
A Novel Spectral Coding in a Large Graph Database

Lei Zou
∗

Huazhong University of
Science and Technology

Wuhan, China
zoulei@mail.hust.edu.cn

Lei Chen
Hong Kong University of
Science and Technology

Hong Kong, China
leichen@cse.ust.hk

Jeffrey Xu Yu
The Chinese University of

Hong Kong
Hong Kong, China

yu@se.cuhk.edu.hk and

Yansheng Lu
Huazhong University of
Science and Technology

Wuhan, China
lys@mail.hust.edu.cn

ABSTRACT
Retrieving related graphs containing a query graph from a
large graph database is a popular problem in many graph-
based applications, such as drug discovery and structural
pattern recognition. Because sub-graph isomorphism is a
NP-complete problem [5], we need an effective and efficient
filtering method to prune false alarms as many as possible
before expensive verification. In this paper, we address the
sub-graph search problem by proposing a novel spectral en-
coding method, i.e. GCoding. We assign a signature to each
vertex based on its local structures. After that, we generate
a spectral graph code by combining all vertex signatures in
a graph. Due to spectral encoding technique, graph struc-
ture information is mapped into the numerical space. Then,
based on graph codes, we propose an effective and efficient
pruning strategy. Extensive experiments show that GCod-
ing outperforms existing methods in both pruning power
and index size.

1. INTRODUCTION
Graph is an important data structure in computer science,
which has been used to model many objects and complex
relationships in the real world, such as chemical structures
[17], entities in images [13] and social networks [2]. A gen-
eral graph information system is very useful in many ap-
plications. For example, given a large molecule database,
a chemist wants to find all molecules having a particular
sub-structure, which is a very popular operation in science
experiments and analysis. Given another example, in pat-
tern recognition, it is often necessary to match an unknown

∗The work was done when the first author visited Hong
Kong University of Science and Technology as a visiting
scholar.

sample against a database of candidate graph patterns. For-
mally speaking, one of the key problems in a graph informa-
tion system is how to efficiently process sub-graph search,
which is defined as follows: Given a query graph Q, we need
to find all data graphs Gi in the graph database, where query
graph Q is sub-graph isomorphism to data graph Gi. A run-
ning example is shown as follows:
Example 1 (Running Example). A graph database hav-
ing 4 graphs and a query graph Q are given in Figure 1. The
number beside the vertex is vertex ID and the letter in the
vertex is vertex label.

A

A A

B C

A

A

B

A C

A

C

B B

C

A

C

B B

A
A

C

B B

C

0

1

2

3

4

0

1

2 4

3

0

1

3 4

2

0
1

2 3

4

004002 003001 Query Q

0

1 4

2 3

Figure 1: A Graph Database

Usually, there are two phases in the sub-graph search prob-
lem, i.e. filtering and verifying. In the filtering phase,
we prune false alarms in the graph database as many as
possible to obtain candidates. And then, in the verifying
phase, for each candidate graph Gi, we perform sub-graph
isomorphism algorithm to check whether Gi is a correct
answer. Since sub-graph isomorphism is a classical NP-
complete problem [5], an effective and efficient pruning strat-
egy in a large graph database will speed up the total response
time.

1.1 Motivation
The most popular pruning strategy is “feature-based” [14]
[18] [19] [10]. Basic idea in feature-based pruning strategy
is that some sub-structure of graph Q does not exist in a
data graph G, Q cannot be a subgraph of G. Usually, an
inverted index is build: all selected features form “indexed
elements”, and all data graphs containing these features are
linked to them. The relationship between indexed elements
and data graphs is similar to the one between indexed words
and documents in Information Retrieve(IR). In GraphGrep,

all pathes up to maxL length are extracted as indexed ele-
ment. Different from GraphGrep, frequent and discrimina-
tive fragments with no more than c vertexes are mined from
graph database to be indexed elements in gIndex approach.
In order to answer sub-graph query Q, Q are denoted as
a set of “indexed fragments” in gIndex. By examining the
inverted index, we can retrieve all data graphs that may con-
tain query Q as candidate results. In feature-based pruning
strategy, different feature selections provide different prun-
ing power in the filtering phase. Based on effective feature
selection strategy, feature-based pruning approach can pro-
vide good pruning power [18, 19]. However, also because
of feature selection, this kind of pruning approach always
assume that the graph database is static, or statistics of the
graph database do not change. The quality of feature-based
pruning power may degrade over time after lots of insertions
and deletions [18]. We have to re-select features and re-
build the index, which is very time consuming. In practice,
take compound structure database for example. According
to the report by the SCI Finder 1, approximate 4,000 new
compound structures are added each day. Therefore, an ef-
ficient pruning strategy should also provide good pruning
power in the dynamic situation.
Different from feature-based pruning strategy, Closure-tree
proposed another pruning strategy [8], that is pseudo sub-
graph isomorphism. Its basic idea is that if we cannot find
an injective function from vertexes in graph Q to ones in
graph G, Q cannot be sub-graph isomorphism to G . Supe-
rior to feature-based methods, the pruning power will not
degrade in the dynamic situation. However, in the filtering
phase of Closure-tree, we need to perform expensive struc-
ture comparison and maximal matching algorithm. The
time complexity of the pruning algorithm in Closure-tree
is O(ln1n2(d1d2 + M(d1, d2)) + M(n1, n2)), where l is the
pseudo compatibility level, n1 and n2 are numbers of ver-
texes in G1 and G2, d1 and d2 are the maximum degrees
of G1 and G2, M() is the time complexity of maximal car-
dinality matching for bipartite graphs, which is O(n2.5) in
Hopcroft and Karp’s algorithm [9].

In this paper, we address sub-graph search problem in a
large graph database. Different from the previous meth-
ods, we encode structure information based on graph spec-
tral theory, which maps graph’s structure information into
the numerical space. To our best knowledge, there is lit-
tle work on spectral encoding technique in sub-graph search
problem. To be an effective spectral encoding technique
in sub-graph search problem, it should: 1) map a graph
structure to the numerical space; 2) based on the encoding
technique, pruning strategy would promise no positive dis-
missal; 3) the pruning strategy based on the graph coding
technique should provide great pruning power. In this pa-
per, we present a novel encoding technique satisfying the
above criteria.

1.2 Our Contributions
In summary, our contributions are as follows:
1) For each graph, we assign a signature to each vertex,
which is derived from the eigenvalues of the matrix about

1SCI Finder: a research discovery tool that allows you to ac-
cess the world’s largest collection of biochemical, chemical,
chemical engineering, medical, and other related informa-
tion. http://www.cas.org/SCIFINDER/

the local structure around the vertex. By combining all
vertex signatures in a graph, we can obtain the graph code.
After encoding a graph, the structure information of a graph
is mapped into the numerical space. Based on graph code
comparison, we propose the efficient and effective pruning
strategy.
2) We propose an efficient storage schema for the graph code
database and gCode-tree index.
3) Through extensive experiments, we show that our method
is superior to existing methods in pruning power and online
response time.

The remainder of the paper is organized as follows: We dis-
cuss some background knowledge in Section 2. The graph
coding method and pruning strategy are proposed in Sec-
tion 3. The framework of sub-graph search is discussed in
Section 4. Section 5 discuss the parameter setting problem.
We evaluate our method in the extensive experiments in Sec-
tion 6. The related work is discussed in details in Section 7.
Section 8 concludes the paper.

2. BACKGROUND
Definition 1. Graph. A labeled graph is always denoted

as < V, E, Lv, Le, Fv, Fe >, where (1) V is the set of ver-
texes; (2) E is the set of edges; (3)Lv is the set of vertex
labels; (4) Le is the set of edge labels; (5) Fv is a function:
V → Lv that assigns labels to vertexes; (6) Fe is a function:
E → Le that assigns labels to edges.

Definition 2. Sub-Graph Isomorphism. Assume that
we have two graphs G1 < V1, E1, L1v, L1e, F1v, F1e >
and G2 < V2, E2, L2v, L2e, F2v, F2e >. G1 is sub-graph
isomorphism to G2, if and only if there exists at least one
injective function f : V1 → V2 such that: 1) for any edge uv
∈ E1, there is an edge f(u)f(v) ∈ E2; 2) F1v(u)= F2v(f(u))
and F1v(v)= F2v(f(v)); 3) F1e(uv)= F2e(f(u)f(v)).

Definition 3. Induced Sub-graph. An induced sub-
graph is a subset of the vertices of a graph together with
any edges whose endpoints are both in this subset.

Notice that, in Figure 2(a), only G2 is an induced sub-graph
of G1, and G3 is a general sub-graph of G1. The adjacency
matrix of a graph G is denoted as M(G). If a graph Q is
an induced sub-graph of G, M(Q) is a principle sub-matrix
2 of M(G). In Figure 2(a), M(G2) is a principle sub-matrix
of M(G1), but M(G3) is not, since G3 is not an induced
sub-graph of G1.

Definition 4. Trees. A tree is an acyclic connected di-
rected graph. In this paper, our trees are always unordered,
unlabeled, and rooted, which is denoted as T = (V, v0, E),
where (1) V is the set of nodes ; (2)v0 is a distinguished
node called the root that has no entering edges; (3) E is
the set of edges in the tree. Note that our trees are always
unordered, so they have no predefined ordering among each
set of siblings.

Definition 5. Induced Subtree. For a tree T with node
set V and edge set E , we say that a tree T ′ with node set
V ′ and edge set E′, is an induced subtree of T if and only if
there exists at least one injective function f : V ′ → V such
that: for any directed edge uv ∈ E′ (namely, u is a parent
of v in tree T ′), there is an directed edge f(u)f(v) ∈ E;
2A principal sub-matrix M(Q) of a matrix M(G) formed by
selecting certain rows and columns from the matrix M(G)

A B

B A

B
A B

B A

A B

B A

Graph An Induced
Sub-Graph

A Sub-
Graph

G1 G2 G3

1 2

3 4

0
0 1

2 3

0 1

2 3

0 1 2 3 4
0
1
2
3
4

0
1
1
0
0

1
0
1
1
0

1
1
0
0
1

0
1
0
0
1

0
0
1
1
0

0 1 2 3
0
1
2
3

0
1
1
0

1
0
0
1

1
0
0
1

0
1
1
0

0 1 2 3
0
1
2
3

0
1
1
0

1
0
0
1

1
0
0
0

0
1
0
0

M(G1) M(G2) M(G3)

(a) Induced Subgraph

0

1

2 3

4

0

1

2 3

0 1 2 3 4
0
1

2
3
4

0
1
0
0
1

1
0

1
1
0

0
1
0
0

0

0
1

0
0
0

1
0
0
0
0

M(T1)

0 1 2 3
0
1

2
3

0
1
0
0

1
0

1
1

0
1
0
0

0
1

0
0

T1 T2

M(T2)

(b) Induced Subtree

Figure 2: Induced Subgraph and Induced Subtree

In Figure 2(b), we also use M(T1) to denote the adjacency
matrix of the tree T1. In tree T1, if the node i is a parent
of node j, we set M(T1)ij =1 and M(T1)ji =1. Therefore,
M(T1) is always a symmetric matrix. If the tree T2 is an
induced sub-tree of T1, M(T2) is a principle sub-matrix of
M(T1). In mathematics, the Interlacing Theorem illustrates
the relationship between the eigenvalues of a matrix and its
principle sub-matrix.

Theorem 1. (Interlacing Theorem) Let A be a symmetric
matrix with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn and let B be
one of its principal sub-matrix. If the eigenvalues of B are
β1 ≥ β2 ≥ ... ≥ βm, then λn−m+i ≤ βi ≤ λi, (i = 1,..., m
).

Given two graphs Q and G, Q is an induced sub-graph of
G. M(Q) and M(G) are their corresponding adjacency ma-
trixes. M(Q) is a principal sub-matrix of M(G). Therefore,
the eigenvalues of M(Q) and M(G) satisfy the relationships
in Theorem 1. Notice that if Q is a general sub-graph of G
(not induced sub-graph), we cannot promise that the eigen-
values of M(Q) and M(G) satisfy the relationship in Theo-
rem 1. Therefore, Theorem 1 cannot be used as the pruning
rule directly in sub-graph search problem.

3. GRAPH ENCODING
As we know that when the query graph Q is sub-graph iso-
morphism to a data graph G under some injective function
g, for each vertex v in Q, there must exist a corresponding
vertex g(v) in G. Furthermore, the local structure around
v in Q should be preserved in that around g(v) in G. Intu-
itionally, we can assign a signature to any vertex v based on
its local structure. Benefiting from the vertex signature, for
any vertex v in the query Q, we can easily determine whether
there exists a corresponding vertex g(v) in the data graph G.
Obviously, if we cannot find the corresponding vertex g(v) in
G, Q cannot be sub-graph isomorphism to G. Notice that the
above method may yield a false positive, where it suggests
that there exists a corresponding vertex g(v) in graph G
even though there exists nothing. Fortunately, false positive
does not affect the correctness of candidate results. How-
ever, we should guarantee that the above method satisfy no
false negative requirement. We will discuss the following two
problems in Section 3.1 and 3.2 respectively: 1) We propose
Vertex Signature based on spectral graph theory. According
to vertex signature comparison, the Filtering Rule 1 is pro-
posed; 2) By combining all vertex signatures, we develop a

Graph code for each graph. Based on the graph code com-
parison, Filtering Rule 2 is prosed, which is superior to the
former one due to its efficiency.

3.1 Vertex Signature
In order to assign a signature to each vertex v in a graph
G, we map the local structure around v into the numerical
space. The local structure is defined as follows: we pro-
pose an algorithm in Figure 3 to extract all n-step simple
pathes3 from the vertex v in G, which are collected to form
the Level-n Path Sub-tree, denoted as LNST (G, v, n).
Different from level-n adjacent sub-tree in [8], only simply
pathes are considered in LNST .

Algorithm: Extracting Level-n Path Sub-tree
Input : a graph G and a vertex v in G.
Output : level-n path sub-tree around the vertex v, denoted
as LNST (G, v, n).

1: set the vertex v as the root of LNST (v)
2: set the vertex set Visited= v.
3: for each neighbor r of the vertex v do
4: insert the vertex r as a child of v in LNST (v).
5: insert the vertex r into the set Visited.
6: Call Function Search(r, n).
7: end for

Function: Search(v,n)

1: n = n - 1
2: if n == 0 then
3: return
4: end if
5: for each neighbor r of the vertex v do
6: if r exists in the set Visited then
7: return
8: end if
9: insert the vertex r as a child of v in LNST (v).

10: insert the vertex r into the set Visited.
11: Call Function Search(r, n).
12: delete the vertex r from the set Visited.
13: end for

Figure 3: Extract Level-n Path Subtree

Given a graph G in Figure 4a, LNST (G, 0, 2) is shown in
Figure 4b. According to the definition in [8], the level-2
adjacent subtree from vertex 0 is given in Figure 4. The
path (A0D1A0) is not a simple path, which does not exist
in Figure 4b, but exists in Figure 4c.

A

D A

A B C

0

1

3 4

2

5

A

D A

A B C

0

1

3 4

2

5
A
2

D
1

A

D A

A B C

0

1

3 4

2

5
A
2

D
1

A A
0 0

(a) G (b) LNST(G, 0, 2) (c) level 2 adjacency
subtree from vertex 0

Figure 4: Level-n Path Sub-tree

Lemma 1. Given two graphs Q and G, Q is sub-graph iso-
morphism to G under an injective function g. For each ver-
tex v in graph Q, we have the Level-n Path Subtree around
the vertex v, denoted by LNST (Q, v, n). We have a vertex

3A path in a graph with no repeated vertices is called a
simple path

v′ in graph G, where v′ = g(v). Then, LNST (Q, v, n) is a
sub-tree of LNST (G, v′, n).

Proof. (Sketch) For each node u in LNST (Q, v, n), ac-
cording to the definition of LNST , there must exist a path
vu in graph Q. Since graph Q is sub-graph isomorphism
to graph G, the path vu in graph Q must be preserved in
graph G, which is corresponding to the path v′u′. There-
fore, we can define an injective function f from node u in
LNST (Q, v, n) to node u′ in LNST (G, v′, n): u′ = f(u),
where the path vu is corresponding to the path v′u′. Under
the injective function f , it is straightforward to prove that
LNST (Q, v, n) is a sub-tree of LNST (G, v′, n), according
to the Definition 5.

Definition 6. Vertex Topology Signature. Given a
graph G and a vertex v ∈G, the adjacency matrix of LNST (G,
v, n) is denoted as M . The eigenvalues of M are λ1 ≥ λ2 ≥
... ≥ λm. The Vertex Topology Signature of the vertex v is
defined as the sorted list < λ1, λ2 ... λm >.

According to Definition 6, the local structure around a ver-
tex is mapped into the numerical space. Since spectral
graph theory suggests that some largest eigenvalues deter-
mine greatly the graph’s topological structure, it is not nec-
essary to consider all eigenvalues of LNST (G, v, n) to define
the vertex’s topology signature. In experiment section, we
will evaluate different performances under different eigenval-
ues. Without loss of generality, we choose the two largest
eigenvalues in the following discussion.

Lemma 2. Given two graphs Q and G, Q is sub-graph iso-
morphism to graph G under the injective function g. For any
vertex v in Q, its vertex topology signature is < λ1, λ2 >.
There exits a vertex v′ in graph G, where v′ = g(v). For
v′, its topology signature is < β1, β2 >. We can say that
λ1 6 β1ANDλ2 6 β2.

Proof. According to Lemma 1, LNST (Q, v, n) is a sub-
tree of LNST (G, v′, n). It also means that the adjacency
matrix associated with LNST (Q, v, n) is a principal sub-
matrix of that associated with LNST (G, v′, n). Based on
Theorem 1, it is straightforward to know that λ1 6 β1 AND
λ2 6 β2.

As we know that the limitation of spectral methods is that
they are purely structural, in the sense that they are not
able to exploit vertex or edge labels. In order to consider
label information to improve pruning power, for each vertex
v, we encode its vertex label, its neighbor vertex labels and
adjacent edge labels. According to the method in signature
file [4], we propose the following approach.

A
A A

B C

0

1

2

3

4

004

0000 0000 0001

0000 0000 0001

Vertex 0's
Neighbors

A

A

0000 0000 0002

0000 0000 0001

0001 0000 0000

Vertex 2's
Neighbors

A

C

0001 0000 0001

A 0000 0000 0001
B 0000 0001 0000
C 0001 0000 0000

Vertex
Label Bit-String

Figure 5: Vertex Label and Neighbor Vertex Labels
Vertex Label
We use a length-X bit string to denote the vertex label. Ini-
tially, all bits are set “0”. Using the hash function, for each

distinct vertex label, we set m out of X bits to 1. For exam-
ple, we use the length-12 bit strings on the left of Figure 5
to denote the vertex labels “A”,“B” and “C” in the running
example.
Neighbor Vertex labels
Figure 5 shows an example of encoding the neighbor labels.
Given a graph 004 in Figure 5, the vertex 0 has two neighbor
vertexes labeled with “A” and “A”. The bit string for the
“A” is “0000 0000 0001”. We also use a length-X “counter”
string to denote the neighbors of vertex 0. We get “0000
0000 0002” by bitwise “ADD”-operation. Similarly, for the
neighbor labels of vertex 2, we get “0001 0000 0001”, as
shown in Figure 5.
Adjacent Edge Labels
In Figure 6, the vertex 0 has two neighbor vertexes and
two adjacent edges. We denote the adjacent edge label and
neighbor vertex label as a pair < eL, vL >, where eL is
adjacent edge label and vL is the corresponding neighbor
vertex label. The vertex 0 has two pairs, such as < a, B >
and < c, B >. For each distinct pair, we also use a dis-
tinct bit string to denote it, such as “0000 0010 0000” for
< a, B > and “0000 0100 0000” for < c, B >. By bitwise
“ADD”-operation, we get the “counter”-string, which not
only encodes neighbor vertex labels but also the adjacent
edge labels. In fact, the method in encoding adjacent edge
labels is the same with that in encoding neighbor vertex la-
bels. For illustration convenience, we do not consider the
adjacent edge labels in the following discussion.

A

B B

a

b

c

0

1 2

(a)

Vertex 0's adjacent edge and neighbor vertex

(a, B)

(c, B)

Neighbors
0000 0010 0000

0000 0100 0000

Bit-String

0000 0110 0000

Ba

Bc

(b)

Figure 6: Encoding Edge Labels

Definition 7. Vertex Signature. Given a graph G and
a vertex v ∈ G, the vertex signature of v is < L, N, λ1, λ2 >,
where L is a length-X bit string to denote the vertex label,
and N is a length-X counter string to denote the neighbor
labels, < λ1, λ2 > is its vertex topology signature, defined in
Definition 6. We always use sig(v) to refer to the signature
of a vertex v.

The vertex signatures of graph 002 ,003 and query Q in the
running example are shown in Figure 13.

Lemma 3. Assume that a graph Q is sub-graph isomor-
phism to another graph G under the injective function g.
For each vertex v in Q, its signature is < L1, N1, λ1, λ2

>. In graph G, there is a vertex v′, where v′=g(v). Its
signature is < L2, N2, β1, β2 >. The two vertex signatures
satisfy the following conditions:
1) L1[i] = L2[i], i = 0...X-1 ;
2) N1[i] 6 N2[i], i = 0...X-1 ;
3) λ1 6 β1 AND λ2 6 β2,

Proof. (Sketch)
1) According to the sub-graph isomorphism definition, the
labels of v and v′ are the same with each other, i.e. L1[i] =
L2[i].

VertexID L N 1λ 2λ

0 000000000001 000000000001 1.73 0.00

1 000000000001 000100000002 2.05 1.20

2 000000000001 000100010001 2.05 1.20

3 000000010000 000000000001 1.73 0.00

4 000100000000 000000000002 2.00 1.41

Gcode(002) 000100010003 000200010007 Seq1 Seq2

Seq1 2.05, 2.05, 2.00, 1.73, 1.73

Seq2 1.41, 1.20, 1.20, 0.00, 0.00

(a) 002

VertexID L N 1λ 2λ

0 000000000001 000000020000 2.10 1.26

1 000000010000 000200010001 2.14 1.00

2 000000010000 000000010001 2.10 1.26

3 000100000000 000000010000 2.00 0.00

4 000100000000 000000010000 2.00 0.00

Gcode(003) 000200020001 000200060002 Seq1 Seq2

Seq1 2.14, 2.10, 2.10, 2.00, 200

Seq2 1.26,1.26, 1.00, 0.00, 0.00

(b) 003

VertexID L N 1λ 2λ

0 000000000001 000000010000 2.00 0.00

1 000000010000 000200010001 2.00 0.00

2 000100000000 000000010000 2.00 0.00

3 000100000000 000000010000 2.00 0.00

4 000000010000 000000010000 2.00 0.00

GCode(Q) 000200020001 000200050001 Seq1 Seq2

Seq1 2.00, 2.00, 2.00, 2.00, 2.00

Seq2 0.00, 0.00, 0.00, 0.00, 0.00

(c) Query Q

Figure 7: Vertex Signatures and Graph Codes

2) All neighbors of v in graph Q should be a subset of neigh-
bors of v′ in graph G. According to the method about how
to generate the counter string N1 and N2, it is straightfor-
ward to prove that condition 2) is true.
3) Condition 3) has been proved in Lemma 2.

Given two vertex v in graph Q and v′ in G, if sig(v) and
sig(v′) can satisfy three conditions in Lemma 3, we can say
sig(v) is compatible to sig(v′).

Pruning Rule 1. Given two graphs Q and G, for some
vertex v in Q, if we cannot find a vertex v′ in graph G
where sig(v) is compatible to sig(v′), Q cannot be sub-graph
isomorphism to G. 2

Though the above pruning rule can provide great pruning
power, they need “vertex to vertex” comparison. Therefore,
for a large graph database, we should have the more efficient
pruning strategy.

3.2 Graph Code
Benefiting from the vertex signature, the local structure
around a vertex has been mapped into the numerical space.
In this subsection, we propose the graph coding technique by
combining vertex signatures, which maps the global struc-
ture of a graph G into the numerical space. In the new
pruning strategy, we only need to compare two graph codes,
which avoids the “vertex to vertex” comparison.

Definition 8. Spectral Graph Code. The code of a
graph G is a denoted as GCode(G) = < L, N, Seq1, Seq2

>, where L and N are length-X counter strings. Assume
that graph G has n vertexes, and each vertex vj is denoted
as sig(vj) = < Lj , Nj , λj1, λj2 >.

1) L[i] =
j=n−1∑

j=0

Lj [i], where i=0... X-1 and L[i] is the i-th

counter of L.

2) N [i] =
j=n−1∑

j=0

Nj [i], where i=0... X-1 and N [i] is the i-th

counter of N.
3) For all vertex signatures sig(vj), all λj1 are ranked ac-
cording to non-ascending order to form the sorted list Seq1.
Similarly, all λj2 are ranked to form the sorted list Seq2.

The GCode(001), GCode(002) and GCode(Q) are shown in
Figure 13.

Lemma 4. Given two graphs Q with n1 vertexes and G
with n2 vertexes, where n1 ≤ n2, their graph codes are

denoted as GCode(Q) = < QL, QN , QSeq1, QSeq2 > and
GCode(G) = < GL, GN , GSeq1, GSeq2 >. If Q is sub-
graph isomorphism to graph G, GCode(Q) and GCode(G)
satisfy the following conditions:
1) QL[i] ≤ GL[i], where QL[i] is i-th bit of QL;
2) QN [i] ≤ GN [i], where QN [i] is i-th bit of QN ;
3) QSeq1[j] ≤ GSeq1[j], j = 0...n1 − 1.
4) QSeq2[j] ≤ GSeq2[j], j = 0...n1 − 1.

Proof. Since graph Q is sub-graph isomorphism to graph
G, it is necessary that each vertex v in Q has a correspond-
ing vertex u = g(v) in G under some injective function g.
In the following analysis, assume that sig(v) = < vL, vN ,
λ1, λ2 > and sig(u) = < uL, uN , β1, β2 >.
1) According to Lemma 3, we know that vL[i] = uL[i]. Since
the function g is an injective function from vertexes in Q to
vertexes in G, it means that

∑
vLj1[i] ≤

∑
uLj2[i], where

j1=1...n1 and j2=1...n2. Therefore, QL[i] ≤ GL[i].
2) According to Lemma 3, we know that vN [i] ≤ uN [i].Since
the function f is an injective function from vertexes in Q to
vertexes in G, it means that

∑
vNj1[i] ≤

∑
uNj2[i], where

j1=1...n1 and j2=1...n2. Therefore, QN [i] ≤ GN [i].
3) We prove the condition 3) by contradiction.
Assume that Condition 3) is not correct, that is QSeq1[j] >
GSeq1[j].
QSeq1 is a sorted list according to non-decreasing order,
therefore, QSeq1[i] ≥ GSeq1[j], where i = 0...j. It means
that there exist j+1 vertexes vi in graph Q (i=0...j), whose
λ1 are larger than GSeq1[j]. Since graph Q is sub-graph iso-
morphism to graph G, for each vertex vi in Q, it has a cor-
responding vertex ui. According to condition 3) in Lemma
3, the λ1 of vertex vi is no larger than that of vertex ui.
It means that there must exist j+1 vertexes ui in graph G,
whose λ1 are larger than GSeq1[j].
As we know, GSeq1 is a non-decreasing sorted list and GSeq1[j]
is the j-th largest one. It means that there exist at most j
vertexes, whose λ1 are larger than GSeq1[j], which is con-
tradicted to the above analysis. Therefore, condition 3) is
correct.
4) We can prove the condition 4) by the similar method in
3).

Based on the Lemma 4, we have the following pruning strat-
egy.
Pruning Rule 2. Given two graphs Q, their graph codes
are denoted as GCode(Q) = < QL, QN , QSeq1, QSeq2

> and GCode(G) = < GL, GN , GSeq1, GSeq2 >. If
GCode(Q) and GCode(G) cannot satisfy at least one follow-

ing condition, graph Q cannot be sub-graph isomorphism to
graph G.
1) QL[i] ≤ GL[i], where QL[i] is i-th element of QL;
2) QN [i] ≤ GN [i];
3) QSeq1[j] ≤ GSeq1[j], j = 0...n1 − 1.
4) QSeq2[j] ≤ GSeq2[j], j = 0...n1 − 1.

For example, we compare GCode(Q) and GCode(002). Since
GCode(Q).Seq1[3]=2.00 > GCode(002).Seq1[3]=1.73, there-
fore graph 002 is pruned safely.

4. SUB-GRAPH SEARCH
In the offline phase, for each graph Gi in the graph database,
we compute all vertex signatures in Gi and GCode(Gi).
Since the same vertex signature may be shared in differ-
ent graphs, we build a vertex signature dictionary to store
all distinct vertex signatures. For each graph ID, it has a
list of pairs < signatureID, count >, where signatureID
is a pointer to some vertex signature in the dictionary, and
count denotes the number of this vertex signature in the
graph. All GCode(Gi) are collected to form the graph code
database. In the running example, the corresponding graph
code database is shown in Figure 8.

Gcode(001) 1.73, 1.73, 1.73, 1.73, 1.73000200050001000200020001 0.00, 0.00, 0.00, 0.00, 0.00

Gcode(002) 2.05, 2.05, 2.00, 1.73, 1.73000200010007000100010003 1.41, 1.20, 1.20, 0.00, 0.00

Gcode(003) 2.14, 2.10, 2.10, 2.00, 200000200060002000200020001 1.26,1.26, 1.00, 0.00, 0.00

Gcode(004) 1.93 1.90 1.90 1.73 1.73 000100050004000100020002 1.18 1.18 1.00 1.00 0.00

Seq1NL Seq2

Gcode(Q) 2.00, 2.00, 2.00, 2.00, 2.00000200050001000200020001 0.00, 0.00, 0.00, 0.00, 0.00

Figure 8: Graph Code Database

According to the discussion in Section 3, we have two prun-
ing rules. In pruning power, there exist some false alarms
that can pass Pruning Rule 2 will be pruned by Pruning
Rule 1. Figure 11 discussed in the next section is an ex-
ample. In fact, the pruning power of Rule 1 is not always
superior to the Rule 2. For another example, in query graph
Q, more than one vertex signatures are only compatible to
one vertex signature in graph G. It is obvious that graph Q
cannot be sub-graph isomorphism to graph G, since the sub-
graph isomorphism is always an injective function. However,
this kind of false alarms cannot be filtered out by Pruning
Rule 1. Due to “count” information in graph code, we can
prune them in Rule 2. Therefore, we can say that the prun-
ing power of Rule 1 and 2 are not “parallel” to each other.
We need to combine these two pruning rules in a special
order. In Pruning Rule 2, we only need to compare two
graph codes. However, we have to perform “vertex to ver-
tex” comparison in Pruning Rule 1. It is straightforward to
know that the former (Rule 2) is much more efficient than
the later (Rule 1). Therefore, we have the online frame-
work shown in Figure 9. We first use Rule 2 to prune most
false alarms in the 1-st filter process, and then use Rule 1 to
filter out more false positives in the 2-nd filtering process.
After that, we perform expensive sub-graph isomorphism
checking in the verification phase. Notice that, the cost of
both filtering rules are much less than sub-graph isomor-
phism algorithm, which is NP-complete. We will evaluate
the pruning power, filtering time in each step and sub-graph

isomorphism checking time in experiment section.

Rule 1Rule 2
Subgraph

isomorphismQuery Q Gcode(Q) Candidate 1 Candidate 2 Results

Figure 9: Online Processing

Given a query graph Q, we compute Q ’s graph code, i.e.
GCode(Q). Using the Pruning Rule 2, we can do pairwise
comparison between GCode(Q) and each GCode(Gi) in the
graph code database. Though the pairwise comparison be-
tween GCode(Q) and GCode(Gi) is not an expensive task,
since we only need to perform numerical operations. How-
ever, as we know that many existing chemical databases con-
tain more than 500,000 or more compounds, such as “Com-
bined Chemical Dictionary” 4. Therefore, the efficient index
structure in the large graph code database will avoid the
pairwise comparison, and it leads to less filtering time.

Inspired by S-tree [15] for the signature files, we develop our
GCode-Tree. For the running example, the corresponding
GCode-Tree is shown in Figure 10. Since each GCode(Gi)=
< Li, Ni, Seq1, Seq2 >, we extract the first two parts, i.e.
L and N, to build GCode-Tree. GCode-Tree is a balanced
tree, where each node has at least m children (m ≤ 2), and
at most M children ((M+1)/2 ≥ m). Assume that the dic-
tionary node I in GCode-Tree has children nodes Ci, the
I and Ci are all denoted as < L, N >. We set I.L[j] =
Max(Ci.L[j]), where I.L[j] is the j-th counter of I.L. Sim-
ilarly, we set I.N [j] = Max(Ci.N [j]). Since the dynamic
operations in GCode-Tree, such as insertion and operation,
are analogous to that in S-tree. Due to space limited, we
omit the detail discussion about dynamic operations in this
paper.
Given a query graph Q, we can get the GCode(Q) =<
L, N, Seq1, Seq2 >. For the dictionary node I =< L, N > in
GCode-Tree, if there exists some i, where GCode(Q).L[i] >
I.L[i] or GCode(Q).N [i] > I.N [i], all descendants of I will
be pruned safely. For example, given the query graph Q,
GCode(Q) is shown in Figure 8. For the node I1 in GCode-
Tree, GCode(Q).L[3] = 2 > I1.L[3] = 1, all descendants of
I will not be considered. It means that graph 001 and 002
can be pruned safely. Therefore, scanning the GCode-Tree,
we can prune all graph codes that cannot satisfy the con-
dition 1) or 2) in Pruning Rule 2. For each each remaining
graph code GCode(Gi), we check whether GCode(Q) and
GCode(Gi) satisfy the condition 3) and 4) in Pruning Rule
2. Then, in 2-nd filtering process, we perform Pruning Rule
1 for each candidate after 1-st filtering process.

000100050004

000100020002

N

L

000200010007

000100010003

N

L

000200060002

000200020001

N

L

000200050001

000200020001

N

L

000200050007

000100020003

N

L

000200060002

000200020001

N

L

000200060007

000200020003

N

L

 001 002 003 004

I1
I2

Root

Figure 10: GCode-Tree

4http://ccd.chemnetbase.com/

5. THE LENGTH OF L AND N
In this section, we discuss the problem about the length of L
and N in vertex signature and graph code. Similar with sig-
nature file, there may exist “false drop” problem [11] when
comparing graph codes by Rule 2. Figure 11 shows a false
drop example. Here, we discuss the length of L, therefore we
omit the N and eigenvalues in vertex signatures and graph
codes in Figure 11. Given a query graph Q and a data graph
G, we have the hash function in Figure 11. The length of
L is 4. In the hash function, for each distinct label, we set
2 out of 4 bits to “1”. Unfortunately, the GCode(Q).L is
equal to GCode(G).L, though we have different vertex la-
bels in Q and G. It means that the L part of graph code
does not provide pruning power in this example. In fact, it
is similar with the “False Drop” problem in signature file
[11]. Though, in GCoding, the above false drop problem
can be overcome in the 2-nd filtering step, that is Filtering
Rule 1 (vertex to vertex comparison). However, in order
to improve the pruning power in the 1-st filtering step, we
should decrease the possibility of false drop. For example,
we can set the length of L to be 5. For each distinct label,
we set one of 5 bits to “1”. In this way, we do not get any
false drop. However, this straightforward approach leads to
another problem, that is the space cost. For example, if we
have 100 distinct vertex labels, the length of L is 100. Obvi-
ously, it is not space efficiency in a large graph database. To
tradeoff the space cost and pruning power in 1-st filtering
process, considering the property of real graph database, we
propose the following approach to determine the length of
L and N .

A

B C

B

E D

L

1

2 3

1

2 3

vertexID

10011
01012

01103

N
..
...
...
.

...

...

...

...

...

...

1λ 2λ

1212Gcode(Q) ..
.

Query Q

Graph G

LvertexID

01011
10102

01013

N
..
...
...
.

...

...

...

...

...

...

1λ 2λ

1212Gcode(G) ..
.

A 1001

B 0101

C 0110
D 0101

E 1010

Label Hash Value

Hashing Function

Figure 11: False Drop

0

50,000

100,000

150,000

200,000

V
er

te
x

F
re

qu
en

cy

Distrinct Vertex Label

Figure 12: Vertex Label Frequencies

We have a real graph database (AIDS dataset in Section
6) that has 10,000 compounds. There are 248,075 atoms
(vertexes) in all compounds (graphs). The major portion
of the atoms are “C”, “O”, “N”. For example, there are
180879 “C” atoms in all compounds. Figure 12 shows the
vertex label frequency. Obviously, it likes Zipf distribution5.

5A distribution characterized by Zipf’s law is called Zipf
distribution, and Zipf’s law states that the size of the r’th
largest occurrence of the event is inversely proportional to
it’s rank r

It means that few vertex labels have very large frequencies.
Actually, it is a popular phenomenon in compound structure
database. Therefore, we define a threshold α. Then we
get the two vertex label sets S1 = {Li|fre(Li) ≥ α}, and
S2 = {Li|fre(Li) < α}, where fre(Li) is the frequency of
vertex label Li. Due to Zipf distribution, |S1| � |S2|. We
use length-|S1| bit string to denote the vertex labels in S1.
For each distinct vertex label in S1, we set one of |S1| bits
to “1”, which leads to no false drop. To denote the vertex
labels in S2, according to analysis in [11]6, we can determine
the length of bit string. The false drop possibility is given in
the following Formula 1, where X: the length of bit string;
m: for each vertex label, we set m out of X bits to “1”;
Dq and Dt: the vertex number in query graph Q and data
graph G. For each given maximal false drop possibility, we
can use the following Formula 1 to guide setting the length
X. Then we use length-X bit string to denote the vertex
label in S2. Therefore, the length of L is equal to |S1|+X.
Using the similar method, we can also get the length of |N |.

Pfalse drop = (1− e−
mDt

X)mDq [11] (1)

6. EXPERIMENTS
In this section, we evaluate the performance of our method,
i.e. GCoding. For sub-graph search, gIndex and Closure-
Tree are chosen to compare with our methods. Our methods
are implemented in standard C++ with STL library support
and compiled with gcc/g++. All experiments are done on
a P4 1.7GHz machine of 1G RAM running Linux.

6.1 Datasets and Setting
In experiments, we consider vertex-labeled and edge-labeled
graphs. In GCoding, we use the method mentioned in Figure
6 to encode edge labels. Because the implementation of
Closure-tree does not handle edge labels, we use the same
technique mentioned by [3], that is to insert an additional
vertex for each edge to encode this information. Since the
edge and vertex labels were drawn from disjoint sets, there
could be no ambiguity between edges and vertices. This
enables a performance comparison to be made in the case of
sub-graph search.

1) AIDS Antiviral Screen Dataset The real dataset
we test is AIDS dataset containing chemical compounds.
This dataset is available publicly on the website of the De-
velopmental Therapeutics Program 7. As of March 2004,
the dataset contains 43,850 classified chemical molecules.
We generate 10,000 connected and labeled graphs from the
molecule structures and omit Hydrogen atoms. The graphs
have an average number of 24.80 vertices and 26.80 edges,
and a maximum number of 214 vertices and 217 edges. A
major portion of the vertices are C, O and N. The total
number of distinct vertex labels is 62, and the total num-
ber of distinct edge labels is 3. We refer to this dataset by
AIDS dataset. Each query set Qm has 1000 connected query
sub-graphs and each query sub-graph in Qm is a connected
size-m sub-graph, which is extracted from each data graph

6Different from [11], we may have duplicate label in a graph,
such as label “A” in graph 001 in Figure 1. However, for
any vertex label l in S2, it is a little possibility that a graph
may contain duplicate l. Therefore, for the set S2, we have
the similar false drop possibility with [11].
7http : //dtp.nci.nih.gov/

randomly. We use six query sets, Q4, Q8, Q12, Q16, Q20
and Q24.

2) Synthetic Dataset The synthetic dataset is generated
by a synthetic graph generator provided by authors of [12].
More details about the synthetic data generator are available
in [12]. We generate the graph database by the following
parameters: D=10,000, L=5, I= 6, T=20, V=5, E=5.

In gIndex and Closure-tree algorithms, we choose the default
or the suggested values for parameters according to [18, 8].
We discuss the parameter setting problems for our GCoding
in Section 6.2. Except for experiments in Section 6.2, we
always choose the level-2 Path Sub-tree and use the 2 largest
eigenvalues to define vertex signatures and graph codes. In
experiments, the default length of L and N is 26.

6.2 Parameter Setting
In this subsection, we discuss some parameter setting prob-
lems in GCoding method. We first discuss the length of L
and N in vertex signature and graph codes. In Section 5,
we have discussed how to set the length of L and N . In
AIDS dataset, we have 248,075 vertexes in all graphs and
62 distinct vertex labels. Only 6 vertex labels have more
than 1000 occurrences in these 248,075 vertexes. There are
average 24.80 vertexes in each data graph. Therefore, we
use 6 bits to denote the frequent 6 vertex labels. For each
frequent vertex label, we set one of 6 bits to “1”. In fact,
there is a little possibility (< 0.001) that one data graph
contains duplicate unfrequent vertex labels. We use Formula
1 in Section 5 to guide setting the length of L and N . We set
F = 20 and m = 2, that is to set two out of 20 bits to “1”
for each unfrequent vertex label. According to Formula 1,
the false drop possibility is less than 0.3%. Thus, the total
length of L is 20 + 6. Similarly, the length of N is also set
to 26.

Q24 Q20 Q16 Q12
0

20

40

60

80

100

120

140

160

180

C
an

di
at

e
S

iz
e

Query Size

1−eigenvalue
2−eigenvalues
3−eigenvalues
All eigenvalues

(a)

Q24 Q20 Q16 Q12
0

20

40

60

80

100

120

140

160

180

C
an

di
at

e
S

iz
e

Query Size

2−Level LNST
3−Level LNST

(b)

Figure 13: The Pruning Power at (a) Different
Eigenvalues and (b) Different Level LNST in AIDS
Dataset

Figure 13(a) shows the performance in different eigenvalues.
Observed from the Figure 13(a), we find that choosing three
or more eigenvalues cannot lead to the great improvement
in pruning power. Furthermore, choosing more eigenvalues
means the larger graph code database. Therefore, we always
choose the two largest eigenvalues, i.e. λ1 and λ2 in our ex-
periments.
As we know, LNST (G, v, 1) is the level-1 path sub-tree
around vertex v. Actually, all nodes in LNST (G, v, 1) are
all v’s neighbor vertexes. It means that 1-st level LNST in-
formation has been coded into the “N” part of vertex signa-
tures and graph codes. Therefore, we should use 2 or more

levels LNST . However, choosing more levels means that
the corresponding matrix is larger, and it also means that we
need more time to compute eigenvalues for vertex signatures
and graph codes. In fact, |LNST (G, v, n)|= O(dn), where
|LNST (G, v, n)| is the number of nodes in LNST (G, v, n)
and d is the average vertex degree. Observed from Fig-
ure 13(b), choosing 3-levels does not leads to significant
improvement in pruning power. Therefore, to obtain less
offline processing time and online filtering time, we always
use 2-level LNST in GCoding.

6.3 Performance Study
We first evaluate the performance of GCoding in the of-
fline process, such as the size of “graph code database to-
gether with Indexes + vertex signature dictionary” and of-
fline processing time. In order to compute the eigenvalues
of a symmetric matrix in our method, we implement the
Jacobi method [6].

2K 4K 6K 8K 10K
0

2

4

6

8

10

12

Database Size

In
de

x
S

iz
e

(M
B

)

GCoding
gIndex
Closure−tree

(a)

2K 4K 6K 8K 10K
0

50

100

150

200

250

300

350

Database Size

O
ffl

in
e

P
ro

ce
ss

in
g

T
im

e
(S

ec
)

GCoding
gIndex
Closure−tree

(b)

Figure 14: (a) Index Size and (b) Offline Processing
Time in AIDS dataset

In Figure 14(a), we shows the index size in different meth-
ods. To facilitate the illustration, in GCoding method, we
refer to “graph code database together with Indexes + ver-
tex signature dictionary” as “index”. As the increment of
dataset, from 2K to 10K, the index size in our method is al-
ways the smallest. Take 10K dataset for example, there are
248,075 vertexes in all 10,000 data graphs. However, there
are only 1,898 distinct vertex signatures. Therefore, the size
of the vertex signature dictionary is only 0.315M bytes. As
we know, the graph code GCode(Gi) = < L, N, Seq1, Seq2 >.
In experiments, the lengths of L and N are set to 26 re-
spectively. On average, there are 24.80 vertexes in a data
graph Gi. It is straightforward to know that the average
lengthes of Seq1 and Seq2 are also 24.80 respectively. Since
GCode(Gi).Seq1 is a list of λ1 for all vertexes in graph Gi,
the length of GCode(Gi).Seq1 is always equal to the num-
ber of vertexes in graph Gi. Therefore, we only need to
store (26*2+24.80*2) numerical values for each GCode(Gi)
in graph code database. The size of the graph code database
together with GCode-tree indexes is 5.074M bytes in ADIS
dataset. We need extra 1.334M byes to store the link in-
formation between graph ID and vertex signatures in the
dictionary. Therefore, the total size in GCoding method in
ADIS dataset is 6.723M bytes, which is about one half of
the index in Closure-tree method.

Figure 14(b) shows the offline processing time in different
methods. Closure-tree is the fastest. Our methods is slower
than Closure-tree. According to our testing, on average, we
need to about 0.008 ∼ 0.010 second to compute the vertex

Table 1: Evaluating Multi-step Pruning Strategy of
GCoding in AIDS dataset

Cand.1 Time2 Cand. Time Cand. Time

Q24 Q20 Q16

10.03 8.56 7.52

3 250.80 6 841.48 12 1532.23

Compute Graph
Codes

46 1.08 96 2.15 293 3.15

10 3.56 27 5.85 75 14.56

1-st filtering

2-nd filtering

14.67 16.56 25.23Total filtering
time

Refining phase

Cand. Time Cand. Time Cand. Time

Q12 Q8 Q4

7.03 6.30 5.89

230 1850.50 615 2011.20 2150 2300.15

1033 4.42 2511 6.47 5527 9.09

380 58.08 1300 101.27 4088 150.01

69.53 114.04 164.99

Note : Cand.1 : Candidate Size ;
 Time 2 : All running time reported in this section are the running time in 1000 queries in each query set.

signatures and graph code for each graph. gIndex is much
slower than Closure-tree and our method, since it needs
expensive mining process to find some discriminative frag-
ments. Actually, all feature-based methods have the similar
limitations.

As we know, according to the online process framework in
Figure 9, in order to answer a sub-graph query, we need to
compute graph code, two step filtering phase and sub-graph
isomorphism in the verification process. Table 1 shows the
running time in each step and pruning power in each filter-
ing step. Notice that all running time (including Filtering
Time and Total Response Time) reported in this section are
the total running time in 1000 queries in each query set. We
implement ULLMANN algorithm [16] to check sub-graph
isomorphism in the verification process. In the first filtering
step, we compare the graph codes between query graph and
data graph by Filtering Rule 2. Observed from Table 1, the
first step is the fastest, which prunes most false alarms. The
candidate size after 1-step Filtering is about 0.5% ∼ 3% of
the original size of graph database. After that, we compare
the vertex signatures in query graph and data graphs by Fil-
tering Rule 1. The filtering time in the second step is slower
than that in the first step. However, compared with expen-
sive refining phase, the total filtering time is about 1

10
∼ 1

100
of sub-graph isomorphism checking time. Furthermore, the
candidate size after 2-step Filtering is less than 1

4
of that af-

ter 1-step Filtering. Therefore, in order to obtain fast total
response time, it is worth performing 2-step filtering phase
in GCoding method.

We also compare the pruning power, the filtering time and
total response time with some existing methods on both
AIDS dataset and synthetic dataset in Figure 15. Observed
from Figure 15(a) and 15(d), GCoding has the largest prun-
ing power. Due to expensive structure comparison and max-
imal matching algorithm in the filtering phase, the filtering
time of Closure-tree is the slowest, which is about 5 ∼ 10
times than that in gIndex and GCoding method in Figure
15(a) and 15(e). In GCoding method, the filtering time in
Q24 is faster than Q4, since there are more false alarms in
Q24 that are pruned in the first filtering step than that in
Q4. As we know, the filtering time in the first filtering step
is faster than the second filtering step, which is analyzed
in Table 1. In gIndex, there are less “indexed fragments”
in Q4 than that in Q24. It means that scanning inverted
index consumes less time in Q4 than that in Q24. There-
fore, the filtering time in Q4 is faster than that in Q24 in
gIndex method. Generally speaking, the filtering time in

gIndex and GCoding can be ignored in the total response
time, since it is less than 1

10
∼ 1

100
of sub-graph isomorphism

checking time in verification phase. Because GCoding has
the least candidate size and the filtering time is little, the to-
tal response time is also the least, which is shown in Figure
15(c) and 15(f).

2K 4K 6K 8K 10K
90

92

94

96

98

100

P
ru

nn
in

g
P

ow
er

 (
%

)

Number of Graphs in Datbase

Q24 Q20 Q16 Q12 Q8

Figure 16: Pruning Power in Dynamic Situation of
AIDS Dataset

Figure 16 shows the pruning power of GCoding in dynamic
situation of AIDS Dataset, where pruning power is defined
as DBSize−CandidateSize

DBSize−ResultSize
. We insert graphs in to the database

from 2K to 10K. Observed from Figure 16, the pruning
power under different query sets always keeps around some
value. In experiments, the pruning power of Q4 are always
around 75.3%.

7. RELATED WORK
Sub-graph search, which is defined as given a graph Q, re-
trieving all graphs containing Q as a sub-graph in the graph
database. There are two process, that are filtering and ver-
ification processes. In order to improve the search perfor-
mance, most existing methods try to select some features,
such as paths, frequent sub-graphs and frequent sub-trees,
and build an invert index on these features. Benefiting from
these features, we can reduce the candidate answer set size
without expensive sub-graph isomorphism checking, which
is NP-complete [5]. For example, in GraphGrep [14], all
paths up to maxL length are chosen as index features. Ex-
tended from path-based indexes, gIndex [18] uses frequent
sub-graphs as index features. In gIndex, frequent sub-graphs
with size up to maxL are first generated by frequent sub-
graph algorithm. Then, a gIndex Tree is built on these fre-
quent sub-graphs. Finally, a candidate set is generated by
searching the query graph in the gIndex tree. In [19], au-
thors suggest using frequent and discriminative subtrees to
index all graphs. However, because of feature selection in
[18] and [19], this kind of pruning approach always assume
that the graph database is static, or statistics of the graph
database do not change. The quality of feature-based prun-
ing power may degrade over time after lots of insertions
and deletions [18]. Furthermore, due to expensive mining
process in offline processing, this kind of methods cannot
be straightforward to be extended in a very large graph
database. In fact, in practice, the graph database is always
very large and dynamic (i.e. frequent insertion and dele-
tion). In our method, the offline processing time is always
linear with the graph database size.

Furthermore, authors propose another kind of pruning strat-
egy in filtering phase in Closure-tree [8], that is pseudo sub-

5 10 15 20

10
1

10
2

10
3

10
4

C
an

di
da

t/A
ns

w
er

 S
et

 S
iz

e

Query Size

GCoding
gIndex
Closure−tree
Answer Set

(a) Candidate Size in AIDS Dataset

Q24 Q20 Q16 Q12 Q8 Q4
0

50

100

150

200

250

300

F
ilt

er
in

g
T

im
e

(S
ec

)

Query Size

GCoding
gIndex
Closure−tree

(b) Filtering Time in AIDS Dataset

Q24 Q20 Q16 Q12 Q8 Q4
0

500

1000

1500

2000

2500

3000

3500

4000

T
ot

al
 R

es
po

ne
 T

im
e

(S
ec

)

Query Size

GCoding
gIndex
Closure−tree

(c) Total Response Time in AIDS

Dataset

Q15 Q10 Q5
0

50

100

150

C
an

di
da

t/A
ns

w
er

 S
et

 S
iz

e

Query Size

GCoding
gIndex
Closure−tree
Answer Set

(d) Candidate Size in Synthetic Dataset

Q15 Q10 Q5
0

50

100

150

F
ilt

er
in

g
T

im
e

(S
ec

)

Query Size

GCoding
gIndex
Closure−tree

(e) Filtering Time in Synthetic Dataset

Q15 Q10 Q5
0

500

1000

1500

T
ot

al
 R

es
po

ns
e

T
im

e
(S

ec
)

Query Size

GCoding
gIndex
Closure−tree

(f) Total Response Time in Synthetic

Dataset

Figure 15: Evaluating Online Performance

graph isomorphism, which tries to find a semi-perfect match-
ing from vertexes in query graph to vertexes a data graph
(or graph closure). If we cannot find the matching, graph
(or graph closure) is pruned out safely. Because we need
to do expensive structure comparison and maximal match-
ing algorithm in filtering phase, whose time complexity is
O(ln1n2(d1d2 + M(d1, d2)) + M(n1, n2)), where l is the
pseudo compatibility level, n1 and n2 are numbers of ver-
texes in G1 and G2, d1 and d2 are the maximum degrees
of G1 and G2, M() is the time complexity of maximal car-
dinality matching for bipartite graphs, which is O(n2.5) in
Hopcroft and Karp’s algorithm [9]. From our performance
study, even though we set pseudo compatibility level to 1
(default value), the filtering time is large, 5∼10 times larger
than that in GCoding. In GCoding, we only need to perform
“cheap” numerical operations.

There are some interesting recent work in graph search prob-
lem, such as [3] [19] [7]. In [3], authors enumerate all con-
nected induced subgraphs in the graph database, and or-
ganize them in a Graph Decomposition Index (GDI). This
method cannot work well in a graph database with large-
size graphs, due to combination explosion of enumerating
all connected induced subgraphs. Authors propose a graph
string method [7] for compound database.

Interlacing Theorem (i.e. Theorem 1 in Section 2) in spec-
tral graph theory tells us that there is a relationship between
eigenvalues of adjacency matrixes of Q and G, where Q is an
induced subgraph of G. An important limitation of Interlac-
ing Theorem is that it can only hold when Q is an induced
sub-graph of G, not a general sub-graph. In tree databases,
Interlacing Theorem always hold [1]. Another important
limitation of spectral methods is that they are purely struc-

tural, in the sense that they are not able to exploit node
or edge labels. GCoding, proposed in this paper, overcome
the above two limitations, i.e. it can work on general graph
database problem and it can also handle vertex and edge la-
bels. To our best knowledge, there is little work on spectral
encoding technique in sub-graph search problem.

8. CONCLUSION
In this paper, we propose a novel spectral graph coding tech-
nique, i.e GCoding. Benefiting from GCoding, we transform
the original graph database into the graph code database.
In the filtering phase, we prune most false alarms based on
graph code comparisons. Extensive experiments show that
GCoding has a significant improvement to existing methods
on both offline and online processes.

9. ACKNOWLEDGMENTS
We would like to thank Xifeng Yan and Jiawei Han for pro-
viding gIndex, and Huahai He and Ambuj K. Singh for pro-
viding Closure-tree, and Michihiro Kuramochi and George
Karypis for providing the synthetic graph data generator.

10. REFERENCES
[1] N. Z. 0002, M. T. Özsu, I. F. Ilyas, and A. Aboulnaga.

Fix: Feature-based indexing technique for xml
documents. In VLDB, pages 259–270, 2006.

[2] D. Cai, Z. Shao, X. He, X. Yan, and J. Han.
Community mining from multi-relational networks. In
PKDD, pages 445–452, 2005.

[3] J. H. D.W. Williams and W. Wang. Graph database
indexing using structured graph decomposition. In
ICDE, 2007.

[4] C. Faloutsos and S. Christodoulakis. Signature files:
an access method for documents and its analytical
performance evaluation. ACM Trans. Inf. Syst.,
2(4):267–288, 1984.

[5] S. Fortin. The graph isomorphism problem.
Department of Computing Science, University of
Alberta, 1996.

[6] H. H. Goldstine, F. J. Murray, and J. von Neumann.
The jacobi method for real symmetric matrices. J.
ACM, 6(1):59–96, 1959.

[7] P. Y. H. Jiang, H. Wang and S. Zhou. Gstring: A
novel approach for efficient search in graph databases.
In ICDE, 2007.

[8] H. He and A. K. Singh. Closure-tree: An index
structure for graph queries. In ICDE, page 38, 2006.

[9] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM J.
Comput., 2(4):225–231, 1973.

[10] C. A. James, D. Weininger, and J. Delany. Daylight
theory manual daylisght version 4.82. Daylight
Chemical Information Systems,Inc., 2003.

[11] H. Kitagawa and Y. Ishikawa. False drop analysis of
set retrieval with signature files. Inf. Syst.,
27(2):93–121, 2002.

[12] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In ICDM, pages 313–320, 2001.

[13] E. Petrakis and C. Faloutsos. Similarity searching in
medical image databases. IEEE Transactions on
Knowledge and Data Enginnering, 1997.

[14] D. Shasha, J. T.-L. Wang, and R. Giugno.
Algorithmics and applications of tree and graph
searching. In PODS, pages 39–52, 2002.

[15] E. Tousidou, P. Bozanis, and Y. Manolopoulos.
Signature-based structures for objects with set-valued
attributes. Inf. Syst., 27(2):93–121, 2002.

[16] J. R. Ullmann. An algorithm for subgraph
isomorphism. Journal of the Assocmtlon for
Computing Machinery, 23:31–42.

[17] P. Willett. Chemical similarity searching. J. Chem.
Inf. Comput. Sci, 1998.

[18] X. Yan, P. S. Yu, and J. Han. Graph indexing: A
frequent structure-based approach. In SIGMOD
Conference, pages 335–346, 2004.

[19] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph
indexing method. In ICDE, 2007.

