
GraphClust: a Method for Clustering Database of
Graphs

D. Reforgiato Recupero1, D. Shasha2

1Dipartimento di Matematica e Informatica
Università degli Studi di Catania

e-mail: diegoref@dmi.unict.it
2Computer Science Department

New York University
e-mail: shasha@cs.nyu.edu

Abstract

Any application that represents data as graphs may be interested in finding patterns
in those graphs. To do this in an unsupervised fashion requires the ability to find sub-
graphs that are similar to one another. That is the purpose of GraphClust. GraphClust
is an algorithm and software that clusters directed and undirected labelled graphs. The
algorithm proceeds in two phases: it first finds highly connected substructures in each
graph and then it uses those substructures to represent each graph as a feature vector.
Clustering itself can be done using the k-means or the Antipole method [7], though
other methods are of course possible. We validate the cluster quality by using the sil-
houette method [5]. Moreover, SVD decomposition leads to the computation of highly
co-occurring substructures.

Index terms - Text clustering, Document vectors, Graphs clustering, Graphs sub-
structure.

1 Related Work

In the last few years, developing algorithms for clustering data represented by graphs has
been recognized as a problem in the pattern recognition community [6]. Nevertheless,
graph clustering is still an open problem for two reasons. First, many interesting exact
graph matching problems, i.e. subgraph isomorphism, maximum common subgraph,
etc., are NP-complete. So exact graph clustering algorithms using graph matching are
extremely time consuming. Second, the proper distance metric between graphs is a
matter of debate.

Spectral methods try to represent the most interesting properties of the input graphs
using vectors, thus reducing the graph clustering problem to a problem in a vector
space [3, 4, 14]. This allows a new spectral method, closely related to latent semantic
indexing, to be used.

1

Text retrieval (see [16, 8, 2, 15]) has focussed on the need to locate textual infor-
mation efficiently. A classical text searching method (see [8]) involves modelling a text
collection in document-term matrix, and evaluating a document’s relevance to a query
using a linear algebraic dot product. In a term-document matrix A, A[i, j] gives the
number of occurrences of term j in document i. Queries are normally represented as a
bit vector over the same set of terms. The similarity between document vectors (the
rows of document-term matrices) can be found by their inner product. This corresponds
to determining the number of term matches (weighted by frequency) in the respective
documents. Another commonly used similarity measure is the cosine of the angle be-
tween the document vectors. This can be achieved computationally by first normalizing
(to 1) the rows of the document-term matrices before computing inner products. Singu-
lar Value Decomposition (SVD) has been shown to work well for text retrieval over the
last fifteen years [9, 12]. The motivation is simple: large document-by-term matrices
have a significant amount of redundant data. Removing this information allows a more
precise and efficient search. Singular Value Decomposition achieves rank reduction by
breaking the matrix A in the product of 3 matrices T, S, DT which are truncated to r
dimensions.

Latent Semantic Indexing (LSI, [13]) attempts to project term and document vectors
into a lower dimensional space spanned by the true “factors” of the collection. This
uses a truncated Singular Value Decomposition (SVD) of the term-document matrix.

Subdue is another method to capture essential structure information from graphs.
The Subdue substructure discovery system ([1]) discovers repetitive subgraphs in a
labelled graph representation by using the minimum description length principle. Ex-
periments show Subdue’s applicability to several domains, such as molecular biology,
image analysis and computer-aided design.

In this paper, GraphClust, a new algorithm for clustering labelled graphs, will be
presented. The problem of mapping the graphs as feature vectors is solved by creating
some substructures such that the frequency of substructure j in the graph i is stored
at A[i, j]. After this, the rows of the matrix A are finally clustered. A list of highly
correlated substructures is also created by using the SVD reduction.

2 Design

GraphClust assumes that each node of the database graphs has a unique identification
number and a label. Edges are unlabeled (for purpose of this paper).

�
�

�
�

�
�

A C

AB

@
@
@
@
@
@

A B

C

(a) (b)

Figure 1: Dataset of two graphs.

2

Graph (a) Graph (b)

Initial Node Substructures generated Initial Node Substructures generated

top-left A {A,AC,AB,ABA} A {A,AB,AC}

B {B,BC,BA,BA} B {B,BA,BAC}

bottom-right A {A,AB,ABC,ABA} C {C,CA,CAB}

C {C,CA,CB,CBA}

Table 1: Patterns generated from the dataset of Fig. 1 using AllPairShortestPath with lp = 3.

C CA CB CBA A AB ABA B BAC

graph (a) 1 2 2 2 2 4 2 1 0

graph (b) 1 2 0 0 1 2 0 1 2

Table 2: Matrix A generated from the patterns of Table 1.

GraphClust deals with either directed or undirected graphs. The substructures can
be discovered in two ways:

• by using the AllPairShortestPath algorithm; in this case, for each graph of the
dataset and for each vertex v, all the shortest paths of length 1 up to a small
constant lp are generated from v. Each path is represented by the sequence of
node labels in that path.

• by using the Subdue substructure discovery system ([1]); in this case, for each
graph g of the dataset, Subdue finds common or approximately common sub-
structures of g.

A matrix having a number of columns equal to the number of found substructures
and a number of rows equal to the number of the graphs in the dataset is created. Each
entry A[i, j] represents the number of times in which the substructure j is contained in
the graph i.

Subdue is more suitable when the graphs in the database have few labels compared
to the number of nodes. In that case, there is a high likelihood of finding common
substructures. If AllPairShortestPath is run, it finds for each graph all the label se-
quences corresponding to paths of length 1 up to a small constant lp and therefore it
creates more columns in the matrix A than Subdue. However, if too many substruc-
tures are found with either AllPairShortestPath or Subdue, GraphClust considers only
the max sub most frequent, where max sub is a constant of the system. For example,
on chemical compounds, where usually there are not so many nodes and edges, Subdue
provides a better solution. For graphs with many edges, AllPairShortestPath should
be used because it takes less time.

Once that the matrix A is completed, we cluster its rows. There are two possible
clustering algorithms to use: one is the k-means algorithm in which the user chooses the
number of clusters k to create; the other is the Antipole Clustering [7] in which the user
chooses a “tightness” measure (an integer value in the range 1 to 4) where the higher
the measure the smaller the cluster radius and hence the larger the number of generated
clusters. Antipole Clustering [7] is much faster than k-means even if it is not possible
to know a-priori the number of clusters that will be created. The metric distance used
in both clustering algorithms just described can be either Euclidean distance or inner

3

product distance. Euclidean distance is appealing for applications having a natural
geometry. Inner product is better for non-spatial applications such as text-similarity.

In table 2 a matrix obtained from the patterns of table 1 generated by applying the
AllPairShortestPath algorithm with lp = 3 to the dataset in Fig. 1 is shown.

Another operation we perform when the matrix A is complete, is the creation of
correlated substructures. By using the SVD method, the substructure-graph matrix
AT is broken apart into the product of 3 matrices T, S and DT . Table 3 shows a SVD
of the matrix A in table 2. These matrices are truncated to r dimensions with r chosen
by the user. Dimensionality reduction reduces the noise present in the substructure-
substructure matrix revealing a more robust relationship between the substructures.
The substructure-substructure correlation matrix Xr is then computed by multiplying
Tr×Sr×(Tr×Sr)T . Table 4 shows the substructure-substructure correlation matrix Xr

computed with the matrices Tr, Sr of table 3 reduced for r = 1. When the number of
substructures is too large and then it would be too expensive to compute the singular
value decomposition, GraphClust considers only the substructures more interesting
(with larger support in the graphs data).

The three steps of the basic GraphClust algorithm are shown in Fig. 2.

−0.20 −0.17
−0.40 −0.33
−0.26 0.35
−0.26 0.35
−0.33 0.01
−0.66 0.02
−0.26 0.35
−0.20 −0.17
−0.13 −0.68

×

(
6.8 0
0 2.61

)
×

(
−0.89 0.46
−0.46 −0.89

)

T × S × DT

Table 3: Matrices T, S,DT generated by the Singular Value Decomposition of AT of Table 2.

3 Algorithms

It turns out that GraphClust consists of 16 different algorithms broken down along the
four binary dimensions described in the section 2. The main concept of GraphClust
is the mapping of the data graphs into k-dimensional vectors. To perform this step
we have introduced the concept of substructures and the methods used to find these
substructures.

In this section, the algorithms used by GraphClust in the three steps of its main
procedure will be discussed.

Subdue discovers interesting and repetitive subgraphs in a labelled graph represen-
tation using the minimum description length principle; Subdue discovers substructures
that compress the original data and represent structural concepts in the data. By
replacing previously-discovered substructures in the data, multiple passes of Subdue
produce a hierarchical description of the structural regularities in the data. Subdue
uses a computationally-bounded inexact graph match that identifies similar, but not
identical, instances of a substructure and finds an approximate measure of closeness
of two substructures when under computational constraints. In addition to the min-
imum description length principle, other background knowledge can be used by Sub-

4

−0.20
−0.40
−0.26
−0.26
−0.33
−0.66
−0.26
−0.20
−0.13

× (6.8 0)×

−0.20
−0.40
−0.26
−0.26
−0.33
−0.66
−0.26
−0.20
−0.13

× (6.8 0)

T

=

C CA CB CBA A AB ABA B BAC

C 2 4 2 2 3 6 2 2 2
CA 4 8 4 4 6 12 4 4 4
CB 2 4 4 4 4 8 4 2 0

CBA 2 4 4 4 4 8 4 2 0
A 3 6 4 4 5 10 4 3 2

AB 6 12 8 8 10 20 8 6 4
ABA 2 4 4 4 4 8 4 2 0

B 2 4 2 2 3 6 2 2 2
BAC 2 4 0 0 2 4 0 2 4

Table 4: Reduced correlation substructure-substructure matrix Xr = Tr × Sr × (Tr × Sr)
T

for r = 1.

Basic Algorithm

GraphClust Basic(DataBase, r)
- - - Start step 1 - - -

1 Creates substructures of the data graphs;
- - - End - - -

- - - Start step 2 - - -
2 Creates a matrix A having as number of rows, the number

of data graphs, and as number of columns, the number of
substructures;

3 for each graph i
4 Fills the entry A[i, j] with the number of occurrences

of substructure j in the graph i;
5 end for each;

- - - End - - -

- - - Start step 3 - - -
6 Clusters the rows of A and

Create the highly co-occurring substructures
pairs by using r in the SVD process;

- - - End - - -

7 end GraphClust Basic.

Figure 2: GraphClust: the three steps of the basic algorithm.

5

due to guide the search towards more appropriate substructures. Once the substruc-
tures and the matrix A have been created, the clustering is performed by the k-means
or Antipole [7] clustering method. In our implementation of k-means, initial k cen-
troids q1

1, q
1
2, . . . , q

1
k are computed by using the Gonzalez (see [11]) algorithm; then,

the rest of the objects are assigned to a class according to the relation xl ∈ Ct
j iff

d(xl, q
t
j) ≤ d(xl, q

t
i), 1 ≤ j, i ≤ k, i 6= j. Next, new centroids are computed in such

a way that the performance index, γi =
∑

x∈Ct
i
|x − qt

i |2, i = 1, 2, 3, . . . , k, is mini-
mized. This is achieved making qt+1

i = 1
nt

i

∑
∀x∈Ct

i
x. If qt+1

i = qt
i , the process finishes,

otherwise, the objects are grouped again.
The Antipole Clustering (see [7]) algorithm of bounded radius is performed by a

top-down procedure starting from a given finite set of points S which checks if a given
splitting condition is satisfied. This condition asks for two points whose distance is
greater than the radius. If there are no two such points, then splitting is not performed
and the given subset is a cluster on which an approximate centroid is then found.
Otherwise, a suitable pair of points (A, B) of S called Antipoles is generated and the
set is partitioned by assigning each point of the splitting subset to the closest endpoint
of the Antipole (A, B). As seen in [7] the randomized algorithms used by Antipole
clustering makes its construction much faster than k-means’s.

4 Complexity

Here is a description of the worst case complexity for the three steps of GraphClust.
Let |D| be the number of graphs in a database D. The first and second steps of
the algorithm depend on which algorithm is used to create the patterns. If AllPair-
ShortestPath is used, then the complexity of the first step is O(

∑|D|
i (ni

3)), where ni

are the number of nodes of the graph i; in this case the complexity of the second
step is O(|D||pat|∑|D|

i (nim
lp
i)), where |pat| is the total number of patterns gener-

ated and mi is the number of patterns starting from ni. If the Subdue algorithm is
used, then the complexity of the first step becomes O(

∑|D|
i (

∑nsubs
j=1 (ninstj × gmj))),

where ninsti is the maximum possible number of non-overlapping instances for sub-
structure j and gmj is the user-defined maximum number of partial mappings that
are considered during a graph match between substructure definition j and a poten-
tial instance of the substructure. In this case the complexity of the second step is
O (|D||pat|∑|D|

i (
∑nsubs

j=1 (ninstj × gmj))), where ninsti and gmj have already been
described above. Details of the Subdue complexity analysis can be found in [17].

For the third step we will consider for first the clustering process and then the SVD
computation. The clustering process complexity depends on which algorithm is used.
K-means takes time O(tk|D|), where |D| is the number of objects (graphs), k is the
number of clusters, and t is the number of iterations. Normally, k, t << |D|. The
Antipole algorithm [7] has a worst-case complexity of τ(τ−1)

2 |D| + o(|D|) in the input
size |D|, where τ is the bounded radius (see [7] for further details).

Hence, given the higher complexity of Subdue, GraphClust by using Subdue for
finding the substructures should be used with small datasets having sparse graphs with
no more than 100 edges.

As mentioned above, for example, Subdue is more suitable than AllPairShortestPath
when GraphClust is used to cluster a dataset of chemical compounds.

Conversely, when GraphClust is used to cluster big datasets having large numbers
of edges, then the speed of AllPairShortestPath makes it preferable to Subdue.

Finally, the SVD process complexity takes O (|pat|2 · |D|+ |pat| · |D|2) so it would

6

not be pratical for huge datasets. To make the process effective also with large datasets,
the SVD considers only the max sub substructures more interesting (more present in
the database) where max sub is a constant of the algorithm and it is fixed at 30.

5 Performance Studies

We start with a systematic evaluation of the quality of the clusters. The Silhouette
method [5] is used to show how good the clustering obtained is. Moreover, we want
to show how well the final clustering performed by GraphClust captures the graphs
present in different categories known a priori. For this, we have used an artificial graph
generator [10] to create a database containing five different categories of undirected
graphs. The five categories includes randomly graphs, regular 2D-meshes, regular 3D-
meshes, irregular 2D-meshes, irregular 3D-meshes. For each category we have generated
1000 graphs with 30 nodes and 1000 graphs with 80 nodes. The number of edges
vary from 50 to 200. Each group of 1000 graphs differs for the 20% of the edges.
Thus, our artificial dataset contains 10000 graphs. An optimal clustering creates 10
clusters, each one containing one structural group of graphs. Tables 5 and 6 depict the
global silhouette values, GSu, for each partition, and the silhouette values, Si, for each
number of clusters c, for c = 10 to 15 obtained by GraphClust. Clustering in table 5
is based on GraphClust with the Antipole Tree data structure [7] whereas clustering in
table 6 uses GraphClust with the k-means algorithm. For both clustering algorithms,
the substructures have been discovered by using the AllPairShortestPath fixing the
constant lp = 4. In both tables c = 10 is suggested as the best clustering configuration
for the examined data set and this is also the optimal number of clusters known for
when the data set has been created.

For the experiments we used a Mobile Intel Pentium Processor 2.30GHz and 512MB
of RAM with Linux operating system. The algorithm performs well and gives high
quality for both artificial and real data sets. For the syntethic experiments it run in 10
minutes while for the real dataset it run in 30 minutes.

c GSu S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

10 0.712 1 0.86 1 0.82 0.05 0.71 1 0.88 0.12 0.66

11 0.665 1 0.86 1 0.82 0.03 0.81 0.11 1 0.88 0.12 0.66

12 0.693 1 0.86 1 0.82 0.03 0.81 0.11 1 1 0.88 0.12 0.66

13 0.607 1 0.86 1 0.82 0.03 0.81 0.11 1 1 0.21 0.24 0.12 0.66

14 0.518 1 0.12 0.10 1 0.82 0.03 0.81 0.11 1 1 0.21 0.24 0.12 0.66

15 0.489 1 0.05 0.13 0.12 1 0.82 0.03 0.81 0.11 1 1 0.21 0.24 0.12 0.66

Table 5: Global Silhouette values for clustering obtained by using GraphClust with Antipole
Tree data structure.

Now, we have to show that this clustering is also coherent with the a priori clas-
sification of the data set. Recall that in the optimal clustering each cluster contains
a single structural group where in each group the graphs differ by 20% of their edges.
Table 7 shows the similarity in percent between the best clustering obtained in table 5
and 6 for c = 10 and the optimal clustering. A value x% for the cluster Ci obtained
with GraphClust means that Ci is equal to x% of the optimal cluster Ci. To measure
the robustness of the clustering obtained, a pair of graphs g1 and g2 are considered
to be consistent in the two clusterings if they are in the same cluster in both cases
or in different clusters in both cases. Otherwise they are inconsistent. In table 8, for

7

c GSu S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

10 0.886 1 1 0.66 0.88 1 0.86 0.82 0.81 0.81 1

11 0.830 1 1 0.66 0.89 1 0.86 0.82 0.81 0.81 1 0.25

12 0.714 1 1 0.66 0.20 1 0.87 0.82 0.81 0.81 1 0.25 0.12

13 0.678 1 1 0.66 0.20 1 0.11 0.82 0.81 0.81 1 0.25 0.12 1

14 0.643 1 1 0.66 0.20 1 0.14 0.82 0.81 0.81 1 0.25 0.16 1 0.10

15 0.660 1 1 0.66 0.20 1 0.09 0.82 0.81 0.81 1 0.25 0.11 1 0.10 1

Table 6: Global Silhouette values for clustering obtained by using GraphClust with k-means
algorithm.

c = 10, the output clustering generated by GraphClust has been compared with the
optimal clustering. The value consistent value shows the number of graphs pairs that
are consistent divided by the total number of graphs pairs for the output obtained.

Clustering Algorithm C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Antipole Tree 100% 100% 100% 100% 66.0% 95.14% 100% 100% 28.9% 50%

K-means 100% 54.4% 50% 100% 100% 100% 100% 100% 100% 45.6%

Table 7: Similarity in percentual between the best clustering found (c = 10) in Tables 5, 6
and the optimal clustering.

Clustering Algorithm Number of consistent pairs Total number of pairs consistent value

Antipole Tree 48704861 49995000 0.97

K-means 48746936 49995000 0.97

Table 8: Robustness between the best clustering found in Tables 5, 6 and the optimal clus-
tering.

6 Experiments on real data

In the previous section we showed the performance of GraphClust clustering on syn-
tethic datasets. Now we will show some clustering results on graphs representing the
connections of internet web-sites. We considered as data sources 4 internet domains :
Spanish (es), Chinese (cn), Egyptian (eg) and Chile (cl). We classified every web-site
in these domains according to the following 9 categories: news, sports, educational,
research, government, industry, media, tourism, banking. We represented web-sites
as graph nodes and their links as graph edges.

We built 4 datasets in the following way: first of all, for each domain D, we labelled
each web-site with one of the above 9 categories. Then we considered each graph out
up to one edge. Fig. 3 shows a small data source and the LNE representation of one of
its graphs. The 4 datasets thus obtained have a number of graphs varying from 3000 to
5000 graphs. GraphClust was executed in order to group in same clusters the web-sites
with the similar structure. GraphClust was run by using AllPairShortestPath to find
the web-sites substructures and the k-means algorithm for clustering with k = 9 in
order to obtain 9 clusters. Table 9 shows the results of GraphClust on the 4 datasets.
Each row contains the statistics of the clustering for each dataset. A percentual value

8

x% means that for the underlined dataset, one of the obtained clusters contains the x%
of web-sites belonging to the category specified in the column.

Note that the high percentual values prove that GraphClust was able to perform a
very good clustering for all the tested datasets.

Figure 3: (a) Very small data source with 5 web-sites. (b) The graph for the educational
web-site in LNE format.

domain news sports educational research government industry media tourism banking

Spanish 65.4% 59.8% 51% 50.3% 61% 53.5% 54% 51% 52.3%

Chinese 60.2% 51.1% 55.3% 56.7% 66.7% 63.2% 50.4% 50.6% 53%

Egyptian 55.4% 52.4% 55% 55.3% 68.2% 60.1% 52% 55% 58.2%

Chile 58% 59.3% 54.9% 50% 68.9% 52.8% 50% 51.2% 53%

Table 9: Clustering results on 4 internet domains.

7 Conclusion and Future work

We have proposed a new method for clustering labelled graphs that entails (i) identifying
interesting substructures, (ii) clustering the graphs by their substructures and (iii) find-
ing highly co-occurring substructures pairs. The algorithm performs well and gives high
quality for both artificial and real data sets. Graphclust is implemented in ANSI C and a
software implementation is freely available at www.cs.nyu.edu/shasha/papers/graphclust/.

We are extending GraphClust to deal with nearest and range query search. Also,
to reduce the space complexity, we will make use of the Berkeley Database to store all
the computed paths. Moreover, new techniques for finding common substructures and
for classifying the most important ones are under study.

Acknowledgement

We thank Professor Davood Rafiei from the Department of Computing Science of Uni-
versity of Alberta for having provided us the internet data graphs of Spanish, Chinese,
Egyptian and Chile domains.

9

References

[1] http://cygnus.uta.edu/subdue, The SUBDUE Knowledge Discovery System.

[2] M.W. Berry, Z. Drmac, and E.R. Jessup. Matrices, vector spaces, and information
retrieval. SIAM Review, 41(2):335–362, 2003.

[3] B.Luo, R.C.Wilson, and E.R.Hancock. Spectral feature vectors for graph clus-
tering. Proceedings of joint Syntactical and Structural Pattern Recognition and
Statistical Pattern Recognition, 2396:83–93, 2002.

[4] B.Luo, R.C.Wilson, and E.R.Hancock. Spectral clustering of graphs. Proceedings
of 4th IAPR-TC15 Graph based Representations in Pattern Recognition, pages
190–201, 2003.

[5] N. Bolshakova and F. Azuaje. Improving expression data mining through cluster
validation. Information Technology Applications in Biomedicine, 2003, pages 19–
22, 2003.

[6] H. Bunke. Graph-based tools for data mining and machine learning. Proceedings
of Machine Learning and Data Mining in Pattern Recognition, pages 7–19, 2003.

[7] D. Cantone, A. Ferro, A. Pulvirenti, D. Reforgiato, and D. Shasha. Antipole tree
indexing to support range search and k-nearest-neighbor search in metric spaces.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 17(4):535–550,
2004.

[8] D.R. Cutting, D.R. Karger, J.O. Pedersen, and J.W. Tukey. Scatter / gather: A
cluster-based approach to browsing large document collections. Proc. ACM SIGIR
92, pages 318–329, 1992.

[9] S. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman.
Indexing by latent semantic analysis. Journal of the Society for Information Sci-
ence, 41(6):391–407, 1990.

[10] A. Ferro, R. Giugno, A. Pulvirenti, D. Reforgiato Recupero, and D. Shasha. Blast-
gen, a graphs generator for graph matching benchmarking. Preprint, 2005.

[11] T.F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theo-
retical Computer Science, 38:293–306, 1985.

[12] David Hull. Improving text retrieval for the routing problem using latent semantic
indexing. In Proceedings of the 17th ACM/SIGIR Conference, pages 282–290,
1994.

[13] P. Husbands, H. Simon, and C. Ding. On the use of singular value decomposition
for text retrieval. Proc. of SIAM Comp. Info. Retrieval Workshop, pages 145–156,
2001.

[14] S. Kosinov and T. Caelli. Inexact multisubgraph matching using graph eigenspace
and clustering models. Proceedings of joint Syntactical and Structural Pattern
Recognition and Statistical Pattern Recognition, 2002.

[15] G. Kowalski. Information retrieval systems: Theory and implementation. Boston:
Kluwer Academic Publishers, 1997.

[16] Steinbach M., Karypis G., and Kumar V. A comparison of document clustering
techniques. Proc. Text Mining Workshop, KDD 2000, pages 1–11, 2000.

[17] S. Rajappap. Interactive biasing in graph-based data mining. Master Thesis in
Computer Science and Engineering, 2003.

10

