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Analytical Methods for Finding Significant Colored
Graph Motifs

Abstract—

I. INTRODUCTION

II. RELATED WORKS

The original definition of network motif regards unlabeled
patterns of interconnections that arise unexpectedly often in a
network, named topological uncolored motifs. The basic idea
is that subgraphs with the same topology might be functionally
similar. Motifs may correspond to conserved patterns that are
linked to important cellular functions.

Given a topological pattern m on an input network G,
the common approach to determining whether m is a motif
consists of following steps: (i) generate a large set of random
networks sharing the characteristics (same number of nodes
and edges with perhaps more constraints) of N; (ii) find the
number of occurrences of m in each of those networks; (iii)
their average is the expected count of m.

The first step creates random networks under a specified
random reference model that have the same number of nodes
and edges of the real network. Examples of reference models
include:
• The Erdös-Renyi model (ER model) [] in which the

probability of connecting two nodes n1 and n2 is the
same as the probability of connecting any other two nodes
n3 and n4, where the probability depends on the network
density of G.

• The Fixed degree distribution model (FDD model) [],
where the target graph is generated by swapping edges
starting from the input network G, implying that each
node n in each random graph R has the same degree as
n did in G.

• The Expected degree distribution model (EDD model)
[] which generates graphs whose node degrees have the
same expectation as the input network G.

• The Erdos-Renyi mixture for graphs model (ERMG
model) [] which is based on mixture population edges
and is used to model heterogeneous connectivity.

To find all motifs, algorithms generate candidates by search-
ing for all subgraphs having k nodes in the input network G
and in a set of random variations of G [?].

Such a method however presents important computational
drowbacks mainly related to the generation of a large number
of networks and the application of subgraph isomorphism
algorithms to compute the number of occurrences.

The simulation based approach described above yields a
measure of the significance of each candidate through the
computation of a p-value using a resampling approach [?],
[?], [?], [?]. Unfortunately, this method requires a large

number of random graphs whose analysis turns out to be
computationally expensive (far more expensive than analyzing
the target network alone).

Over the last decades, researchers have worked on replacing
the simulation by analytical methods. For uncolored mo-
tifs, approximation methods, based on the Erdös-Renyi (ED)
model, have tried to compute the asymptotic normality of the
distribution of topology counts [?]. Empirically, the Erdos-
Renyi random model offers a poor fit for many real-world
networks [?].

More recently, Picard et al [?] proposed a model to exactly
compute the mean and variance of the count of a given pattern
under any exchangeable random graph model. Exchangeability
means that the probability of occurrence of a topology does
not depend on its position in the graph (i.e., on the structure
of the neighborhood of the pattern). The authors make use
of the Pólya-Aeppli distribution (also known as the Poisson
Geometric distribution which is a special case of the Poisson-
Compound distribution). The Pólya-Aeppli distribution sup-
poses that objects (which are to be counted) occur in clusters,
the number of clusters follow a Poisson distribution, while the
number of objects per cluster has a geometric distribution[?].
This is the case when distinct topologies can share nodes and
edges (i.e. clumps) [?]. In fact, the authors show that when
the number of clumps has a Poisson distribution with mean
λ and the sizes of the clumps are independent of each other
and have a Geometric distribution G(1 − a), the number of
observed events X (topologies) has a distribution P (λ, a).
These results lead to an estimate of the count of occurrences
of a given topology. Picard et al [] show that is a good model
for the distribution of the counts of subgraph topologies (both
induced and non-induced), yielding a more accurate p-value
than a Gaussian model for the graphs of many applications.

A. Different characterization of motifs

Focusing only on topologies ignores the meaning of the
nodes. Such meaning can be important. For example, in a
protein-protein interaction network, topologies having to do
with metabolism may be different than topologies having
to do with meiosis. We name motifs where the nature of
(i.e. information carried on) nodes matters, colored motifs.
However, to deal with colored motifs we need to generalize
its definition according to the constraints that can be defined
either on the topology or on the color labels assignment. Thus,
we introduce three different definition of motifs which are
hierarchically related (see Fig ??).

In their seminal work, Schabat et al [?] define a motif as
any connected topology of k nodes having a given multiset
of colors M , denoted multiset colored motif. For example, a
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connected topology consisting of five nodes having three reds
and two blues. In that example, five would be the size of the
motif. An occurrence of a motif is defined as a connected
subgraph whose labels match the motif (see Fig ??).

The authors [?] propose an approach for assessing the
exceptionality of this kind of colored motifs which does
not require simulations. They established an exact analytical
model for the mean and the variance of the count of a colored
motif using the Erdös-Rényi (ER) random graph model. In
doing so, they assumed that the color assignment to nodes is
independent from the topology of the network, and therefore
modeled the probability of a multiset of colors as a multi-
nomial distribution. To estimate a p-value associated to the
motif, the authors also modeled the complete distribution of
the count of a colored motif in an Erdös-Renyi random graph
model by making use again of the Pólya-Aeppli distribution.

In some applications, we are interested in both topology
and colors (e.g. carbon rings in chemical networks or feed-
forward networks of different gene types in protein-protein
networks). For that reason, we propose a second definition
of motif consisting of a subgraph of k nodes with a given
topology having nodes belonging to a multiset of colors M ,
denoted topological multiset colored motif.

A third interesting definition defines motifs consisting of
a topology and a specific color assignment to each node in
the topology. For example, a star topology of seven nodes
in which the center node is blue and the other nodes are
red. So, in this case a motif is subgraph of k nodes having
fixed colors connected through a given topology, denoted
topological colored motif.

B. Our view of motifs

In this paper we deal with the last two definitions of motifs,
topological multiset colored motif and topological colored
motif for which no analytical model has yet been proposed.
Inspired by the work of [?], [?] we introduce analytical models
to establish the significance of colored motifs on directed
and undirected graphs, under the EDD random model, and
in which colors are either independent or dependent on the
degrees of nodes.

III. DEFINITIONS

A colored graph G(V,E,C, c) is a graph where V is the
set of nodes, E ⊆ (V × V ) is the set of edges, C is a set of
colors and c : V −→ C is a function that assigns a color to
each node in V . If (u, v) ∈ E, we say that v is a neighbor
of u. G is undirected iff ∀(u, v) ∈ E, then (v, u) ∈ E, i.e. u
is a neighbor of v and vice versa. If colors are not taken into
consideration that G(V,E) is called unlabeled graph.

Intuitively, given a graph G, a topology that occurs ”un-
usually” frequently in G is called a motif. The number of
occurences of a motif counts only non reduntant occurrences.
A motif occurence is redundant if it is an automorphism of
anoter occurence. Given a graph G = (V,E) a permutation ξ
of the vertex set V , is an authormophism if for all the pair of
vertices u, v ∈ V we have (u, v) ∈ E ⇐⇒ (ξ(u), ξ(v)) ∈ E.

To establish the significance of the motifs, the target graph
is suppose to be drawn from a set of graphs belonging to a
random graph model. Random graphs models allows to gener-
ate graphs preserving a certaing carachtersitics. An important
properti of random graph model is exchengability. Given two
random graphs G1 and G2 under a random model RG. We
say that RG is an exchangable random model when the two
different random variables X1 and X2 denoting two random
edge assignments to G1 and G2 have the same distribution.

We define two types of motifs.
Definition 3.1: (Motif Type I: topological multiset colored

motif) Let G = (V,E,C, c) be a colored graph drawn
from a distribution of graphs G∗ under a given reference
exchangeable random model RG. Let m(Vm, Em, Cm) be a
subgraph (induced or non-induced) of G where Vm and Em
are the set of motif nodes and motif edges and Cm is the
multiset of node colors of the nodes Vm. Let Nobs(m) be the
number of isomorphic non-redundant occurrences of m in G
having the same multiset of colors Cm, and let α be a critical
value. We say that m is a motif of G if

P [N(m) ≥ Nobs(m)] ≤ α

Where N(m) is a random variable representing the number
of non-reduntant occurrences of the motif under the reference
model RG.

Definition 3.2: (Motif Type II: topological colored motif)
Let G = (V,E,C, c) be a colored graph drawn from a
distribution of graphs G∗ under a given reference exchange-
able random model RG. Let m(Vm, Em, Cm) be a subgraph
(induced or non-induced) of G where Vm is the sequence
of k motif nodes with indexes 1, 2, · · · , k, Em is the set of
motif edges and Cm = (c1, c2, · · · , ck) is an array of node
colors, where ci is the color of the i-th node, for 1 ≤ i ≤ k.
Let Nobs(m) be the number of isomorphic (non redundant)
occurrences of m in G (automorphisms of m w.r.t. both
topology and colors are considered only once). Let α be a
critical value. We say that m is a motif of G if

P [N(m) ≥ Nobs(m)] ≤ α

where N(m) is a random variable representing the number of
occurrences of the motif under the reference model RG.

Definition 3.3: (Motif Type II: topological colored motif)
Let G = (V,E,C, c) be a colored graph drawn from a distri-
bution of graphs G∗ under a given reference exchangeable
random model RG. Let m(Vm, Em, Cm, c) be a subgraph
(induced or non-induced) of G where Vm is the set of k motif
nodes, Em is the set of motif edges and Cm is the multiset
of node colors. Let Nobs(m) be the number of isomorphic
non-redundant occurrences of m in G, where p(Vp, Ep, Cp, c)
is an occurrence if there is a 1-to-1 onto mapping from Em
to Ep such that for every u, v ∈ Em∃u′, v′ ∈ Ep such that
c(u) = c(u′) and c(v) = c(v′) (automorphisms of m w.r.t.
both topology and colors are considered only once). Let α be
a critical value. We say that m is a motif of G if

P [N(m) ≥ Nobs(m)] ≤ α

where N(m) is a random variable representing the number of
occurrences of the motif under the reference model RG.



3

From now on, we will denote m(Vm, Em, Cm) as mc.
The significance of a motif is always evaluated with respect
to a reference random model, so the aim is to find a good
estimation of the distribution of the random variable N(mc)
under a properly selected random graph model.

IV. THE EXPECTED DEGREE DISTRIBUTION RANDOM
MODEL

The Expected Degree Distribution (EDD) model was in-
troduced in [?], [?]. EDD generates graphs in which node
degrees follow a given distribution. We review its definition
and give the details of its extension to directed colored graphs,
considering the cases where node degrees and colors are (i)
independent and (ii) dependent.

A. EED on graphs with independent node labels and node
degrees

Dennis thinks we have to be consistent. We call everything
a label or a color. I prefer color, but we have to stick to one
or the other for clarity.

Given an undirected graph G = (V,E) with |V | = N ,
define a random variable Deg based on the degree distributions
of G. Specifically, P (Deg = d) is the probability that a node
has degree d in G.

Given the random degree distribution Deg based on the
input graph G, intuitively, we can create new graphs G′ =
(V ′, E′) with |V ′| = |V |. Assign valences to each node i in
V ′ by sampling according to the discrete distribution Deg by
keeping fixed the expectation of the degrees. An edge between
nodes i and j, with i 6= j, exists with probability:

P (i, j) =
D(i)×D(j)∑N

k=1D(k)
(1)

Where D(i) be the degree of node i within the input graph.
To guarantee P (i, j) ≤ 1 we assume that maxD(i)2 <∑N
k=1Dout(k). When this condition is not satisfied P (i, j) is

set to 1.
Then, we define the probability of a uncolored topology of k

nodes within the graph under the EDD model in the following
way. First, we can observe that, given a set of nodes with a
given list of degrees, under the EDD model, the probability
of a topology is the product of all the edges probabilities.

To compute the probability of a topology within the graph
we sum across all the possible combinations of degree assign-
ments to each node. Following [?] this can be expressed as:

µ(m) = γm++/2
k∏
u=1

E[Degmu+ ]

Where γ = 1/
∑N
k=1D(k), m++ is the total number of

edges in m, mu+ is the number of edges from node u in m
and E[Degmu+ ] is the mu+-th moment of distribution Deg.
The i − th moment of a random variable X defined as the
expectation of Xi which is E[Xi] =

∑
x∈X P (X = x)xi.

Next we define the occurrence probability of a colored motif
under the EDD model. Since the color assignment to nodes is
independent from its degree, the probability of observing the

colored motif mC of k nodes having a multiset of color Cm
is:

σ(mC) = µ(m)× ν(Cm)

In such a case, the probability to assign colors in Cm to the
k nodes of mC follows a multinomial distribution

ν(Cm) =
k!∏

c∈Cm
s(c)!

∏
c∈Cm

f(c)

where s(c) is the multiplicity of color c in Cm and f(c) is
the frequency of color c in the graph.

Intuitively, the same probability can be computed in the case
of directed graphs by properly adapting the EDD to sample
within a space of in-degree and out-degree distributions.

When dealing with directed graphs G = (V,E) with
|V | = N , we can generate random graphs by defining two
random variables Dout and Din by sampling from distribution
of Degin and Degout, which are the random variables of in-
degree and out-degree distributions of the graph. Let Dout(i)
and Din(i) be the out-degree and in-degree of node i in the
input graph, respectively. Then EDD random graphs can be
created according the following equation:

P (i, j) =
Dout(i)×Din(j)∑N

k=1Dout(k)
(2)

To guarantee P (i, j) ≤ 1 maxDout(i) × Din(j) <∑N
k=1Dout(k). When this condition is not satisfied, P (i, j)

is set to 1.
To compute the probability of a motif within the graph we

use the following equation:

µ(m) = γm++/2
k∏
u=1

E[Deg
mu+

out ]E[Deg
mu−
in ]

Where γ = 1/
∑N
k=1Dout(k), m++ is the total number of

out-going edges in m, mu+ is the number of out-going edges
from node u in m and mu− is the number of in-going edges
to node u in m. E[Deg

mu+

out ] and E[Deg
mu−
in ] represent the

moments of order mu+ and mu− of distributions Degout and
Degin, respectively.

B. EED on graphs with dependent node labels and node
degrees

Let G(V,E,C, c) be a colored undirected graph with
|V | = N . When dealing with graphs in which node degrees
depend on colors, we define a number of EDD conditioned
distributions, one for each color.

Let Deg|c be a random variable defined as the degree
distribution for nodes with color c within the input graph G.
Let P (Deg|c = x) be the probability of sampling a node in
G with a degree x given the color c. Random graphs can be
created by defining the probability of adding an edge between
two nodes as in the case of undirected graphs with motifs of
type I (see equation 1). Where D(i) is the degree of node i
according to Deg|ci .
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We define the probability of a colored motif mC of k nodes
within the graph under the EDD model in the following way:

σ(mC) = γm++/2
k∏
u=1

P (cu)mu+E[Deg
mu+

|cu ] (3)

where Deg|cu is the degree distribution for nodes of color cu
in the input network, γ = 1/

∑N
k=1D(k), m++ is the total

number of out-going edges in mc, mu+ is the number of out-
going edges from node u in mc, P (cu) is the probability of
observing the color cu within the graph and E[Deg|cu ] is the
mu+ − th moment of distribution Deg|cu .

When dealing with directed colored graphs we have to
define 2 × |C| distributions. Given a color c we have two
conditioned random variables Degout|c and Degin|c by mak-
ing use of both in-degree and out-degree distributions of the
input network.

We can then define two random variables Dout and Din

by sampling from the distributions Degout|c and Degin|c,
respectively. Let Dout(i) and Din(i) the expected out-degree
and in-degree of node i, respectively. The probability of adding
an edge between two nodes is then defined as in the case of
directed graphs with motifs of type I (see equation 2. We define
the probability of a colored motif mc of k nodes within the
target network under the EDD model in the following way:

σ(mc) = γm++

k∏
u=1

P (cu)mu++mu−E[Deg
mu+

out|cu ]E[Deg
mu−
in|cu ]

(4)
where γ = 1/

∑N
k=1Dout(k), mu+ is the number of out-going

edges from node u in mc and mu− is the number of in-going
edges from node u in mc and E[Deg

mu+

out|cu ] and E[Deg
mu−
in|cu ]

are the moments of order mu+ and mu− of Degout|cu and
Degin|cu , respectively.

V. EXPECTATION AND VARIANCE OF MOTIFS WITHIN THE
TARGET NETWORK

A. Motifs of Type I

We describe a method to compute the mean and the variance
of the number of non-induced occurrences of a colored motif
under any random graph model[],[].

We make the following assumptions: (i) the occurrence
probability of a given motif does not depend on the occurrence
position; (ii) the disjoint occurrences are independent one to
another; and (iii) colors are independent from topologies.

Let mC be a motif of k nodes, it can occur in different
positions within a graph G. Let α = (i1, i2, ..., ik) a k-uple of
indexes representing a potential location of mC in G. The
number of such positions is

(
N
k

)
. We introduce a random

variable Yα(mC) which equals one if the topology mC occurs
at position α and 0 otherwise.

Since we assume exchangeability of our random model, the
distribution of Yα(mC) does not depend on α permutations.
Yα(mC) is distributed according to a Bernoulli random vari-
able B(p), where p = σ(mC) is the probability of occurrence
of motif mC at any position within G.

Moreover, a motif mC in a position can occur in different
configurations, where each configuration corresponds to a

permutation of indexes in α. Some permutations of the indexes
yield the same motif, so we need to consider only the set of
its Non-Redundant Permutations (NRP) which we denote with
R(mC). We also denote with ρ(mC) = |R(mC)| the number
of Non-Redundant Permutations of mC .

To compute R(mC) we generate all possible k! simultane-
ous permutations of the rows and columns of the adjacency
matrix of m. For each permutation, we build the correspond-
ing adjacency matrix and check the latter for redundancy.
We then have the following random variable N(mC) =∑
α

∑
m
′
C∈R(mC) Y (m

′

C).
For the exchangeability assumption, each permutation of

mC has the same probability of occurrence. The expectation
of the count of a colored motif mC in a graph G with N
nodes is

E[N(mC)] =

(
N

k

)
× ρ(m)× ν(Cm)× µ(m) (5)

where
(
N
k

)
is the number of all possible locations of m in G,

ν(mC) is the occurrence probability of the multiset of colors
C of mC and µ(m) is the occurrence of the motif according
to the chosen random model.

To compute the variance of the number of occurrences of
the colored motif, we have to take into account the overlapping
of the occurrences. Two occurrences of a motif overlap if they
share at least one node.

We define the concept of super-motif, which is a motif
composed by two NRPs of overlapping occurrences of a given
motif. Given two NRPs, m

′
and m

′′
of a motif m, and an

integer s, we define the overlapping operation with s common
nodes as m

′
Ωsm

′′
; The result of the operation is a new motif

with 2k−s edges (see Figure ?? for an example). Furthermore
the notion of super-motif is transitive.

Concerning the colors, a super-motif inherits them from the
ancestor motifs. Due to node overlapping, one or more colors
can overlap. Colors can overlap in many ways, therefore the
same super-motif can be colored with different super-sets of
colors. As for the super-motif topology, we can define an
overlapping operations for two multi-sets of colors C1 and
C2 with overlap s: C1ΠsC2, where C1ΠsC2 represents the
set of all possible intersections of C1 and C2 with s elements.
CΠsC consists of the set of all subsets of C with s

elements.
Let C a multiset of colors of m

′
and m

′′
, C∗ the multiset

of colors of the s overlapping nodes of m
′

and m
′′

and C− =
C \ C∗, where \ is the set difference operator.

The probability of observing the super-multiset of colors
C1ΠsC2 in the graph [?], [?] is:

ν(CΠsC) =
∑

C∗⊂C:|C|=s

ν(C∗) [ν(C \ C∗)]2

s(C∗)

where s(C∗) is the multiplicity of subset C∗ in C. The
equation considers the probability of observing the multiset
of colors in the intersection of two motifs and the probability
of observing the multiset of remaining colors in the non-
overlapping region of both motifs. Since the subset of over-
lapping colors can occur multiple times in C, the probability
must be corrected considering s(C∗).
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Therefore, the probability of observing a colored super-
motif generated from colored motifs is the following:

σ(m
′

C ,m
′′

C , s) = µ(m
′

CΩsm
′′

C)× ν(CΠsC)

The computation of variance is based on the expectation of
the squared count of a colored motif. The expectation is given
by the contribution of two terms, one is related to pairs of
disjoint occurrences and one is related to pairs of overlapping
occurrences (with different degrees of overlap). In both cases
we have to consider: (i) all possible locations of the two
occurrences of a motif mc in the graph; (ii) all possible non-
redundant permutations of mc. The expectation of the squared
count is given by the following equation:

E[N2(mC)] =

(
N

N − 2k, k, k

) ∑
m′∈R(m)

σ(m′C)

2

+

k∑
s=1

(
N

k − s, s, k − s,N − 2k + s

) ∑
m′,m′′∈R(m)

σ(m′C ,m
′′
C , s)

(6)
where k is the number of nodes of motif m and N is the
number of nodes of the graph,

(
N

N−2k,k,k
)

is the number of
all possible combinations of locations of two non-redundant
permutations of m with no overlap and

(
N

k−s,s,k−s,N−2k+s
)

is
the number of all possible combinations of locations of two
non-redundant permutations of m with overlap s. The variance
of the count is V[N(mC)] = E[N2(mC)]− E[N(mC)]

2

B. Motifs of Type II

In what follows we describe how to compute the exact
mean and variance of the number of non-induced occurrences
of a colored motif under the EDD random models to deal
with graphs in which there is a dependency between colors
and topology. We keep two important assumptions: (i) the
occurrence probability of a given motif does not depend on the
occurrence position; (ii) disjoint occurrences are independent
one another.

In this context we need to extend the original definition of
non-redundant permutations of a topology. We introduce the
concept of non-redundant colored permutations of a colored
motif. A colored permutation of a motif mC is a colored motif
resulting from a permutation of the nodes (and the correspond-
ing colors) of mC and it is represented by its adjacency matrix
plus the array of colors of its nodes. Two colored permutations
are non-redundant iff one of the following conditions hold: (i)
their adjacency matrices are different; and (ii) their adjacency
matrices are equal, but the array of colors are different.

In Figure ?? we give an example of non-redundant colored
permutations.

Therefore the expected count of motifs within the target
network is computed according to the following equation:
E[N(mC)] =

(
N
k

)
π(mC)σ(mC), where π(mC) is the number

of non-redundant colored permutations of mC and σ(mC) is
the occurrence probability of mC according to an exchange-
able random model. To compute the variance we can use the
equation for the motifs of type I (see equation 6) providing the

proper probability of the motif. The variance uses the concept
of supermotif which in this case have to be implemented
carefully. In this case the overlapping has to take into account
the node colors. Therefore when two motifs of size k have
an overlapping with s nodes, these nodes share also the same
colors.

This implies that motifs having nodes of the same colors in
not compatible positions will not yield supermotif. In Figure
... we give an example.

VI. ASSESSING THE MOTIFS SIGNIFICANCE

To establish whether a motif mc is over represented
in a given graph, one needs to calculate the probability
P [N(mC) ≥ Nobs(mC)], where Nobs(mC) is the observed
number of non-redundant occurrences of m and N(mC) is
a Random Variable representing the number of occurrences
of the motif under the chosen reference model. The common
approach on the approximation of P [N(mC) ≥ Nobs(mC)]
relies on simulation through the usage of permutation test.
To avoid such an expensive simulation, a key problem is to
identify a proper distribution fitting the number of observations
in the the reference random model. In this direction, several
attempts have been done. The most successful one has been
proposed in [] for uncolored graphs. Authors showed that the
Pólya-Aeppli (denoted by PA) distribution (also knonwn as
Geometric-Poisson) distribution [] is suitable to describe how
the count of events occurring in motifs may vary and can be
used as an approximation of the distribution of the count of
N(mc).

Following [], we can notice that, motifs come in clusters
since they can overlap, clusters result in several occurrences
of a motif with a reduced number of vertices. Hence, given a
graph we can observe a certain number of clusters according
to the overlapping of the motifs. This number can be modeled
as a random variable that we call X1. On the other hand,
suppose we have a set of clusters according to the intersection
of pairs of motifs. We can introduce a second random variable
called X2 in which we sample several times a cluster until
we observe the size of the cluster we are looking for. We
assume that X1 (modeling the number of clusters) has a
Poisson distribution, whereas X2 (modeling the probability of
observing a certain cluster size) has a Geometric distribution.
Furthermore, the cluster sizes are independent each other with
a common distribution. The PA distribution is obtained when
the cluster size has a geometric distribution G(1− α), so the
mean size of a cluster is 1/(1− α)

In this case we have X ∼ PA(λ, α) is a random variable
representing the number of observed events:

P (X = x) =

{
e−λαx

∑
c=1···x

1
c!

(
x−1
c−1
) [λ(1−α)

α

]c
if x > 0

e−λ if x = 0

The mean and the variance of PA(λ, α) are defined as λ
1−α

and λ(1+α)
(1−α)2 . By making use of the mean and variance obtained

using the exchangeable random graph model we can deduce
the parameters of the distribution as α = V[N(mC)]−E[N(mC)]

V[N(mC)]+E[N(mC)]

and λ = (1− α)× E[N(mC)].
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VII. DEALING WITH THE INDUCED CASE

The equations described in section V-A to compute the mean
and the variance of a motif count refer to the non-induced case.
The non-induced case is simpler to model since the random
variable describing the motif occurrences does not depend on
other topological motif occurrences of the same size. This is
not the case when we deal with induced occurrences.

We extend the model to compute the mean and the variance
of the number of induced occurrences of a motif by relating the
number of non-induced occurrences to the number of induced
occurrences. In order to do that, we use the theoretical result
known as Kocay Lemma []. The Kokay Lemma allows to
express the number of non-induced occurences of a motif as
a linear combination of the induced occurences of all motifs
of the same size.

A. Induced motifs of Type I

Suppose we want to count the number of non-induced oc-
currences N of a certain subgraph with k nodes. By applying
the Kocay Lemma we can express this number as a linear
combination of the number of induced occurrences of all
possible topologies with k nodes. Therefore, to construct such
a relation we find the coefficients of the linear combination.
Once such coefficients are found, these can be represented as a
matrix. Therefore, we will invert the matrix to find the count of
the induced motifs as a linear combination of the non-induced
one.

Suppose we have a star topology with k nodes and we
wish to find its non-induced occurrences within a target
graph G. Suppose we know the number of occurrences of
all induced topologies with k nodes. We denote with N the
number of induced occurrences. The coefficients of the linear
combination can be determined by counting the occurrences of
the star topology within each topology of k nodes and this can
be done by making use of a subgraph matching algorithm [?].
The process above can be repeated for each topology of size
k. The coefficient for all topologies can be represented with a
matrix notation.

We denote with Kk the Kocay matrix for topologies of size
k, where each row refers to a specific topology t. We denote
with Kk(t) the corresponding row. Kk(ti, tj) is the number
of non-induced occurrences of topology ti in topology tj .
By computing the inverse of a Kocay matrix we can express
the number of induced occurrences of a motif as a linear
combination of the number of non-induced occurrences of all
topologies with k nodes.

In this way we represent the random variable N ′(mC) of the
induced counts of colored motif mC with k nodes as a linear
combination of random variables of counts of all non-induces
motifs of size k. Let Mk the set of all possible topologies
with k nodes. We have:

N ′(mC) =
∑
t∈Mk

K−1k (m, t)N(mC)

Therefore, we compute mean and variance of such random
variable.

The coefficients of the linear combination are the elements
of a row of the inverse Kocay matrix, the mean is then
given by E[N ′(mC)] = E[

∑
t∈Mk K

−1
k (m, t)N(mC)] =∑

t∈Mk K
−1
k (m, t)E[N(mC)].

The variance of N ′(mC) implies the computation of the
covariance. We have the following equation:

V[N ′(mC)] =
∑
t∈Mk

[
K−1k (m, t)

]2 V[N(mC)]+

+
∑

t′ ,t′′∈Mk | t′ 6=t′′
K−1k (m, t

′
)K−1k (m, t

′′
)Cov

(
N(t

′

C), N(t
′′

C)
)

We have that Cov
(
N(t

′

C), N(t
′′

C)
)

= E[N(t
′

C)N(t
′′

C)] −
E[N(t

′

C)]E[N(t
′′

C)] where:

E[N(t
′

C)N(t
′′

C)] =

(
N

N − 2k, k, k

) ∑
m′∈R(t′ ),m′′∈R(t′′ )

σ(m′C)σ(m′′C)+

k∑
s=1

(
N

k − s, s, k − s,N − 2k + s

) ∑
m′∈R(t′ ),m′′∈R(t′′ )

σ(m′C ,m
′′
C , s)

B. Induced motifs of Type II

Like in the previous case, we can use Kocay matrices to
compute the number of non-induced colored motifs as a linear
combination of the number of induced colored motifs and vice
versa. The main difference is that now we have multiple Kocay
matrices for motifs of size k. In fact, if we change the colors of
a motif with k nodes, we can obtain different Kocay matrices,
and a Kocay matrix becomes function of k and the array C of
node colors and will be denote as Kk,C . Figure ... reports an
example of a motif with k = 3.

Once we have computed the coefficients we can apply the
same equations defined above to compute the mean and the
variance of the motif occurrence.

VIII. EXPERIMENTAL ANALYSIS


