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Abstract

Any application that represents data as sets of graphs may benefit from the dis-

covery of relationships among those graphs. To do this in an unsupervised fashion

requires the ability to find graphs that are similar to one another. That is the purpose

of GraphClust. The GraphClust algorithm proceeds in three phases, often building on
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other tools:

1) it finds highly connected substructures in each graph;

2) it uses those substructures to represent each graph as a feature vector; and

3) it clusters these feature vectors using a standard distance measure. We validate

the cluster quality by using the silhouette method. In addition to clustering graphs,

GraphClust uses SVD decomposition to find frequently co-occurring connected sub-

structures. The main novelty of GraphClust compared to previous methods is that it

is application-independent and scalable to many large graphs.

Index terms - Text clustering, Document vectors, Graph clustering, Graph sub-

structure matching

1 Background

In the last few years, developing algorithms for clustering data represented by graphs

has been recognized as a problem in the pattern recognition community [Bunke, 2003].

Nevertheless, graph clustering is still an open problem for two reasons. First, many

interesting exact graph matching problems, e.g. subgraph isomorphism, and maximum

common subgraph, are NP-complete, so graph clustering algorithms built on top of

graph matching can take exponential time. Second, the proper distance metric between

graphs is a matter of debate.

In chemistry, the clustering of substances is of central interest as well described

in [Brint and Willett, 1987]. The reason is that compounds that are structurally simi-

lar to each other and whose nodes have similar properties are likely to exhibit similar

properties [Johnson and Maggioara, 2000]. For this reason, an appropriate description

of molecule structures and an adequate clustering algorithm are both essential to a

good clustering. Such techniques have been applied to the prediction of the physio-

chemical and biological properties of chemical compounds [Brown and Martin, 1996,

Brown and Martin, 1997], the selection of diverse representative compounds and rea-

gent sets for the design of combinatorial libraries [Herpin et al., 2000], compound acqui-

sition selection [Shemetsukis et al., 1995, Menard et al., 1998] and the compilation of

screening sets [Engels et al., 2000]. Many methods, often based on fingerprint descrip-
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tions, have appeared in the literature [Forgy, 1965]. The hierarchical Ward [Ward, 1963],

the nonhierarchical Jarvis-Patrick [Jarvis and Patrick, 1973] and the k-means reloca-

tion methods [Downs and Barnard, 2002] are the most popular. Ward’s method outper-

forms the other two in chemical databases [Brint and Willett, 1987, Engels et al., 2000,

Forgy, 1965, Wild and Blankley, 2000]. In [Ott et al., 2004] the authors proposed a se-

quential superparamagnetic clustering approach that correctly clusters datasets com-

posed of structures from seven chemically distinct compound classes.

There is an extensive literature on subgraph searching [Wang et al., 1999, Suciu, 1998].

Most of these methods are designed for specific applications. For example, Day-

light [James et al., 2000] is a searching system for molecular databases using finger-

prints consisting of bit vectors, where each position is associated to a small path. It

outputs all the molecules that contain at least one occurrence of the query.

Other methods for XML databases have been proposed (see for example [xpa, 1999,

McHugh et al., 1997, Sheng et al., 1999, Galanis et al., 2001, Shanmuga. et al., 1999]).

In [Messmer and Bunke, 1996] the authors proposed a method which indexes the

graphs in a database and computes a graph isomorphism. Both indexing and matching

are based on all possible permutations of the adjacency matrices of the graphs.

GraphGrep [Giugno and Shasha, 2002] is a tool to find all the occurrences of a

subgraph in a pre-known database of graphs. Its filtering process starts by computing

for each graph and for each node all the paths starting at that node up to a certain

length. A hash-table associates all the paths with their corresponding indexes.

Frequent subgraph mining has been studied extensively in the data mining commu-

nity. Mining patterns from graph databases in different domains such as cheminfor-

matics and bioinformatics is challenging since operations within graphs have high time

complexity.

Subdue is a system that captures essential structure information from graphs. The

Subdue substructure discovery system, [SUB, 1988], discovers repetitive subgraphs in

a labelled graph representation by using the minimum description length principle.

Subdue has found application to several domains, such as molecular biology, image

analysis and computer-aided design.

FFSM, [Huan et al., 2003], is a novel frequent subgraph mining algorithm that

employs a vertical search scheme within an algebraic graph framework in order to
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reduce the number of redundant candidates. In some experiments, it outperforms

gSpan, [Yan and Han, 2002], where the introduction of a lexicographic order among

graphs allows the use of a depth first search strategy to mine frequent connected sub-

graph efficiently.

In order to decrease the size of the output which could be exponential, Spin, [Huan et al., 2004],

is a new algorithm that finds only maximal frequent subgraphs: it first retrieves all fre-

quent trees from a general graph database and then reconstructs all maximal subgraphs

from the mined trees.

In [Kuramochi and Karypis, 2004] a method for finding frequent connected sub-

graphs that have a sufficient number of edge-disjoint embeddings in a large sparse

graph is presented.

Text retrieval has focussed on the need to locate textual information efficiently

(see [Steinbach et al., 2000, Cutting et al., 1992, Berry et al., 2003, Kowalski, 1997]).

A classical text searching method [Cutting et al., 1992] involves modelling a text col-

lection as a document-term matrix, and evaluating a document’s relevance to a query

using a linear algebraic dot product. In a term-document matrix A, A[i, j] gives the

number of occurrences of term j in document i. Queries are normally represented as a

bit vector over the same set of terms. The similarity between document vectors (the

rows of document-term matrices) can be found by their inner product. This corresponds

to determining the number of term matches (weighted by frequency) in the respective

documents. Singular Value Decomposition (SVD) has been shown to work well for text

retrieval over the last fifteen years [Deerwester et al., 1990, Hull, 1994]. The efficiency

motivation is clear: large document-by-term matrices have a significant amount of re-

dundant data. Surprisingly, removing this information allows a more precise as well as

efficient search. Singular Value Decomposition achieves rank reduction by breaking the

matrix A in the product of 3 matrices T, S,DT which can be truncated to r dimen-

sions to find the most significant ”dimensions” in the data. Latent Semantic Indexing

(LSI), [Husbands et al., 2001] uses the truncated Singular Value Decomposition (SVD)

of the term-document matrix to improve search.

By analogy, Spectral methods try to represent the most interesting properties of the

input graphs using vectors, thus reducing the graph clustering problem to a problem

in a vector space [Luo et al., 2002, Luo et al., 2003, Kosinov and Caelli, 2002]. This
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allows a new spectral method, closely related to latent semantic indexing, to be used.

This paper presents GraphClust, a simple algorithm for clustering labelled graphs.

The algorithm synthesizes several ideas from the previous work in each of its three

phases. In the first phase, it finds interesting substructures using Subdue (for sparse

graphs) or GraphGrep (for dense graphs). In the second phase, it maps the graphs to

feature vectors where the frequency of substructure j in the graph i is stored at A[i, j].

After this, the rows of the matrix A are clustered using a standard k-means or a fast

approximation algorithm called Antipole. In an optional phase, GraphClust uses latent

semantic indexing to pull out interesting common substructures.

In contrast to previous methods ([Johnson and Maggioara, 2000, Ott et al., 2004,

Brown and Martin, 1996, Brown and Martin, 1997, Schreiber and Schwobbermeyer, 2005]),

GraphClust works with any kind of labelled graph. In contrast to FFSM, gSpan and

Spin, GraphClust can use the AllPairShortestPath procedure to find important sub-

structures. Avoiding the isomorphism computation makes GraphClust able to be

run on large datasets as shown in 5. Subdue is slower than AllPairShortestPath,

but is fast enough for moderate sized applications thanks to techniques developed

in [Ketkar et al., 2005] so we offer that as another option.

To summarize our strategy, we synthesize simple algorithms with sophisticated pre-

vious techniques to develop a scalable algorithm that can give insights real applications

as we show by example in 6. As of this writing, more than 70 researchers worldwide have

downloaded our software for applications ranging from sociology to XML clustering.

2 Design

GraphClust assumes that each node of the database graphs has a unique identification

number and a label. Edges are unlabelled (for purpose of this paper).

GraphClust deals with either directed or undirected graphs. The substructures can

be discovered in two ways:

• by using the AllPairShortestPath algorithm as in [Giugno and Shasha, 2002]: for

each graph of the dataset and for each vertex v, all shortest paths whose lengths

are at most a parameter lp are generated from v. Each path is represented by the
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Figure 1: Dataset of two graphs.

Graph (a) Graph (b)

Initial Node Substructures generated Initial Node Substructures generated

top-left A {A,AC,AB,ABA} A {A,AB,AC}

B {B,BC,BA,BA} B {B,BA,BAC}

bottom-right A {A,AB,ABC,ABA} C {C,CA,CAB}

C {C,CA,CB,CBA}

Table 1: Patterns generated from the dataset of Fig. 1 using AllPairShortestPath with lp = 3.

C CA CB CBA A AB ABA B BAC

graph (a) 1 2 2 2 2 4 2 1 0

graph (b) 1 2 0 0 1 2 0 1 2

Table 2: Matrix A generated from the patterns of Table 1.
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sequence of node labels in that path. The set of such sequences represents the

substructure around vertex v.

• by using the Subdue substructure discovery system ([SUB, 1988]); in this case,

for each graph g of the dataset, Subdue finds common or approximately common

substructures of g.

A matrix having a number of columns equal to the number of found substructures

and a number of rows equal to the number of the graphs in the dataset is created. Each

entry A[i, j] represents the number of times in which the substructure j is contained in

the graph i.

If AllPairShortestPath is run, it finds for each vertex all the label sequences corre-

sponding to all paths whose lengths are at most lp and therefore it creates more columns

in the matrix A than Subdue does. Experimentally we have observed that lp = 4 is

a good trade-off between time and precision. However, if too many substructures are

found when using either the AllPairShortestPath or Subdue, GraphClust considers only

the max sub most frequent, where max sub is a parameter.

Once the matrix A is built, we cluster its rows. We offer two clustering schemes:

the k-means algorithm in which the user chooses the number of clusters k to create;

Antipole clustering [Cantone et al., 2004] in which the user chooses a “tightness” mea-

sure (an integer value in the range 1 to 4) where the higher the measure the smaller

the cluster radius and hence the larger the number of generated clusters. Antipole clus-

tering [Cantone et al., 2004] is much faster than k-means. The metric distance used

in both clustering algorithms just described can be either Euclidean distance or inner

product distance. Euclidean distance is appealing for applications having a natural

geometry. Inner product is better for non-spatial applications such as text-similarity.

In table 2 a matrix obtained from the patterns of table 1 generated by applying the

AllPairShortestPath algorithm with lp = 3 to the dataset in Fig. 1 is shown.

Another operation we perform on matrix A is to find closely related substructures.

Using singular value decomposition (SVD), the substructure-graph matrix AT is broken

apart into the product of 3 matrices T, S and DT . Table 3 shows a SVD of the matrix

A in table 2. These matrices are truncated to r dimensions with r chosen by the user.

Dimensionality reduction reduces the noise present in the substructure-substructure
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matrix revealing a robust relationships between the substructures. The substructure-

substructure correlation matrix Xr is then computed by multiplying Tr×Sr×(Tr×Sr)
T .

Table 4 shows the substructure-substructure correlation matrix Xr computed from the

matrices Tr, Sr of table 3 reduced for r = 1.

















−0.20 −0.17
−0.40 −0.33
−0.26 0.35
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−0.46 −0.89
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T × S × DT

Table 3: Matrices T, S, DT generated by the Singular Value Decomposition of AT of Table 2.
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T

=

C CA CB CBA A AB ABA B BAC

C 2 4 2 2 3 6 2 2 2
CA 4 8 4 4 6 12 4 4 4
CB 2 4 4 4 4 8 4 2 0

CBA 2 4 4 4 4 8 4 2 0
A 3 6 4 4 5 10 4 3 2

AB 6 12 8 8 10 20 8 6 4
ABA 2 4 4 4 4 8 4 2 0

B 2 4 2 2 3 6 2 2 2
BAC 2 4 0 0 2 4 0 2 4

Table 4: Reduced correlation substructure-substructure matrix Xr = Tr × Sr × (Tr × Sr)
T

for r = 1.

3 Algorithms

It turns out that GraphClust consists of 16 different algorithms broken down along the

four binary dimensions described in the section 2. In this section, the algorithms used

by GraphClust in the three steps of its main procedure will be discussed in more detail
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than in the introduction in order that the reader can understand the tradeoffs involved

in their application.

Subdue [SUB, 1988] discovers interesting and repetitive subgraphs in a labelled

graph representation using the minimum description length principle; Subdue discovers

substructures that compress the original data and represent structural concepts in the

data. By replacing previously-discovered substructures in the data, multiple passes of

Subdue produce a hierarchical description of the structural regularities in the data.

Subdue uses a computationally-bounded inexact graph match that identifies similar,

but not identical, instances of a substructure and finds an approximate measure of

closeness of two substructures. In addition to the minimum description length princi-

ple, other background knowledge can be used by Subdue to guide the search towards

more appropriate substructures.

Once the substructures and the matrix A have been created, the clustering is per-

formed by the k-means or Antipole clustering method [Cantone et al., 2004]. In our

implementation of k-means, at the first iteration (that is for t = 1), the initial k cen-

troids q1
1, q

1
2 , . . . , q

1
k are computed by using the Gonzalez [Gonzalez, 1985] algorithm to

find mutually distant centroids; then, the remaining objects are assigned to a class

according to the relation xl ∈ C1
j iff d(xl, q

1
j ) ≤ d(xl, q

1
i ), 1 ≤ j, i ≤ k, i 6= j. Af-

ter each iteration t, new centroids are computed in such a way that the performance

index, γi =
∑

x∈Ct
i
|x − qt

i |
2, i = 1, 2, 3, . . . , k, is minimized. This achieves the condi-

tion qt+1
i = 1

nt
i

∑

∀x∈Ct
i
x. If qt+1

i = qt
i , the process finishes, otherwise, the objects are

grouped again.

The Antipole clustering [Cantone et al., 2004] algorithm of bounded radius is per-

formed by a top-down procedure starting from a given finite set of points S which checks

if a given splitting condition is satisfied. This condition asks for two points whose dis-

tance is greater than the radius. If there are no two such points, then splitting is not

performed and the given subset is a cluster on which an approximate centroid is then

found. Otherwise, a suitable pair of points (A, B) of S called Antipole is generated

and the set is partitioned by assigning each point of the splitting subset to the closest

endpoint of the Antipole (A, B). As seen in [Cantone et al., 2004] the randomized algo-

rithms used by Antipole clustering makes its construction much faster than k-means’s.
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4 Complexity

Here is a description of the worst case complexity for the three steps of GraphClust.

We will consider two different settings of GraphClust: GraphClustDENSE which uses

AllPairShortestPath for substructure construction and the Antipole method for cluster-

ing; GraphClustSPARSE which uses Subdue for substructure constructions and k-means

algorithm for clustering. The former is preferable in the presence of large dense graphs

whereas the latter is preferable in finding the substructures and clustering of sparse

graphs.

4.1 GraphClustDENSE

Let |D| be the number of graphs in a database D. The complexity of the first step

of GraphClustDENSE is O(
∑|D|

i (ni
3)), where ni is the number of nodes of the graph

i. The second step has complexity O(|D| · |pat| ·
∑|D|

i (ni · m
lp
i )), where |pat| is the

total number of patterns generated and mi is the number of patterns starting from ni.

Finally, the Antipole clustering has a worst-case complexity of τ(τ−1)
2 · |D| + o(|D|) in

the input size |D|, where τ is the bounded radius (see [Cantone et al., 2004] for further

details). GraphClustDENSE performs well on large datasets. In Fig. 2 we demonstrate

the scalability of GraphClustDENSE on NCI databases up to 50000 molecules. We

also report the number of substructures created for each dataset. The graphs in these

databases have an average number of 20 nodes; several graphs have up to 270 nodes.

4.2 GraphClustSPARSE

The complexity of finding substructures by using Subdue is O(
∑|D|

i (
∑nsubs

j=1 (ninstj ·

gmj))), where ninsti is the maximum possible number of non-overlapping instances

for substructure j and gmj is the user-defined maximum number of partial mappings

that are considered during a graph match between substructure definition j and a po-

tential instance of the substructure. Details of the Subdue complexity analysis can

be found in [Rajappap, 2003]. The complexity of the second step is O (|D| · |pat| ·
∑|D|

i (
∑nsubs

j=1 (ninstj · gmj))). Finally the k-means clustering takes time O(t · k · |D|),

with k the number of clusters and t is the number of iterations. Normally, k, t << |D|.
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Figure 2: Time vs. number of substructures for the NCI database.

The SVD process complexity applies to both GraphClustDENSE and GraphClustSPARSE:

O (|pat|2 · |D|+ |pat| · |D|2) so it would not be practical for extremely large datasets. To

make the process effective also with large datasets, the SVD considers only the max sub

substructures most interesting substructures (i.e., the most repetitive in the database)

where max sub is a parameter of the algorithm.

5 Performance Studies

We start with a systematic evaluation of the quality of the clusters. The Silhouette

method [Bolshakova and Azuaje, 2003] is used as an intrinsic measure of clustering

quality. However, we want to study how well the final clustering performed by Graph-

Clust captures the clusters of graphs whose properties are known a-priori. For this,

we have used an artificial graph generator [Ferro et al., 2005] to create a database con-

taining five different categories of undirected graphs. The five categories include ran-

domly graphs, regular 2D-meshes, regular 3D-meshes, irregular 2D-meshes, irregular

3D-meshes. For each category we have generated 1000 graphs with 30 nodes and 1000

graphs with 80 nodes. The number of edges vary from 50 to 200. Each group of 1000

graphs differs in 7% of the edges. Thus, our artificial dataset contains 10000 graphs.

As is known a priori, an optimal clustering creates 10 clusters, each one containing one

structural group of graphs. Table 5 depict the global silhouette values GSu for our ob-
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tained clustering based on the Antipole Tree data structure (a) and k-means algorithm

(b). The number of clusters c varies from 5 to 15. For both clustering algorithms, the

substructures have been discovered by using the AllPairShortestPath algorithm fixing

the constant lp = 4. In both cases c = 10 is suggested as the best clustering configura-

tion for the examined data set and this is also the optimal number of clusters known

for when the data set has been created.

c GSu

5 0.509

6 0.562

7 0.631

8 0.672

9 0.703

10 0.712

11 0.665

12 0.693

13 0.607

14 0.518

15 0.489

c GSu

5 0.585

6 0.690

7 0.653

8 0.792

9 0.821

10 0.886

11 0.830

12 0.714

13 0.678

14 0.643

15 0.660

(a) (b)

Table 5: Global Silhouette values for clustering obtained by using GraphClust with Antipole
Tree data structure (a) and k-means algorithm (b).

Now, we have asked whether this clustering, not just the number of clusters but the

clustering itself, agrees with the a-priori classification of the data set. Recall that in

the optimal clustering each cluster contains a single structural group and that within

that group, the graphs differ by 7% of their edges.

Table 6 shows the similarities in percent between the best clustering obtained in

table 5 (that is for c = 10) and the optimal clustering. A value x% for the cluster Ci

obtained with GraphClust means that Ci is equal to x% of the optimal cluster Ci. For

most clusters, the correct graphs are found. K-means is slightly better than Antipole

in this measure of recall.

To measure the precision of the clustering obtained, a pair of graphs g1 and g2 are

considered to be consistent in the two clusterings if they are in the same cluster in both

cases or in different clusters in both cases. Otherwise they are inconsistent. In table 7,

for c = 10, the output clustering generated by GraphClust has been compared with the

optimal clustering. The value consistent value shows the number of graph pairs that

are correctly marked as consistent divided by the total number of graph pairs for the
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output obtained from GraphClust.

Clustering Algorithm C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Antipole Tree 100% 100% 100% 100% 100% 100% 95.14% 66.0% 50% 28.9%

K-means 100% 100% 100% 100% 100% 100% 100% 54.4% 50% 45.6%

Table 6: Similarities in percent between the best clustering found (c = 10) in Table 5 and
the optimal clustering.

Clustering Algorithm Number of consistent pairs Total number of pairs consistency value

Antipole Tree 48704861 49995000 0.9741

K-means 48746936 49995000 0.9750

Table 7: Robustness between the best clustering found in Table 5 and the optimal clustering.

6 Inferring Functionality from Gene Coregula-

tion – case study

In this section we use GraphClust to analyze two biological datasets corresponding

to mRNA measurements obtained from nitrate treatments of the Arabidopsis thaliana

plant, the most important model species for plant biologists. Nitrogen-related experi-

ments are significant because they can help improve the use of nitrogen, thus reducing

the need for fertilizer and reducing pollution.

Recent studies using microarray technology have demonstrated that the expression

of many genes is affected by nitrate [Wang et al., 2000, Wang et al., 2001, Wang et al., 2003].

In [Wang et al., 2004], mRNA (messenger RNA) levels were determined using microar-

rays in the presence and absence of nitrate in wild-type and in mutant plants that

lack the two genes coding for the nitrate reductase enzymes (NR-null). These NR-null

plants can not assimilate (i.e. effectively break down) nitrate. Therefore, any change in

gene expression observed after nitrate treatments may be due to the action of (intact)

nitrate as a signal rather than as a result of the assimilation of nitrate.

To study which genes respond to nitrate as a signal and which groups of genes

exhibit similar such responses, we analyzed the expression of all genes in the Arabidopsis

genome across a wide variety of nitrate treatments. We selected those genes that both

respond to nitrate and whose gene expressions are highly positively correlated with one
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another. We have done this for both the NR-null mutant and wild-type, yielding two

graphs. We will then used GraphClust to compare the resulting correlation graphs.

To facilitate the biological interpretation of the results at the functional level, we

have replaced each gene with the Gene Ontology (GO) terms (there may be several)

that characterize it. Thus the node associated with each gene is labeled with that gene’s

GO terms.

An edge in each graph identifies two genes that have a similar (correlation of 0.5 or

better and p − value ≤ 0.01) response to nitrate. Thus, the pair indicates genes that

are sensitive to nitrate and may be linked together (as implied by correlation).

Because the two resulting graphs are large and dense (13867 nodes and 999658 edges

for the wild-types and 13428 nodes and 1022692 edges for (NR)-null double mutant),

we have used AllPairShortestPath to find graphical motifs (parameter lp = 4).

We found 912 paths of length 3 that were 100-fold more frequent in one genotype

as compared to the other. We used the Cytoscape software [Shannon et al., 2003] to

visualize the patterns that were 10-fold or more frequent in wild-type as compared to

mutant or vice-versa. We reasoned that a high relative density of paths associated with

a function F in wild-type indicates that genes that perform function F use assimilated

forms of nitrate in a closely coordinated fashion. Fig. 3 shows the connected components

generated for the functional processes ontology.

The graph suggests a change in the molecular physiology of mutant plants. In

wild-type, nitrate treatments cause the co-regulation of genes involved in ”regulation

of transcription” in addition to processes such as ”carbon utilization”, ”vitamin B12

biosynthesis”, and ”mRNA splicing”. These associations are lacking or much less fre-

quent in the mutant. The central role particularly of ”regulation of transcription”

suggests that nitrate is necessary for the coordinated expression of transcription fac-

tors and their targets, a vital function in plant physiology. Hence, the near absence

of ”regulation of transcription” co-expression in the mutant suggests that the differ-

ences observed between mutant and wild-type are at least partly due to a change in the

transcriptional regulatory processes of the plant. Perturbing transcriptional regulation

would then influence the expression of genes involved in other processes such as ”carbon

utilization”.

This analysis provided concrete biological hypothesis that can be useful to biologist
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for follow-up experimental work:

(1) Nitrate assimilation is critical to coordinated transcriptional responses in normal

plants. A follow-up experiment could use a more precise quantitative and temporal

analysis of the response to nitrate of the critical transcription factor pairs identified by

this analysis.

(2) Altering transcription, a key regulatory factor in plants, would then influence

unrelated processes unrelated to nitrate such as ”carbon utilization”. A follow-up

experiment could start with wild type and genetically mutate some of the discovered

transcription factors.

Figure 3: Connected component generated for the functional processes ontology.

7 Summary

Building on previous work, we have proposed a new general method for clustering

labelled graphs that comprises three steps (i) identifying interesting substructures, (ii)
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clustering the graphs by their substructures and (iii) finding frequently co-occurring

substructures pairs.

GraphClust performs efficiently and gives high quality results for both artificial and

real data sets across a wide variety of domains.

We show, as an example, suggestive biological results that have been obtained by

using GraphClust substructure inference to compare correlations among gene expression

values in wild-type and mutant experiments.

For all the experiments we used a Mobile Intel Pentium Processor 2.30GHz and

512MB of RAM equipped with Debian 1.3. The source code has been written in stan-

dard ANSI C and is freely available at www.cs.nyu.edu/shasha/papers/graphclust/. As

mentioned earlier, over 70 researchers have downloaded it as ofthis writing.

Wall clock times range from minutes to hours in the applications we have tried. For

the biological dataset cited, the GraphClust substructure module run in about 1 hour.

For the NCI database it took under ten minutes, but the average number of nodes in

graphs there is much smaller. With such times for even very large graphs (roughly one

million edges in the biological case study), this is a practical tool for a large class of

natural and computer science research.
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