meshes with different dimensionality: 2D, 3D
3) Irregular Meshes with different dimensionality: 2D, 3D
(like regular with the addition of ρN random edges uniformly distributed)
4) Bounded Valence Graphs with different values of valence 
(every node has a number of edges lower than valence)
5) Irregular Bounded Valence Graphs
(like regular but 10% of all edges are moved)
6) Scale Graphs with α ,β ,γ,δ,p,q



5.1 / 5.10 – Unification Method and Results5.1 / 5.10 – Unification Method and Results

➲ When we have a lot of matches GraphGrep performs better than VF2 because 
worst case of VF2

➲ When we have a few of matches GraphGrep performs better because the 
pruning

GraphgrepGraphgrep +  + VF2VF2 =>    =>   Unification Unification (new algorithm):                         (new algorithm):                         

1) Use GraphGrep for pruning and apply VF2 
to the pruned DataBase of graphs 



5.2 / 5.10 - Unification Method and Results5.2 / 5.10 - Unification Method and Results

QueryName Num Nodes Num Edges |DB| after filtering #Matches
Query1 4 4 1000 4148
Query2 8 10 908 758
Query3 12 16 243 243
Query4 16 24 243 158
Query5 4 4 0 0
Query6 50 84 0 0
Query7 50 84 40 40



5.3 / 5.10 - Unification Method and Results5.3 / 5.10 - Unification Method and Results

QueryName Num Nodes Num Edges |DB| after filtering #Matches
Query1 4 4 1000 2067
Query2 8 10 461 419
Query3 12 16 281 115
Query4 16 24 75 75
Query5 4 4 57 0
Query6 50 84 0 0
Query7 50 84 4 1



5.4 / 5.10 - Unification Method and Results5.4 / 5.10 - Unification Method and Results

QueryName Num Nodes Num Edges |DB| after filtering #Matches
Query1 4 4 1000 2069
Query2 8 10 665 418
Query3 12 16 188 116
Query4 16 24 75 75
Query5 4 4 310 0
Query6 50 84 0 0
Query7 50 84 1 1



5.5 / 5.10 - Unification Method and Results5.5 / 5.10 - Unification Method and Results

QueryName Num Nodes Num Edges |DB| after filtering #Matches
Query1 4 4 1000 3365
Query2 8 10 280 482
Query3 12 16 233 178
Query4 16 24 78 33
Query5 4 4 1000 0
Query6 100 178 0 0
Query7 100 178 47 47



5.6 / 5.10 - Unification Method and Results5.6 / 5.10 - Unification Method and Results

QueryName Num Nodes Num Edges |DB| after filtering #Matches
Query1 4 4 1000 3728
Query2 8 10 763 760
Query3 12 16 806 248
Query4 16 24 574 108
Query5 4 4 903 0
Query6 102 230 4 0
Query7 102 230 4 1



5.7 / 5.10 - Unification Method and Results5.7 / 5.10 - Unification Method and Results

QueryName Num Nodes Num Edges |DB| after filtering #Matches
Query1 4 4 880 1760
Query2 8 10 664 245
Query3 12 16 175 66
Query4 16 24 94 66
Query5 4 4 310 0
Query6 50 122 0 0
Query7 50 122 2 1



5.8 / 5.10 - Unification Method and Results5.8 / 5.10 - Unification Method and Results

QueryName Num Nodes Num Edges |DB| after filtering #Matches
Query1 4 4 886 1772
Query2 8 10 548 270
Query3 12 16 127 90
Query4 16 24 73 55
Query5 4 4 51 0
Query6 50 70 0 0
Query7 50 70 1 1



5.9 / 5.10 - Unification Method and Results5.9 / 5.10 - Unification Method and Results

QueryName Num Nodes Num Edges |DB| after filtering #Matches
Query1 4 4 841 762
Query2 8 10 135 88
Query3 12 16 71 21
Query4 16 24 75 21
Query5 4 4 230 0
Query6 50 74 0 0
Query7 50 74 1 1



5.10 / 5.10 - Unification Method and 5.10 / 5.10 - Unification Method and 
ResultsResults

QueryName Num Nodes Num Edges |DB| after filtering #Matches
Query1 4 4 622 476
Query2 8 10 129 24
Query3 12 16 13 3
Query4 16 24 2 2
Query5 4 4 239 0
Query6 50 73 0 0
Query7 50 73 1 1



6 - Conclusions and Future Work6 - Conclusions and Future Work

- Extending GraphGrep for the inexact subgraph matching

- Extending GraphGrep for the others kind of mapping

- ...Implementing VF2 for undirected graphs
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