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Abstract

We consider the problem of comparing CUAL graphs (Connected, Undirected,
Acyclic graphs with nodes being Labeled). This problem is motivated by the study
of information retrieval for bio-chemical and molecular databases. Suppose we de�ne
the distance between two CUAL graphs G1 and G2 to be the weighted number of edit
operations (insert node, delete node and relabel node) to transform G1 to G2. By
reduction from exact cover by 3-sets, one can show that �nding the distance between
two CUAL graphs is NP-complete. In view of the hardness of the problem, we
propose a constrained distance metric, called the degree-2 distance, by requiring that
any node to be inserted (deleted) have no more than 2 neighbors. With this metric,
we present an e�cient algorithm to solve the problem. The algorithm runs in time
O(N1N2D

2) for general weighting edit operations and in time O(N1N2D
p
D logD)

for integral weighting edit operations, where Ni, i = 1; 2, is the number of nodes in
Gi, D = minfd1; d2g and di is the maximum degree of Gi.
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1 Introduction

In this paper we study the problem of comparing two labeled undirected acyclic graphs

(abbreviated as CUAL graphs).1 Our speci�c interest in this problem comes from its

applicability in bio-chemical information systems [1, 2]. Undirected labeled graphs have

been used to represent two-dimensional (2-D) compounds and molecules. For example,

Figure 1(a) shows two graph representations of 2-D compounds; each node in the graphs

represents an atom and each edge represents a bond. The compounds can be represented

alternatively as two CUAL graphs (Figure 1(b)).

(a)

(b)
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G’G
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N
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Figure 1. (a) Two examples of chemical compounds [7]. N represents a nitrogen
atom. Omitted node labels are carbon atoms (C). Hydrogen atoms (H) are not in-
cluded in the graph representations since their presence or absence can be deduced
from the other information. (b) The same compounds can be represented as CUAL
graphs, with each ring being represented by a special node label R.

One common use of the bio-chemical information systems is to perform a similarity

search, i.e., to �nd database compounds that are similar to a query structure [6, 13, 14].

Many similarity measures have been devised; they are usually calculated by considering

1Such graphs are also known as labeled free trees. When the context is clear, we refer to CUAL graphs
simply as graphs. Note that, in practice, edges of a graph may have labels. In that case, one can transform
a labeled edge between two nodes u and v to a labeled node connecting u and v.
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the atom, bond, or ring-centered substructural fragments found in common in the query

and in a compound.2 While these measures are often useful, they don't capture many of

the interesting topological di�erences between two compounds, which play a key role in

identifying the di�erence in the compounds' functionalities.

This paper presents a new (dis)similarity measure for graphs. We de�ne the distance

between two graphs G1 and G2 to be the weighted number of edit operations (insert node,

delete node and relabel node) to transform G1 to G2. By reduction from exact cover by

3-sets, one can show that �nding the distance between two graphs is NP-complete. In

view of the hardness of the problem, we propose a constrained distance metric, called the

degree-2 distance, by requiring that any node to be inserted (deleted) have no more than

two neighbors. This metric is a natural extension of the edit distance for strings [11] and

Selkow's distance for trees [9]. As our next example shows, it is also a practically useful

metric for graphs.

Example 1. Consider the atom-centered fragment f and the three compounds G1; G2; G3

in Figure 2. According to the aforementioned fragment weighting scheme, G1 is closer to

G3 than to G2 because f occurs twice in both of the G1 and G3, whereas it occurs only

once in G1 and G2. On the other hand, according to the proposed degree-2 distance metric,

G1 is closer to G2 than to G3.3 Visually, G1 is closer to G2, consistent with the degree-2

metric; therefore we argue that this is a plausible metric.

Thus our work provides a complementary measure capable of reecting the structural

di�erences between chemical compounds (except that our graphs must be acyclic, so rings

must be reduced to single nodes). We believe the presented techniques can also contribute

to comparison and search of 2-D and 3-D (macro)molecules in protein and DNA structures

[8].

2For example, the much used fragment weighting scheme works by considering the number of occur-
rences of a particular fragment type within a compound [15]. The more frequently a fragment occurs,
the greater weight it gains. Thus, a pair of molecules that had several occurrences of a given fragment in
common would be considered to be more similar to each other than if they had only a single occurrence
in common.

3Assume all edit operations have unit cost. The degree-2 distance between G1 and G2 is 1, obtained
by relabeling the leftmost C in G1 to N in G2, whereas the distance between G1 and G3 is 7, obtained by
inserting the seven Rs into G3.
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Figure 2. An augmented atom (fragment) and three chemical compounds.

1.1 The Main Results

Let G1 and G2 be two given graphs. We �rst show that �nding the editing distance between

G1 and G2 is NP-complete. We then develop an algorithm to �nd the degree-2 distance

between the two graphs that runs in timeO(N1N2D
2) for general weighting edit operations

and in time O(N1N2D
p
D logD) for integral weighting edit operations. Here, Ni, i = 1; 2,

represents the number of nodes in Gi; deg(n) denotes the number of neighbors of node n;

di = maxn2Gi
deg(n) and D = minfd1; d2g. A subroutine of this algorithm computes the

degree-2 distance between two unordered trees in time O(N1N2D) for general weighting

edit operations and in time O(N1N2

p
D logD) for integral weighting edit operations. (An

unordered tree is a rooted tree in which the order among siblings is unimportant. For such

trees, deg(n) is de�ned as the number of n's children, excluding n's parent).

The rest of the paper is organized as follows. Section 2 introduces some notation and

de�nitions used in the paper and shows the NP-completeness result. Section 3 presents

the algorithm for the unordered tree case. This algorithm is then used as a subroutine

to compute the degree-2 distance between graphs (Section 4). We conclude the paper in

Section 5.
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2 Preliminaries

2.1 Edit Operations on Graphs

There are three kinds of edit operations on graphs: relabel, delete and insert a node.

Relabeling node n means changing the label on n. Deleting a node n means making the

neighbors of n (except an arbitrarily speci�ed neighbor n0) become the neighbors of n0

and then removing n. (This amounts to contraction of the edge between n and n0 [3] and

making the resulting node have label of n0.) Insert is the complement of delete. This means

that inserting n as a neighbor of n0 makes a subset of the current neighbors of n0 become

the neighbors of n. We represent an edit operation as a pair (u; v) 6= (�;�), sometimes

written u! v. We call u! v a relabeling operation if u 6= � and v 6= �; a delete operation

if v = �; and an insert operation if u = �. Let G2 be the graph that results from the

application of an edit operation u! v to graph G1; this is written G1 ) G2 via u! v.

Let S be a sequence s1; s2; : : : ; sk of edit operations. S transforms graph G to graph G0

if there is a sequence of graphs G0; G1; : : : ; Gk such that G = G0; G
0 = Gk and Gi�1 ) Gi

via si for 1 � i � k. Let  be a cost function that assigns to each edit operation u! v a

nonnegative real number (u! v). We require  to be a metric. By extension, the cost of

the sequence S, denoted (S), is simply the sum of costs of the constituent edit operations.

The distance from G to G0, denoted �(G;G0), is the minimum cost of all sequences of edit

operations taking G to G0.

Theorem 1. Finding �(G;G0) is NP-complete.

Proof. The proof that this problem can be solved by a nondeterministic polynomial

time algorithm is straightforward: given a distance value, just guess a sequence of edit

operations for transforming G to G0 and see whether the cost incurred is less than the

distance value. To show the problem is NP-hard, we transform the exact cover by 3-sets

problem [5] to it.

Exact Cover by 3-Sets (X3C)

Instance: A �nite set S with jSj = 3k and a collection C of 3-element subsets of S.

Question: Does C contain an exact cover for S, that is, a subcollection C0 � C such that

every element of S occurs in exactly one member of C0?

Given an instance of the X3C problem, let the set S = fs1; s2; : : : ; smg, where m = 3k.
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Let C = fC1; C2; : : : ; Cng. Here each Ci = fti1; ti2; ti3g where tij 2 S, 1 � j � 3. Without

loss of generality, assume n > k. We construct two graphs as shown in Figure 3. This

construction can be done in polynomial time.

Claim. If �(G;G0) = k + 3(n� k), then C contains an exact cover for S.

Proof of Claim. Assume we use l1 deletes, l2 inserts and l3 relabels to change G to G0. Since

changing node labels does not change the number of nodes in the graphs, jGj�l1+l2 = jG0j.
Thus, l1� l2 = jGj�jG0j = 4n+1� (4(n�k)+3k+1) = k. Since only inserts and relabels

can create new node labels, l2+ l3 � 3(n� k). Thus l1+ l2+ l3 = (l1� l2) + (l2+ l3) + l2

� k + 3(n � k) + l2. So, �(G;G0) � k + 3(n � k) + l2. If �(G;G0) = k + 3(n � k), then

l2 = 0. Since l1 = jGj � jG0j = k, l3 = 3(n� k).

Now, because (i) G has k more nodes than G0, and (ii) G has k more nodes labeled set

than G0, we have to use the l1 deletes to remove the nodes labeled set. On the other hand,

because G0 has 3(n � k) nodes labeled �, we have to use the l3 relabeling operations to

change the labels. Thus after applying the l1 deletes and l3 relabelings, the rest of G must

be equivalent to G0. Therefore C contains an exact cover for S.

Next, given an exact cover for S, it is easy to see that �(G;G0) = k +3(n� k). Therefore

�(G;G0) = k + 3(n � k) i� C contains an exact cover for S. Thus, �nding �(G;G0) is

NP-hard.

G’
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G
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Figure 3. Two graphs G and G0 constructed based on an instance of the X3C problem.
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2.2 Degree-2 Distance

In view of the hardness of the problem, we propose to impose the following constraint on

the edit operations: a node n can be deleted (inserted) only when deg(n) � 2.4 Intuitively

one can delete either a leaf or a node n with two neighbors; in the latter case, after deleting

n, we simply connect its two neighbors together. When inserting n between two nodes n0

and n00, we remove the edge between n0 and n00 and make n the neighbor of both n0 and

n00. These constrained edits will be referred to as the degree-2 edit operations; they are

natural in manipulating nodes and edges in the updated graphs. We de�ne the degree-2

distance between graph G and graph G0, denoted �(G;G0), to be the minimum cost of all

sequences of the degree-2 edit operations transforming G to G0. Clearly � is a metric.

2.3 Mappings

The degree-2 edit operations correspond to a mapping, which is a graphical speci�cation

of what edit operations apply to each node in the two graphs. For example, the mapping

in Figure 4 shows a way to transform the CUAL graph G to the CUAL graph G0 given

in Figure 1. It corresponds to the sequence (delete (node with label N), insert (node with

label N)).

R R

G G’

N
N

Figure 4. A mapping from G to G0. Nodes in G not touched by a mapping line are
to be deleted; nodes in G0 not touched by a mapping line are to be inserted. The
mapping shows a way to transform G to G0.

To formalize the notion of mappings, we need some de�nitions. Let u, v, w be three

nodes in a graph G; let [u; v] denote the path between node u and node v inclusively.

De�ne the center of the three nodes u; v; w, denoted center(u; v; w), to be the intersection

node of the three paths [u; v], [v;w] and [w; u]. Figure 5 illustrates the de�nition.

4Thus, to delete a node n with deg(n) > 2, one has to �rst delete some of its neighbors to make its
degree less than or equal to 2 before removing it.
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Figure 5. Illustrations of the center, which is represented by the bullet �.

Let g[i] represent the ith node of graph G according to some ordering (e.g., a depth-�rst

search order). Formally, a mapping from G to G0 is a triple (M;G;G0) (or simplyM when

the context is clear), where M is any set of pairs of integers (i; j) satisfying the following

conditions:

1. 1 � i � jGj, 1 � j � jG0j.

2. For any two pairs (i1; j1) and (i2; j2) in M , i1 = i2 i� j1 = j2 (one-to-one).

3. For any three pairs (i1; j1), (i2; j2) and (i3; j3) in M , (i�; j�) is also in M where g[i�]

= center(g[i1], g[i2], g[i3]) and g0[j�] = center(g0[j1]; g0[j2]; g0[j3]) (center relationship

preservation).

The cost of M , denoted (M), is the cost of deleting nodes of G not touched by a

mapping line plus the cost of inserting nodes of G0 not touched by a mapping line plus the

cost of relabeling nodes in those pairs related by mapping lines with di�erent labels.

Mappings can be composed. Let M1 be a mapping from G to G0 and let M2 be a

mapping from G0 to G00. De�ne the composition of M1 and M2, denoted M1 �M2, as

M1 �M2 = f(i; j) j 9 k s. t. (i; k) 2M1 and (k; j) 2M2g.

The following lemmas establish the relationship between mappings and degree-2 edit

operations.

Lemma 1. (i) M1 �M2 is a mapping from G to G00. (ii) (M1 �M2) � (M1) + (M2).

Proof. (i) follows from the de�nition of mappings. For (ii), let I be the set of nodes

in G not touched by mapping lines, and let J be the set of nodes in G00 not touched by

mapping lines. For any g[i] 2 G and g00[j] 2 G00, three cases may occur: (i; j) 2 M1 �M2,

g[i] 2 I or g00[j] 2 J . Each case corresponds to a degree-2 edit operation u ! v where

u and v may be node labels or may be �. In all the cases, the triangle inequality on the

distance metric � ensures that (u! v) � (u! w) + (w! v).
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Lemma 2. Given S, a sequence s1; s2; : : : ; sk of degree-2 edit operations from G to G0,

there exists a mapping M from G to G0 such that (M) � (S).

Proof. The lemma is proved by induction on k. The base case (k = 1) holds, since

any single degree-2 edit operation preserves the center relationship in the mapping. For

the general case (k � 2), let S1 be the sequence s1; : : : ; sk�1 of degree-2 edit operations. By

induction hypothesis, there exists a mapping M1 such that (M1) � (S1). Let M2 be the

mapping for sk. By Lemma 1, we have (M) = (M1�M2) � (M1) + (M2) � (S).

Lemma 3. For any mapping M from G to G0, there exists a sequence of degree-2 edit

operations S such that (S) = (M).

Proof. From the mapping conditions, if (i1; j1), (i2; j2) and (i3; j3) are in M , then (i�; j�)

is also in M where g[i�] = center(g[i1], g[i2], g[i3]) and g0[j�] = center(g0[j1]; g0[j2]; g0[j3]).

Let T1 = fg[i] j 9 (i1; j1) 2 M and (i2; j2) 2 M s.t. g[i] 2 [g[i1]; g[i2]]g and let T2 = fg0[j]
j 9 (i1; j1) 2 M and (i2; j2) 2 M s.t. g0[j] 2 [g0[j1]; g0[j2]]g. It's easy to see that T1 and T2

are connected. In fact, they both are trees.

From the above de�nitions, every node of G touched by a mapping line must be in

T1. Furthermore, any node u 2 T1 not touched by a mapping line must have exactly 2

neighbors where both of the neighbors are in T1. (Otherwise u would be the intersection

node of at least three paths, each of which would contain at least one node in M , implying

that u itself would be in M .) For the same reason, any node u 2 T1 with deg(u) > 2 must

be in M .

As a result, we can construct the desired sequence S of degree-2 edit operations as fol-

lows. First, delete the nodes u 2 G and u 62 T1, starting from nodes with degree 1. After

performing these deletes, G becomes T1. Then, delete the nodes of G that are in T1 but

not inM . These deletes are valid since all the deleted nodes have degree 2. Then, perform

all the relabelings indicated by the mapping M . Then, insert the nodes of G0 that are in

T2 but not in M , resulting in the tree T2. Again the inserts are valid since all the inserted

nodes have degree 2. Finally insert all the other nodes of G0. Obviously (S) = (M),

which completes the proof.

From Lemmas 2 and 3, we obtain

Theorem 2. �(G;G0) = minf(M)jM is a mapping from G to G0g.
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Example 2. Consider again the graphs G and G0 in Figure 4. The mapping in the �gure

is a minimum cost mapping and �(G;G0) = 2.

3 The Algorithm for Unordered Trees

For notational convenience, in this subsection we use T rather than G to represent a rooted

unordered tree. Let t[i] denote the ith node of T according to the depth-�rst search order.

T [i] represents the subtree rooted at t[i] and F [i] represents the forest obtained by deleting

t[i] from T [i]. Let T1 and T2 be two rooted unordered trees. We use t1[i1]; t1[i2]; : : : ; t1[ini
]

to represent the children of t1[i] in T1[i] and use t2[j1]; t2[j2]; : : : ; t2[jnj
] to represent the chil-

dren of t2[j] in T2[j]. When applied to the rooted unordered trees T1 and T2, the mapping

M de�ned in x 2.3 is exactly the same as the edit distance mapping between the unordered

trees with the following constraint: for any two pairs (i1; j1) and (i2; j2) in M , (i�; j�) is

also in M where t1[i�] = lca(t1[i1], t1[i2]), t2[j�] = lca(t2[j1], t2[j2]) and lca(:) represents

the least common ancestor of the indicated nodes.5 With this notion in mind, it's easy to

develop a dynamic programming algorithm for rooted unordered trees. We now present

several lemmas, which will be the basis of our algorithm.

Lemma 4. For all 1 � i � N1 and 1 � j � N2,

(i) �(;; ;) = 0;

(ii) �(T1[i]; ;) = �(F1[i]; ;) + (t1[i]! �);

(iii) �(F1[i]; ;) = Pni

k=1 �(T1[ik]; ;);
(iv) �(;; T2[j]) = �(;; F2[j]) + (�! t2[j]);

(v) �(;; F2[j]) =
Pnj

k=1 �(;; T2[jk]).

Proof. Immediate from de�nitions.

Lemma 5. For all 1 � i � N1 and 1 � j � N2,

�(T1[i]; T2[j]) =min

8><
>:

�(T1[i]; ;) + min1�s�ni
f�(T1[is]; T2[j])� �(T1[is]; ;)g

�(;; T2[j]) + min1�t�nj
f�(T1[i]; T2[jt])� �(;; T2[jt])g

�(F1[i]; F2[j]) + (t1[i]! t2[j])

Proof. Let M be a minimum-cost mapping from T1[i] to T2[j]. There are four cases to be

5An edit distance mapping Me between two rooted unordered trees satis�es the node one-to-one rela-
tionship and preserves the ancestor relationship, i.e., supposing u is mapped to v and x is mapped to y in
Me, u is an ancestor of x i� v is an ancestor of y [10, 16].
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considered:

Case 1. i 62M and j 2M . Let (z; j) be in M . Thus t1[z] must be a node in F1[i]. Let

t1[is] be the child of t1[i] on the path from t1[z] to t1[i]. Thus �(T1[i]; T2[j]) = �(T1[is]; T2[j])

+ �(T1[i1]; ;)+ : : :+�(T1[is�1]; ;) + �(T1[is+1]; ;) + : : : + �(T1[ini
]; ;) + (t1[i]! �). Since

�(T1[i]; ;) = (t1[i] ! �) +
Pni

k=1�(T1[ik], ;), we can rewrite the right hand side of the

formula as �(T1[i]; ;) + �(T1[is]; T2[j])� �(T1[is]; ;). The range of s is from 1 to ni; therefore

we take the minimum of the corresponding costs.

Case 2. i 2M and j 62M . This is analogous to Case 1.

Case 3. i 2 M and j 2 M . By the mapping conditions, (i; j) must be in M . Thus

�(T1[i]; T2[j]) = �(F1[i]; F2[j]) + (t1[i]! t2[j]).

Case 4. i 62M and j 62M . We would have �(T1[i]; T2[j]) = �(F1[i]; F2[j]) + (t1[i]! �)

+ (�! t2[j]). Since (t1[i]! t2[j]) � (t1[i]! �) + (�! t2[j]) (the triangle inequal-

ity), we need not include this case in our formula.

In calculating �(F1[i]; F2[j]), we �rst make the following observation.

Lemma 6. Suppose (i; j) 2 M . If two nodes u1 and u2 of T1[is] are in M for some

1 � s � ni, then there must exist an integer t, 1 � t � nj, such that the two nodes

connected to u1 and u2, respectively, by the mapping lines of M are in T2[jt].

Proof. Suppose not. Suppose there are h and k such that the node v1 connected to

u1 by the mapping line is in T2[jh] and the node v2 connected to u2 by the mapping line

is in T2[jk]. Note that u3 = lca(u1; u2) is in T1[is] and lca(v1; v2) = t2[j]. By the mapping

conditions, u3 and t2[j] must be connected by a mapping line in M , contradicting the fact

that (i; j) 2M .

Thus, a subtree rooted at some child of t1[i] must be mapped to a subtree rooted at

some child of t2[j]. We try to �nd a best mapping between the children of t1[i] and

the children of t2[j] by constructing a weighted bipartite graph BG as follows. Let

U = ft1[i1]; : : : ; t1[ini
]g and V = ft2[j1]; : : : ; t2[jnj

]g. Assign the weight for each edge

(t1[is]; t2[jt]), denoted !((t1[is]; t2[jt])), 1 � s � ni and 1 � t � nj, based on the formula

!((t1[is]; t2[jt])) = �(T1[is]; ;) + �(;; T2[jt])� �(T1[is]; T2[jt]):

Without loss of generality, assume ni � nj. To better bound the complexity of our algo-

rithm, for each node u 2 U , we only pick the top ni highest weighted edges touching on u

and store these edges as well as their end nodes inBG. Thus BG has at most nini edges and
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at most ni+nini nodes. LettingMa be the maximumweighted matching in BG, we obtain

Lemma 7.

�(F1[i]; F2[j]) =
niX
s=1

�(T1[is]; ;) +
njX
t=1

�(;; T2[jt])�
X

(u;v)2Ma

!((u; v)):

Thus the problem of calculating �(F1[i]; F2[j]) becomes that of �nding the maximum

weighted matching in BG. One can solve the problem by using Gabow and Tarjan's

algorithm in [4]. Figure 6 summarizes the algorithm.

Algorithm A

Input: Unordered trees T1 and T2.

Output: �(T1[i]; T2[j]) where 1 � i � N1 and 1 � j � N2;

�(T1[N1]; T2[N2]) = �(T1; T2).
�(;; ;) := 0;
for i := 1 to N1 do

compute �(F1[i]; ;) and �(T1[i]; ;) as in Lemma 4 (ii) (iii);
for j := 1 to N2 do

compute �(;; F2[j]) and �(;; T2[j]) as in Lemma 4 (iv) (v);
for i := 1 to N1 do

for j := 1 to N2 do

compute �(F1[i]; F2[j]) as in Lemma 7;
compute �(T1[i]; T2[j]) as in Lemma 5;

Figure 6. Algorithm for computing �(T1; T2) for two unordered trees T1 and T2.

Theorem 3. The time complexity of Algorithm A is O(N1N2D) for general weighting edit

operations and O(N1N2

p
D logD) for integral weighting edit operations.

Proof. By Lemma 5, the complexity of computing �(T1[i]; T2[j]) is bounded by O(ni+nj).

In constructing BG for calculating �(F1[i]; F2[j]), for each node u 2 U , it takes O(nj) time

to calculate the weights of the edges touching on u and to pick the ni edges with the highest

weights. Thus, it takes a total of O(ninj) time to construct BG. Let V be the number

of nodes in BG and let E be the number of edges in BG. The complexity of �nding the

maximum weighted matching in BG is O(minfni; njg(E + V log V )) when the edges have

general weights and is O(
p
V E log(V W )) when the edges have integral weights where W

is the maximumweight [4]. Without loss of generality, assume ni � nj. Then V is at most

ni + nini and E is at most nini. Thus for the general weighting case, the complexity of
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computing �(T1[i]; T2[j]) for any pair of i and j is bounded by O(ninj+ni(nini+V log V )).

V = minfni + nj; ni+ n2ig, and therefore log V = log ni. Hence the complexity is bounded

by

O(ninj + (minfni; njg)3 + ((minfni; njg)2 +minfni; njgmaxfni; njg) log ni)
= O(ninj log(minfni; njg) + (minfni; njg)3)
= O(ninj minfni; njg)

For the integral weighting case, suppose the node label alphabet for unordered trees is

�nite. Then the maximum edit cost is �nite. As a consequence, the maximum weight W

in BG is bounded by cV for some constant c. Thus, the complexity is bounded by

O(ninj +
q
ni + njnini log(ni + n2i ))

= O(ninj +
q
2njnini log ni)

= O(ninj + ninjni=
p
nj log ni)

= O(ninj + ninj
p
ni
q
ni=nj log ni)

= O(ninj + ninj
p
ni log ni)

= O(ninj
q
minfni; njg log(minfni; njg))

Therefore for the general weighting case, the complexity of Algorithm A is

N1X
i=1

N2X
j=1

O(ninj minfni; njg)

�
N1X
i=1

N2X
j=1

O(ninj minfd1; d2g)

� O(minfd1; d2g
N1X
i=1

ni

N2X
j=1

nj)

� O(N1N2minfd1; d2g)
= O(N1N2D)

Likewise, for the integral weighting case, the complexity of Algorithm A is O(N1N2q
minfd1; d2g log(min fd1, d2g)) = O(N1N2

p
D logD).

4 The Algorithm for CUAL Graphs

Let G1 and G2 be two CUAL graphs. By de�nitions, if (i; j) is in a minimum cost mapping

from G1 to G2, then we can assign g1[i] as the root of G1 and assign g2[j] as the root of

13



G2, resulting in two rooted unordered trees. By applying Algorithm A to the two trees, we

can �nd �(G1; G2). This naive algorithm runs in time O(N2
1N

2
2 minfd1; d2g) when the edit

operations have general cost, and in time O(N2
1N

2
2

q
minfd1; d2g log(minfd1; d2g)) when

the edit operations have integral cost.

A more careful analysis leads to a faster algorithm, referred to as Algorithm B. Let us

choose an arbitrary node, say r, in G1 and assign r as the root of G1. Thus the graph G1

can be considered as a rooted unordered tree, denoted as T r
1 . For any node u in G1, we

use T r
1 [u] to represent the unordered tree rooted at u with respect to G1's root r. Let M

be a minimum cost mapping from G1 to G2. There are two cases to be considered: in the

rooted G1, (i) there exists a node x such that x is touched by a line of M and all nodes

touched by lines of M are in the tree T r
1 [x]; (ii) there exist two nodes x1 and x2 such that

both x1 and x2 are touched by lines of M and all nodes touched by lines of M are either

in the tree T r
1 [x1] or in the tree T r

1 [x2].
6

Case 1. In this case, we choose an arbitrary node v in G2 and assign v as the root of

G2. Call the resulting tree T v
2 . Compute �(T r

1 [r]; T
v
2 [v]) using Algorithm A and keep all the

intermediate results. Let the neighbors of v be y1; y2; : : : ; yn. Then compute �(T r
1 [u]; T

yj
2 [v])

for all u 2 T r
1 and for 1 � j � n. Next we assign y1 as the new root of G2 and repeat the

above computation. The order in which we assign the nodes in G2 as its root is based on

the preorder traversal of T v
2 .

Case 2. Let y1; y2 be in G2 such that (x1; y1) 2M and (x2; y2) 2M . Then we can �nd

an arbitrary edge (v1; v2) on the path connecting y1 and y2 and split G2 at the edge into

two rooted unordered trees T v2
2 [v1] and T v1

2 [v2]. Each of T r
1 [x1], T

r
1 [x2], T

v2
2 [y1], T

v1
2 [y2] is

a rooted unordered tree (see Figure 7). The best mapping from T r
1 [x1] to T

v2
2 [y1] and the

best mapping from T r
1 [x2] to T

v1
2 [y2] can be obtained during the computation of Case 1.

The above enumerates all possible situations and therefore the distance is the minimum

of the two cases.

Theorem 4. The time complexity of Algorithm B is O(N1N2 D2) for general weight-

ing edit operations and O(N1N2D
p
DlogD) for integral weighting edit operations.

Proof. The computation of �(T r
1 [u]; T

yj
2 [v]) for all u 2 T r

1 and for 1 � j � n in Case

1 is dominated by the computation of �(F r
1 [u]; F

yj
2 [v]), which in turn is bounded by the

6Note that there cannot be more than two nodes. If that were true (say there were three nodes
x1; x2; x3), the center of the three nodes would be their least common ancestor. By the mapping conditions,
this ancestor would also be in the mapping, contradicting the fact that all the nodes touched by mapping
lines are in the trees rooted at x1; x2; x3.
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computation of the maximum weighted bipartite matching. Let the neighbors of u be

x1; x2; : : : ; xm. (y1; y2; : : : ; yn are neighbors of v.) If deg(v) < deg(u) (i.e., n < m), then

we can just apply Gabow and Tarjan's algorithm deg(v) times. On the other hand, if

deg(v) � deg(u), then in the maximumweighted matchingMa between x1; x2; : : : ; xm and

y1; y2; : : : ; yn, there exist deg(v) � deg(u) subtrees (among T v
2 [y1]; T

v
2 [y2]; : : : ; T

v
2 [yn]) that

are not in the matchingMa. Suppose yj is not in Ma for some 1 � j � n. Then we do not

need to compute the maximum weighted maching for F
yj
2 [v]. (If yj is in Ma, we have to

compute the maximumweighted matching.) The number of such computations is therefore

deg(u). Thus, we only need to apply Gabow and Tarjan's algorithm min(deg(u); deg(v))

times. Therefore for the general weighting case, the time complexity is

N1X
i=1

N2X
j=1

O(ninj minfni; njg)minfni; njg

�
N1X
i=1

N2X
j=1

O(ninj(minfd1; d2g)2)

� O(N1N2(minfd1; d2g)2)
= O(N1N2D

2)

Likewise, for the integral weighting case, the complexity is O(N1N2 (minfd1; d2g)q
minfd1; d2g log(min fd1, d2g)) = O(N1N2 D

p
D logD).

For Case 2, since the best mapping from T r
1 [x1] to T

v2
2 [y1] and the best mapping from

T r
1 [x2] to T

v1
2 [y2] can be obtained during the computation of Case 1, this case requires at

most O(N1N2) time. Therefore the total time required by Algorithm B is as asserted in

the theorem.

Note that the gap between the running times of AlgorithmA and AlgorithmB is minfd1; d2g.
If one of the CUAL graphs has a bounded degree, then the running time of both algorithms

is O(N1N2).
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split
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v
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v2 1T    y 2[   ]1[   ]

2G

Figure 7. Illustration of Case 2 in computing �(G1; G2) for two CUAL graphs G1

and G2.

5 Conclusion

Using this simple, e�cient algorithm, a user can submit a query graph and obtain those

data graphs approximately matching the query. To our knowledge, this work gives the

�rst polynomial time algorithm ever presented to solve the edit distance problem between

undirected acyclic graphs. We are currently implementing the algorithm and integrating

it into our pattern matching toolkit [12].
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