
SING: Subgraph search In Non-homogeneous Graphs

Raffaele Di Natale 1, Alfredo Ferro 1, Rosalba Giugno 1,Misael Mongiovì
1,Alfredo Pulvirenti 1,and Dennis Shasha 2

1Dipartimento di Matematica ed Informatica
Università di Catania
95125 Catania, Italy

{dinatale,ferro,giugno,mongiovi,pulvirenti}@dmi.unict.it

2Courant Institute of Mathematical Sciences
New York University

New York 10012, USA
shasha@cs.nyu.edu

ABSTRACT
Finding subgraphs of a graph database which are isomorphic
to a given query graph has many practical applications in
several fields, including cheminformatics and bioinformatics.
Since subgraph isomorphism is a computationally hard prob-
lem, indexing techniques have been intensively exploited to
speed up the process. Such systems filter out those graphs
which cannot contain the query, and apply a subgraph iso-
morphism algorithm to each residual candidate graph. How-
ever, the applicability of such process is limited to databases
of small graphs. When these indexing systems are applied to
large graphs, their filtering power degrades and the subgraph
isomorphism test is still expensive. In this paper, SING
(Subgraph search In Non-homogeneous Graphs), a novel in-
dexing system able to cope with large graphs, is presented.
The method uses the notion of feature, which can be a small
subgraph, subtree or path. Each graph in the database is
annotated with the set of all its features. The key point
is to make use of feature locality information. This idea is
used to both improve the filtering performance and speed up
the subgraph isomorphism task. Extensive tests on chem-
ical compounds, biological networks and synthetic graphs
show that the proposed system outperforms the most pop-
ular systems in query time over databases of medium and
large graphs. Other specific tests show that the proposed
system is effective for single large graphs.

General Terms
graph search, indexing, subgraph isomorphism, large graphs

1. INTRODUCTION

Graphs naturally model a multitude of complex objects of
the real world. A chemical compound can be represented by
a graph where atoms are vertices and bonds are edges. Bi-
ological networks model the complex of interactions among
components in cells, (e.g. proteins, genes, metabolites). So-
cial networks, the web, the water system and the power
grid are all represented by graphs. The availability of al-
gorithms and tools to manage and analyze graphs is crucial
in various application domains. One of the basic problem
is the search of a query graph in a target graph or, more
generally, in a database of graphs. Searching a molecular
structure in a database of molecular compounds is useful to
detect molecules which preserve chemical properties asso-
ciated with a well known molecular structure. This can be
used in screening and drug design. Searching subnetworks in
biological networks allows to identify conserved complexes,
pathways and motifs among species, and assist in the func-
tional annotation of proteins and other cell components.

The problem of searching for a query graph in a target graph
is called subgraph isomorphism and is known to be NP-
complete. Since the subgraph isomorphism test is expensive,
screening all graphs of a large database can be unfeasible.
Recently, indexing techniques for databases of graphs have
been developed with the purpose of reducing the number of
subgraph isomorphism tests involved in the query process.
In a preprocessing phase the database of graphs is analyzed
and a data structure called index is built. A query is pro-
cessed in two phases. In the filtering step the index is used
to discard the graphs of the database which cannot contain
the query, producing a small set of candidate graphs. The
set of candidates is then verified (verification step) by a sub-
graph isomorphism algorithm and all the resulting matches
are reported.

Most graph indexing tools are based on the concept of fea-
ture. Depending on the particular system, a feature can be
either a small graph [8, 1, 7], a tree [5] or a path [4, 3].
The filtering property is based on checking whether the fea-
tures of the query are contained in each target graph. In the
preprocessing phase the database of graphs is scanned, the
features are extracted from each graph and stored in the in-

dex data structure. During the filtering phase, the features
are extracted from the query and the index is probed in or-
der to discard all graphs which do not contain some feature
of the query.

Existing indexing techniques are effective on databases of
small graphs but they become unfeasible when applied to
huge graphs. Indeed such graphs generally contain numer-
ous features spread over them. Consequently, each feature
of a given query is very likely to be less frequent than it is
in the large graph. This implies that filtering systems based
only on the presence or number of features are not effective
for large graphs. Moreover the subgraph isomorphism test
over a large graph is considerably expensive. On the other
hand, alternative indexing systems which do not make use
of features [5, 11] show similar problems on large graphs.

To make the verification phase faster, GraphGrep [4] stores
all the feature occurrences of each graph, and discards the
part of the graph which does not contain features of the
query. It restricts the search to small portions of the target
graph. However, this produces a larger index which is more
difficult to manage and can lead to a reduction of the filtering
performance. Furthermore, the features of the query often
occur in many areas of the graphs, limiting the portion which
can be discarded.

In this paper, a novel approach to cope with large graphs
is proposed. The position of a feature within the graph
is considered. This additional information is used to both
improve the filtering power and guide the verification phase
toward parts of the graphs which can contain the query. The
present approach makes use of paths as features. Differently
from other systems using more complex features such as sub-
graphs or subtrees, our index includes all paths of bounded
length. This structure is able to capture the topology of
graphs and it is shown to perform better than the other sys-
tems in terms of query processing time. Moreover the size
of the index is comparable to that of other existing systems.
An exhaustive experimental analysis on real and synthetic
data shows that the proposed system is efficient and effective
on both databases of graphs and single large graphs.

The paper is organized as follows. In Section 2 the ba-
sic concepts are introduced. In Section 3 both feature-based
and non-feature-based graph indexing systems are reviewed.
Feature based graph indexing systems are considered in an
unified framework and the differences among them are dis-
cussed. Section 4 presents the novel graph indexing sys-
tem. In Section 5 the results of the experimental analysis
are reported. Comparisons with the most popular systems
over databases of chemical compounds show that our sys-
tem is faster in processing queries of size greater than 4 on
a database including large molecules. Additional results on
gene regulatory networks and synthetic data are reported.
For these data the proposed system outperforms all the other
tools in terms of query time. Section 6 concludes the paper
and addresses future directions.

2. PRELIMINARIES
In this paper, undirected node-labeled graphs are consid-
ered. However, the concepts introduced in what follows can
be easily extended to edge-labeled and directed graphs. An

undirected labeled graph (in what follows simply a graph)
is a 4-tuple g = (V, E, Σ, l) where V is the set of vertices,
E, the set of edges, is a symmetric relation on V , Σ is the
alphabet of labels and l : V → Σ is a function which maps
each vertex into a label. We put size(g) = |E| and indicate
with G the set of all possible graphs. A graph g1 is said to
be a subgraph of g2 iff V1 ⊆ V2 and E1 ⊆ E2.

Given two graphs g1 = (V1, E1, Σ, l), g2 = (V2, E2, Σ, l) an
isomorphism between g1 and g2 is a bijection φ : V1 → V2

so that:

• (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2

• l(u) = l(f(u))∀u ∈ V1

A subgraph isomorphism between g1 and g2 is an isomor-
phism between g1 and a subgraph of g2. A graph g1 is said
to be isomorphic to another graph g2 if there exist an iso-
morphism between g1 and g2. For the sake of simplicity we
say also that g1 is equivalent to g2 and write g1 ≈ g2. Notice
that ≈ is an equivalence relation on G. A graph g1 is said to
be subgraph isomorphic to another graph g2 if there exist a
subgraph isomorphism between g1 and g2. In this case we
say that g1 is contained in g2 and write g1 v g2.

In this paper, the following two problems will be discussed:

First query occurrence problem: Given a database of n graphs
D = {g1,g2,...,gn} and a query graph q, executing the query
q on D is equivalent to find all graphs g of D such that
q is subgraph isomorphic to g. In the following we assume,
without loss in generality, that all graphs of D and the query
graph, share the same alphabet Σ.

All query occurrences problem: Given a database of n graphs
D = {g1,g2,...,gn} and a query graph q, executing the query
q on D is equivalent to find all subgraph isomorphisms be-
tween q and elements of D.

We will make extensive use of the notion of feature. Features
are defined formally by the following definition.

Definition 1. Let G be the set of all possible graphs in a
given alphabet of labels. A set F is a set of features on G iff
there exists a binary relation is a feature ⊆ F×G such that
the following property holds (graph upward monotonicity):

∀f ∈ F , q, g ∈ G,
is a feature(f, q) ∧ q v g → is a feature(f, g)

Every set of features defines a pruning rule for the sub-
graph isomorphism problem. Indeed if is a feature(f, q)
and ¬ is a feature(f, g) then q cannot be subgraph iso-
morphic to g.

Examples of set of features are:

• The set Paths≤k of all labeled paths of length ≤ k.
Here a labeled path is the sequence of labels.

Figure 1: A database of two graphs g1, g2 and a query
q. q v g1 but q 6v g2.

• The set Subtrees≤k of all labeled subtrees of depth
≤ k.

• The set Subgraphs≤k of all labeled subgraphs of size
≤ k.

In this paper the set of features Paths occ≤k of pairs (p, n),
where p is a labeled path of length ≤ k and n is a lower
bound in the number of occurrences of p in the given graph,
is considered. The corresponding pruning property asserts
that if the query graph q contains at least n occurrences of
a given labeled path p and g does not contain at least n
occurrences of p, then q cannot be subgraph isomorphic to
g and g can be pruned.

Notice that in all above examples if a feature f is a subfea-
ture of a given feature f ′ of g then f ′ is also a feature of g.
The following definition formalizes this notion.

A downward monotonic set of features is a partially ordered
set of features (F ,¹) such that:

∀f, f ′ ∈ F , g ∈ G,
f ¹ f ′ ∧ is a feature(f ′, g) → is a feature(f, g)

For instance Paths≤k is a downward monotonic set of fea-
tures with respect to the subsequence relation between la-
beled paths. Paths occ≤k is downward monotonic with re-
spect to the number of occurrences. However it is not down-
ward monotonic with respect to the subsequence relation.
Indeed in Figure 1, (ABC,2) is a feature of g1 but (AB,2) is
not a feature of g1.

A downward monotonic set of features allows an additional
optimization in the pruning process. Indeed, the pruning
rule can be restricted only to maximal features f in the
query. This means that no other feature f ′ in the query can
be strictly greater than f in the partial order of features.

3. RELATED WORKS
4. A NEW APPROACH BASED ON FEATURE

LOCATION
5. EXPERIMENTAL RESULTS
6. CONCLUSIONS
7. ACKNOWLEDGMENT
8. REFERENCES
[1] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index:

towards verification-free query processing on graph

databases. Proceedings of ACM SIGMOD
international conference on Management of data,
pages 857 – 872, 2007.

[2] L. Cordella, P. Foggia, C. Sansone, and M. Vento. A
(sub)graph isomorphism algorithm for matching large
graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(10):1367–1372, 2004.

[3] A. Ferro, R. Giugno, M. Mongiovi, A. Pulvirenti,
D. Skripin, and D. Shasha. Graphfind: enhancing
graph searching by low support data mining
techniques. BMC Bioinformatics, (9), 2008.

[4] R. Giugno and D. Shasha. Graphgrep: A fast and
universal method for querying graphs, 2002.

[5] H. He and A. K. Singh. Closure-tree: An index
structure for graph queries. In ICDE ’06: Proceedings
of the 22nd International Conference on Data
Engineering, page 38, Washington, DC, USA, 2006.
IEEE Computer Society.

[6] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon.
Efficient sampling algorithm for estimating subgraph
concentrations and detecting network motifs.
Bioinformatics, 20(11):1746–1758, 2004.

[7] D. W. Williams, J. Huan, and W. Wang. Graph
database indexing using structured graph
decomposition. In Data Engineering, 2007. ICDE
2007. IEEE 23rd International Conference on, pages
976–985, 2007.

[8] X. Yan, P. S. Yu, and J. Han. Graph indexing based
on discriminative frequent structure analysis. ACM
Transactions on Database Systems, 30(4):960–993,
2005.

[9] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph
indexing method. Proceedings of IEEE 23rd
International Conference on Data Engineering, pages
181–192, 2007.

[10] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree
+ delta ≤ graph. In VLDB ’07: Proceedings of the
33rd international conference on Very large data bases,
pages 938–949. VLDB Endowment, 2007.

[11] L. Zou, L. Chen, J. X. Yu, and Y. Lu. A novel spectral
coding in a large graph database. In EDBT ’08:
Proceedings of the 11th international conference on
Extending database technology, pages 181–192, New
York, NY, USA, 2008. ACM.

