
Foundations and TrendsR© in Databases
Vol. XX, No. XX (2020) 1–91
c© 2020 now Publishers Inc.
DOI: 10.1561/XXXXXXXXXX

Principles, Tradeoffs, and Opportunities in
Data Access Method Design

Manos Athanassoulis
Boston University
mathan@bu.edu

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

Dennis Shasha
New York University
shasha@cs.nyu.edu



Contents

1 Introduction 2
1.1 Access Methods Basics . . . . . . . . . . . . . . . . . . . 2
1.2 Tradeoffs in Access Method Designs . . . . . . . . . . . . 3
1.3 From Read/Update to RUM: Memory & Space Costs . . . 7
1.4 RUM Performance Tradeoffs . . . . . . . . . . . . . . . . 8
1.5 From RUM to PyRUMID . . . . . . . . . . . . . . . . . . 10
1.6 Contributions: Design Space and Classification . . . . . . . 10
1.7 Related Work on Design Abstractions for Access Methods . 11

2 Performance Tradeoffs & Access Patterns 14
2.1 The PyRUMID Tradeoff Space . . . . . . . . . . . . . . . 16

3 Design Principles: Dimensions of a Design Space 20
3.1 Global Data Organization . . . . . . . . . . . . . . . . . . 21

3.1.1 No Organization . . . . . . . . . . . . . . . . . . . 21
3.1.2 Temporal Organization . . . . . . . . . . . . . . . 22
3.1.3 Range Partitioning . . . . . . . . . . . . . . . . . 23
3.1.4 Sorted . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 Hash Partitioning . . . . . . . . . . . . . . . . . . 25
3.1.6 Radix Partitioning . . . . . . . . . . . . . . . . . . 26
3.1.7 Temporal Partitioning . . . . . . . . . . . . . . . . 27

ii



iii

3.2 Search without Indexing . . . . . . . . . . . . . . . . . . . 27
3.2.1 Full Scan . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Binary Search . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Direct Addressing . . . . . . . . . . . . . . . . . . 28
3.2.4 Data-Driven Search . . . . . . . . . . . . . . . . . 29

3.3 Search with Indexing . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Full Scan → Sparse Indexing . . . . . . . . . . . . 30
3.3.2 Binary Search → Binary, K-Ary Trees, B+-Trees . . 31
3.3.3 Direct Addressing → Radix Trees, Hash Indexes . . 31
3.3.4 Data-Driven Search → Learned Indexes . . . . . . 32
3.3.5 Achieving Robust Performance with Search Trees . 33

3.4 Local-Global Hybrid Data Organization . . . . . . . . . . . 34
3.4.1 Range - Sorted (Traditional B+-Trees) . . . . . . . 35
3.4.2 Range - Range (Fractal B+-Trees) . . . . . . . . . 35
3.4.3 Range - Temporal (Insert-Optimized B+-Trees) . . 36
3.4.4 Range - Range - ... - Range (Bulk-Loaded B+-

Trees, Sorted, Adaptive Indexing, Cracking) . . . . 36
3.4.5 Range - Hash (Bounded Disorder) . . . . . . . . . 36
3.4.6 Radix - Sorted (Radix Trees) . . . . . . . . . . . . 37
3.4.7 Hash - Temporal (Chained Hash Table) . . . . . . 37
3.4.8 Temporal - Sorted (LSM Trees) . . . . . . . . . . 37
3.4.9 Temporal - Radix/Hash (LSM Tries) . . . . . . . . 38

3.5 Update Policy: In-place vs. Out-of-place . . . . . . . . . . 38
3.5.1 In-place Updates . . . . . . . . . . . . . . . . . . 39
3.5.2 Deferred In-place Updates . . . . . . . . . . . . . 39
3.5.3 Out-of-place Updates . . . . . . . . . . . . . . . . 40
3.5.4 Differential Out-of-place Updates . . . . . . . . . . 41

3.6 Buffering: Batching Requests . . . . . . . . . . . . . . . . 41
3.6.1 Buffering Reads . . . . . . . . . . . . . . . . . . . 42
3.6.2 Cache Pinning as a Special Case of Read Buffering 43
3.6.3 Buffering Updates . . . . . . . . . . . . . . . . . . 43
3.6.4 Buffering Updates Locally . . . . . . . . . . . . . . 44

3.7 Contents Representation . . . . . . . . . . . . . . . . . . 44
3.7.1 Key-Record . . . . . . . . . . . . . . . . . . . . . 44
3.7.2 Key-Row ID . . . . . . . . . . . . . . . . . . . . . 45



iv

3.7.3 Key-Pointer . . . . . . . . . . . . . . . . . . . . . 45
3.7.4 Key-Bitvector . . . . . . . . . . . . . . . . . . . . 45

3.8 Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8.1 Adaptive Sorting . . . . . . . . . . . . . . . . . . . 46
3.8.2 Adaptive Vertical Partitioning . . . . . . . . . . . . 48
3.8.3 Adaptive Update Merging . . . . . . . . . . . . . . 48

3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Mapping Access Methods to the Design Space 50
4.1 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Reducing Read Amplification: Data Layouts & Scans . . . 51

4.2.1 Physical Design . . . . . . . . . . . . . . . . . . . 51
4.2.2 Adaptive Physical Design . . . . . . . . . . . . . . 51
4.2.3 Membership Test Indexes . . . . . . . . . . . . . . 54

4.3 Efficient Random Access: B+-Trees and Variants . . . . . 54
4.3.1 B+-Tree Designs . . . . . . . . . . . . . . . . . . . 55

4.4 Reducing Write Amplification: LSM Trees and Variants . . 55
4.4.1 Leveled LSM Designs . . . . . . . . . . . . . . . . 56
4.4.2 Tiered LSM Designs . . . . . . . . . . . . . . . . . 56
4.4.3 Hybrid LSM Designs . . . . . . . . . . . . . . . . 56
4.4.4 Hash-based LSM Designs . . . . . . . . . . . . . . 56

4.5 Balance Space and Read: Tries and Variants . . . . . . . . 56
4.5.1 Trie Index Designs . . . . . . . . . . . . . . . . . . 57

4.6 Reduce Space Amplification: Bitmap Indexing . . . . . . . 57
4.6.1 Bitmap Index Designs . . . . . . . . . . . . . . . . 57

4.7 Making Access Methods Hardware-Friendly . . . . . . . . 57
4.8 Other Access Methods . . . . . . . . . . . . . . . . . . . 57

5 Design Opportunities 60
5.1 The Design Space As A Design Advisor . . . . . . . . . . 61
5.2 A Richer Design Space . . . . . . . . . . . . . . . . . . . 61

5.2.1 Concurrency . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Distributed Systems . . . . . . . . . . . . . . . . . 63
5.2.3 Privacy . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.4 Caching: Using Space for Cheaper Reads . . . . . . 63
5.2.5 Hardware-Oblivious Designs . . . . . . . . . . . . . 63



v

6 Summary 64

References 65

Appendices 87

Dennis Suggestion 88
.0.1 Inter-Block Organizations . . . . . . . . . . . . . . 89
.0.2 Time Measurement for Block Organization . . . . 89
.0.3 Organization within leaf nodes . . . . . . . . . . . 91



Abstract

Access methods to support efficient search and modification are at the
core of any data-driven system. Designing access methods has required
a continuous effort to adapt to changing workload requirements and
underlying hardware. In this article we outline the shared principles
and design dimensions of access methods that facilitate efficient access
to data residing at various levels of the storage hierarchy from durable
storage (spinning disks, solid state disks, other non-volatile memories)
to random access memory to caches (and registers), and we discuss the
impact of using each with respect to the latency of different forms of
searches and modifications, as well as space. We classify access methods
based on both the design dimensions they use and the goal for which
they are optimized for (reads, updates, or space). Finally, we discuss
new design opportunities for building access methods that become pos-
sible because of the systematization of the access method design space.
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1
Introduction

1.1 Access Methods Basics

Access Methods are the means by which executing programs store and
obtain data. As such, access methods sit at the heart of all data-
intensive computer systems. An access method consists of (1) the data,
physically stored in some layout, (2) optional metadata to facilitate
navigation over the data, and (3) algorithms to support storage and
retrieval operations [106, 208, 119]. Other terms used in the literature
for access methods include “data structures” and “data containers”.
This article uses the term access method to underscore the interplay
between the design of a data storage component with the way data is
accessed.

Data systems, operating systems, file systems, compilers, and net-
work systems employ a diverse set of access methods. Our discussion
in this paper draws examples primarily from the area of data systems
in the sense that we consider secondary memory, but the core analy-
sis and categorization we present applies generically to any application
requiring the storage and retrieval of key-value pairs.
Problem Definition. An access method manages a collection of key-
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1.2. Tradeoffs in Access Method Designs 3

value pairs. The value itself may have semantics ranging from a pointer
or a reference in the base data collection, e.g., a row id in a relational
system, a reference to a large object such as an image or video in a key-
value store, or an arbitrary set of values that the application knows how
to parse and use in a NoSQL system.

Under this general definition, an access method design can, for ex-
ample, be used to describe the design of (i) metadata indexes used in
file, network, and operating systems, (ii) base data layouts and indexes
in relational systems [106], (iii) NoSQL and NewSQL data layout de-
signs [174], and (iv) general data structures that assume two levels of
storage with different performance and capacity, modeling the memory-
disk or cache-main memory pairs.

Each application has a sweet spot with regards to the different oper-
ations it needs to perform over its data in terms of writes to inject new
data, and reads to retrieve data. In addition, the amount of memory
and persistent storage required (and can be afforded) are also critical
parameters that shape the requirements of a given application. In this
way, each access method design targets the requirements of a given ap-
plication. For example, data management systems use access methods
as the entry point in query processing, i.e., utilizing various forms of
tree-based and hash-based indexes and various base data layouts such
as column-oriented and row-oriented as well as hybrids. File systems
manage file metadata and file contents using access methods optimized
for frequent updates. Compilers typically use hash maps for managing
variables during their life span, and abstract syntax trees to capture
the overall shape of a program. Similarly, network devices have heavily
specialized access method needs to efficiently store and access routing
tables.

1.2 Tradeoffs in Access Method Designs

There is no perfect access method [120]. Every access method represents
a particular performance tradeoff. For example, the more structure a
data set has (either in the form of metadata or within the main data),
the easier it is to search it, but the harder it is to insert or update
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because the structure needs to be maintained (by re-organizing data or
by updating metadata).

Hence, new designs arise that offer a new balance between read per-
formance, update performance, and the memory and storage footprint.
This happens either by optimizing an existing balance, that is, using
engineering and sometimes algorithmic effort to improve performance,
or by tilting it, that is, improving one aspect at the expense of another.

As applications and hardware evolve, they require the invention of
new data structures. For example, the database community general-
ized the 2-3 tree to the B-tree [33] and then the B+-Trees [89, 106]
with its many variants. Over the course of more than four decades of
relational data systems [17, 62], evolution of such systems is closely
connected with the the development of new access methods. The same
is true for NoSQL systems which heavily rely on specialized classes of
data structures such as LSM-trees for data systems that support write-
heavy applications [161, 182], B-trees for systems that target more read-
optimized applications [179, 229], and hashing based systems that are
the core of systems that support very write-heavy applications [54].
Similarly, Bloom filters [43] came from the networking community [48],
and, today Bloom filters are used throughout computer science.

Overall, there are two drivers for the creation of access methods:
(i) new workloads and access patterns dictate specialized designs,
and (ii) advances in hardware (multi-cores, processors, caches, main
memory, storage devices) impose new performance and cost tradeoffs.
We discuss these two points in more detail below.
Workload-Driven Designs. As an example from data systems, the
rise of analytical applications as of the early 2000s in which relational
tables tended to be wide but only a few columns would be accessed
favored a columnar layout [64] (as had been present in vector languages
like APL [74] for some time) which eventually led to the development
of a new column-oriented data system architecture, also called column-
stores [1, 45, 76, 77, 82, 83, 113, 128, 140, 218, 247]. The column-store
design works better for long analytical queries on few columns, while
the row-store design for short selective queries that require most fields
of each row. Thus, using a columnar instead of a row-oriented layout in



1.2. Tradeoffs in Access Method Designs 5

data management systems is effectively a new access method decision
[30, 31, 137, 142, 143, 144, 145, 193, 194, 195]. Further, various hybrid
approaches offer benefits from both worlds of row-stores and column-
stores: (i) by nesting columnar data organization within data pages
[5, 6], and (ii) by grouping multiple columns and offering specialized
code for accessing groups of columns [9, 72, 76, 77, 97, 128].

Access methods have been invented that adapt according to their
workload. For example, Database Cracking [114, 115, 116] exploits the
read patterns to organize data accordingly, Bw-Tree [150] enables delta
updates to minimize the updating cost, E-Tree [162] alternates between
read-optimized tree nodes and write-optimized tree nodes based on the
read/write pattern, and B+-Trees [89] can be tuned with variable node
sizes, and thus, fanout.

The rich ecosystem of new non-relational data management sys-
tems, typically categorized as NoSQL or newSQL [174], often employ a
log-structured merge tree (LSM-Tree) [161, 182] design that amortizes
the update cost by storing incoming data in immutable sorted files.
LSM-based NoSQL designs also face access tradeoffs. For example, a
different memory allocation strategy allows for a better read vs. update
performance tradeoff [67, 68], and lazy and eager merging of sorted
runs can optimize for write-intensive or read-intensive workloads re-
spectively [136, 161]. Another approach, called lazy leveling, performs
lazy merging throughout the tree, except from the last level and uses
additional memory to balance the read costs when needed [69]. Using
hashing instead of sorting can efficiently support workload with point
access and no range queries [12, 29, 54, 70, 71, 211]. These are only a
few examples of access method designs that are strongly tied to either
expected or temporary workload patterns.
Memory-Driven And Storage-Driven Designs. As a complement
to workload-based considerations, hardware changes create new chal-
lenges, needs, and opportunities in access method design. In the last
decade, the memory and storage hierarchy has been enriched with de-
vices such as solid-state disks, non-volatile memories, and deep cache
hierarchies. In a storage hierarchy, the lower levels offer a lot of storage
at low price but at high access latency, and as we move higher, that
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is, closer to the processor, the storage is faster but smaller and more
expensive per byte. In the storage/memory hierarchy there is always a
level that is the bottleneck for a given application, which depends on
the relative size of the data in question and the sizes of the levels of
the hierarchy.

In data management systems, early access methods like B+-Trees
were optimized for disk accesses [89]. As the memory sizes grew, how-
ever, the bottleneck quickly moved higher to the main memory and
non-volatile memory. This changed the tradeoffs dramatically. In par-
ticular, a key hardware trend has been the growing disparity between
the CPU speed and the speed of off-chip memory, termed “the memory
wall” [236]. Since the early 2000s, operating systems [171] and data
management systems [124] have been carefully re-designed to account
for the memory wall by optimizing for the increasing number of cache
memories [5, 7, 44, 45, 59, 139, 164, 165, 166, 200, 243].

Additionally, secondary storage is already at a crossover point. Tra-
ditional hard disks have hit their physical limits [18], and new storage
technologies like shingled disks and flash are now addressing this per-
formance stagnation [109]. Shingled disks increase the density of stor-
age on the magnetic medium, changing the nature of disks because
the granularity of reads and writes is now different [109]. Flash-based
drives offer significantly faster read performance than traditional disks,
but may suffer from relatively poor write performance. Because flash-
based drives are equipped with a complex firmware called Flash Trans-
lation Layer (FTL) which, when updated, can lead to drastic changes
in performance. Thus, flash hardware performance changes both when
hardware changes and when firmware gets updated, which may create
the need to change access methods to exploit those changes.

New system and access method designs aim to exploit what the
new hardware has to offer and hide its weaknesses [19, 21, 22, 70, 122,
127, 133, 151, 153, 176, 177, 199, 221]. For example, because writing
certain kinds of flash devices requires writing full blocks at a time,
access methods append incoming data without sorting until a flash
erase block is full, at which point data is being organized in memory
and re-written as one block. This minimizes write overhead, sacrificing
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read performance (contents of a block are frequently not sorted) for
write efficiency [4, 20, 24, 25, 61].

1.3 From Read/Update to RUM: Memory & Space Costs

Read vs. Update Captures Workload. In order to compare data
structures and decide which one to use and under which conditions, we
first need to define the appropriate metrics. The most common metrics
quantify the tradeoff of each design between the read performance and
update performance [47, 239, 240].
Read vs. Update vs. Memory Captures Storage. The common
denominator of the lines of work that consider read and update per-
formance as metrics is that they assume that disk capacity is cheap
or even free in the ideal setting. This assumption comes from the time
that disk was used as secondary storage and was so much cheaper than
memory that the storage cost was considered insignificant and the main
consideration was storage performance [96]. Since then, the storage hi-
erarchy has been augmented with various devices including solid-state
disks (SSDs), shingled magnetic recording disks (SMR), non-volatiles
memories (NVMs) and other devices.

The new storage media offer tradeoffs: more expensive per byte
and fast, or cheaper but slower performance [18]. Sometimes the higher
performance comes at significant energy cost [212]. In addition, the data
generation trends typically outpace the rate at which storage devices
are delivered leading to a data-capacity storage gap [42, 108, 216].

Overall, the increasing use of storage with more expensive capac-
ity and efficient random access has made the memory vs. performance
(read/update cost) analysis an important factor of design and opti-
mization of access methods [27, 73, 241]. The wildly different cost of
secondary storage among the different storage technologies discussed
above make space utilization and storage cost important factors of ac-
cess method design.

Storage capacity cannot be considered abundant, and efficient access
to storage is not cheap, hence the storage space and cost should also

be included when judging the efficiency of an access method.
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1.4 RUM Performance Tradeoffs

Now we outline the interplay between read performance, update per-
formance, and space utilization, and how we can use them as a guide
to design access methods and compare alternative designs. We define
the following three quantities.

1. The Read overhead, that is, the read amplification of every
lookup operation (the ratio between the size of the total data
and metadata read, and the actual size of the requested data).

2. The Update overhead, that is, the write amplification of every
update operation (the ratio between the size of the data and
metadata that were updated, and the exact size of the updated
data).

3. The Memory (or storage) overhead, that is, the space amplifi-
cation of the employed data structures (the ratio between the
aggregate size of data, metadata, and lost space due to fragmen-
tation, divided by the size of the base data alone).

These three overheads, (RUM overheads for short) form a three-
way tradeoff space [27], extending the read vs. update overhead [47,
239, 240] and the read vs. memory overhead [103, 104, 227] analysis.
The RUM tradeoffs manifest in every access method design. Figure 1.1
conceptually shows a broad classification of access method designs in
the RUM tradeoff space.

A scan access method – even in a main-memory read-optimized
column-store where it consists of an array of dense values for each
attribute [1] – has high read cost, as it requires traversing the whole
column even when the useful data is a small portion of the column.
Hence, the read amplification is large, while the write amplification
and the space amplification are minimal, since we can simply append
new data and there is no need to maintain metadata.

On the other hand, a typical tree-structured index (like B+-Trees)
uses additional space for the index metadata to mitigate both the read
and the update overhead. The non-leaf index nodes used to navigate
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Adaptive Indexing

Read Optimized

Update Optimized Memory Optimized

Tries

Hash
Indexes

Log-Structured Trees

B+-Trees

Scans
Bitmap Indexes

Hybrid Indexing

Differential 
Updates

Approximate Indexes

Figure 1.1: The RUM tradeoff space and a broad classification of access method
designs according to the RUM balance they maintain.

to the desired partition of the data helps to read only the leaf which
houses the desired data. In addition, the free slots available in a B+-
Tree (leading to an average fill factor of 67% [192]) increase the space
consumed to guarantee that most inserts will update only one page
and not a logarithmic number of pages (i.e., the entire path from root
to leaf), effectively trading off space amplification for update amplifi-
cation. For example, for the average case fill factor of 67% the overall
tree size is increased by 50% compared to storing the data without
free space. This factor of 50% has a profound impact on space utiliza-
tion, and in practice such large constants dictate the access method to
be used depending on the application constraints and hardware costs.
Figure 1.1 shows similar design tradeoffs, which are common in access
method designs [26, 27].
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1.5 From RUM to PyRUMID

The RUM metrics help us quickly classify broad design classes of data
structures. To get a more complete view, we need to go one level deeper
and break down these metrics further. For example, read performance
depends on the exact access pattern. A Point query asking for a single
item differs from a Range query asking for a set of items based on a key
interval. In fact, the optimal data structure designs for these two query
types are entirely different. In the first case, we need a data structure
that leads directly to a single page where the target item resides (e.g.,
a hash-based structure), while in the latter case we need a design that
has a notion of ordering across pages of data such that it allows queries
to select among those pages and traverse them in order (e.g., such as
an ordered tree).

Similarly, for writes, an Insert query that needs to insert a new
value has different requirements than an Update or Delete query that
needs to update or drop an existing value. In the first case, having
a log-like structure is enough, e.g., appending new data all the time,
while in the latter case we need the ability to quickly locate the target
key-value pair. Overall, this makes for a complex tradeoff, which we call
PyRUMID overheads, that is more demanding to reason about. Note
that M stands for memory (or space).

1.6 Contributions: Design Space and Classification

Workload and technology trends as well as the various tradeoffs that
manifest between access performance and metadata size create a com-
plex problem space with respect to access method design. Understand-
ing this space requires a systematic classification of ideas, tools, and
concepts used to design access methods.

This classification, in turn, will enable us to answer frequent ques-
tions that come up when building a system. Which access method effi-
ciently supports a given workload? What is the effect of adding a new
design component to an access method and workload? Is it beneficial
to get more or faster memory for a system? These are only a small
sample of the vast set of design, research, and practical questions that
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researchers and practitioners face on a daily basis.
In this survey we study how the low level fundamental design

choices in data structures lead the final designs to occupy a particular
balance in the overall PyRUMID tradeoff space. We work on classifying
those design choices based on their effect on overall performance and
provide the means for engineers and designers to reason about their
final designs based on the design decisions.
Design Dimensions. To build the design space we survey numer-
ous fundamental access method designs and distill them to come up
with a number of independent design dimensions that identify a de-
sign. This small set of design dimensions can be used to describe any
access method and to explain its behavior and properties:

• Data Organization

• Metadata for searching

• Update policy

• Content representation

• Buffering policy

• Adaptivity

Design Space. We use the above design dimensions to propose an
access method design space. Each access method is a “point” in this
space and designs that correspond to families of access methods cover
a sub-space of this design space. We (i) describe the motivation behind
each design dimension and its available options, (ii) characterize exist-
ing access methods as points in this space, and (iii) we study the impact
of combining these design elements to create new access methods.

For every design dimension, and for every access method design we
discuss its performance tradeoffs on the PyRUMID overheads.

1.7 Related Work on Design Abstractions for Access Meth-
ods

Early research on transforming static search data structures to dynamic
ones (i.e., to support updates) led to the initial analysis of the read vs.
update performance tradeoff [223, 224].
Prior Efforts on Classifying Access Methods. Graefe surveyed
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different techniques used in modern B-Tree design [89]. Lehman et al.
surveyed index structures for main memory over thirty years ago [148].
The classification proposed in this paper brings the new element of
grouping existing designs under a small set of design dimensions which
allows for a more structured way of arguing about design.

The goal of this paper is to propose a small expressive set of design
dimensions, which when accordingly combined, can describe the huge

space of access methods.

Design Abstractions.Hellerstein et al. [105] proposed the generalized
search trees (GiST) as a new data structure that can easily be extended
to operate like a B+-Tree [89], an R-Tree [98, 167], an RD-Tree [105], or
a variety of other variations of tree indexes (like partial sum trees [230],
k-D-B-Trees [198], Ch-trees [131], hB-trees [158], V-trees [169], and TV-
trees [154]). The core idea of GiST is that it has a general structure, a
number of invariants, a number of methods that can be applied on the
indexed keys, and a number of methods that are applied on the tree
(upon searching, inserting, and deleting). The goal of GiST is to offer
a single API that can implement different search trees, differing based
on their applications and data domains. In spite of these differences, all
these trees maintain the fundamental tree properties of a logarithmic
cost of reading and updating. In this survey we seek to find the common
design concepts among various access methods including – but not
limited to – search trees.
Performance Abstractions. The read vs. update tradeoff [47, 239,
240] has been thoroughly studied as a follow-up on the initial work on
converting a static search structure to a dynamic one [40, 184, 224].
Similar abstractions for trading preprocessing time off against query
time and adding range variables have also been discussed [39, 203]. This
work has two fundamental axis: the decomposability of search structures
(which was inspired by the divide and conquer approach in algorithm
design), and the dynamization of a static search structure [223]. The
concept of decomposability naturally leads to the notion of partitioning
as a key decision of access methods, and, inherently captures a read vs.
update cost by suggesting that smaller blocks lead to better update
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performance and worse read performance (and vice versa), assuming
that an update has to physically replace a whole block.

This survey builds on our research efforts in classifying access meth-
ods [26, 119] and building new detailed abstractions [27, 112, 120], and
expands on this line of work by discussing the different ways to offer
efficient updates (dynamization) and how each technique affects each
aspect of the PyRUMID performance tradeoff, both qualitatively and
quantitatively in terms of exact or asymptotic behavior.

In the remainder of this paper, we first discuss in detail the perfor-
mance tradeoffs with respect to access patterns, then we present the
design dimensions one by one, and we give examples of access method
designs and how they affect the performance tradeoffs (Table 4.1). Fi-
nally, we discuss open research questions with respect to both the de-
sign space and the individual designs themselves.



2
Performance Tradeoffs & Access Patterns

In this section we provide context and background that is needed for
the rest of the paper. We review the key-value access method model,
the memory/storage hierarchy and why it is essential for access method
design, and we define in detail the core performance tradeoffs.
The Key-Value Model. In the key value model, arbitrary data val-
ues can be associated with unique keys. This is powerful because in
principle we can store anything as a value. For example, this is how
NoSQL data systems store arbitrary data as long as the higher level
application knows how to parse the values. In this way, the key value
model can be used to represent much more complex models including
the relational model where each value effectively would be a whole row
of a relational table and the key for each value is a concatenation of the
database name, the table name, and the row ID. In addition, the access
methods used within complex systems follow the key-valve model. For
example, this is true for database indexing, like B+-Trees, hash indexes,
and bitmap indexes.
Memory Hierarchy. Access methods live across the memory hierar-
chy. That is, a sequence of memory devices that complement each other
in terms of how fast we can read and write data from each one. At least
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one level of the memory hierarchy is typically persistent so the data is
not lost when power is down or the program terminates. Also one level
of the memory hierarchy is large enough to hold all the data needed on
a particular machine. Data is transferred back and forth across levels as
requests for reads arrive or new data is inserted and old data is deleted
or updated.

Because different types of memory (e.g. cache, RAM, solid state
disks, etc.) work at vastly different speeds, when data is moved from
a very slow memory level such as a hard disk, then the overall cost of
using a particular access method is dominated by this cost. The cost
of all other data movement at higher levels of the memory hierarchy
is negligible. Similarly, due to the ever increasing performance gap be-
tween CPUs and data movement, CPU cost is negligible compared to
the cost of bringing data from slow memory. For data-intensive appli-
cations, typically, the CPU will be using fewer cycles than its capacity
due to waiting for data from disk or even random access memory.

Our modeling and design discussions in this paper take these per-
formance properties into account and always assume two abstract levels
of memory hierarchy as in the input-output (I/O) model [3]: one that
can be treated as having essentially infinite capacity but constitutes
the performance bottleneck, and one that is much faster but with lim-
ited capacity. This approach captures the memory and disk pair, but it
can also capture any two levels of memory that have significant differ-
ence in access latency and cost (e.g., 1-3 orders of magnitude). In this
way, in our cost models throughout this paper we measure and define
performance with respect to the number of data blocks moved by an
access method operation.

Overall, this performance metric holds true for the majority of op-
erations in the key value-model and typical analytics. For example,
this is true for file systems, network routers, NoSQL systems and SQL
database systems. When designing access methods purely for an in
memory environment or for an application with very high computa-
tional costs, e.g., due to a lot of iterative computations, then for optimal
performance the design also needs to take into account computational
costs as well as costs of moving data across more levels of the mem-
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ory hierarchy. This is an emerging field of study that requires learned
models combined with traditional cost models [120]. In addition as we
move to non-volatile memories with wider buses and lack of mechanical
constraints in secondary storage, the cell probe model [238] might be
necessary.

2.1 The PyRUMID Tradeoff Space

We now define in detail the different tradeoffs we use to characterize
the performance of an access method.
Read Cost. The read cost is defined as the total data blocks a query
needs to move from disk (we will use disk as a shorthand for slow but
infinite capacity storage) to random access memory. This includes the
actual data blocks that the query needs, as well as any additional data
blocks that we need to move and be read because of the design of the
access method. For example, if the design of the access method includes
a navigation portion/indexing, then we first read parts of the index
which helps reduce the number of data blocks that we need to read.
Similarly, if the design of the access method does not give direct access
to the target data blocks, then we likely first need to read additional
data blocks so we can filter the target values. All those components are
included in the total read cost.

A central factor in determining the most suitable access method
is to identify the exact access patterns, that is, the different part of
the underlying data collection and auxiliary data that are accessed or
modified during the execution of a workload. Different devices have
different performance profiles for different access patterns. The work-
load pattern can suggest which access method design (or combination
of designs) to use.

• Point Query: Read a specific object based on the key associated
with this object. Point queries can use a number of auxiliary
structures to enhance their performance. Membership tests (like
Bloom filters), tree indexing, trie indexing are only some examples
of data structures that can enhance point query performance. In
addition, the exact data organization (sorting, partitioning) may
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also affect the efficiency of a point query.

• Range Query: Read a collection of objects that can be found
using a range of values on the key. Range queries can be charac-
terized either as short range queries, long range queries, or full
scans.

– Short range queries may lead to similar behavior as point
queries if the data is sorted, because accessing data requires
reading the minimum granularity of data storage (e.g., a
data page). Futhermore, sparse indexing optimization like
zonemaps or column imprints can enhance the performance
of short range queries. By contrast, a short range query
cannot benefit from optimizations for point queries (like
Bloom filters).

– Long range queries need several data blocks and the exact
organization of data and the efficiency of locating useful
data matters. Optimizations like zonemaps and column im-
prints can enhance their performance. A critical factor that
characterizes range queries is the selectivity, that is the frac-
tion of the data blocks requested with respect to the total
number of data blocks.

– Full scans are effectively not affected by indexing. Instead
they are affected only by the design choices for laying out
the base data. In addition, performance can be enhanced
by low-level engineering effort to consume the data in the
fastest possible way, i.e., at the bandwidth of the level of the
memory hierarchy upon which the data resides (disk band-
width for disk-resident data, and memory bus bandwidth
for memory-resident data).

Update Cost. When a new object is inserted or an existing object is
updated, the update cost is given by the total number of blocks on slow
storage (e.g., disks) that need to be read and written for the update
operation to be persistent. Contrary to read cost, write cost includes
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both data blocks that need to be read and written because for certain
update operations we first need to locate the target data on the existing
data set, and read this data before we can update it. Thus writes, are
typically more expensive than reads in terms of total number of blocks.
In addition, physical writes also consume energy and, when the writes
take place to a non-volatile memory, they affect the durability of the
device. Hence, by limiting the write cost of an operation, the benefit is
multi-faceted: performance, energy, and durability.

Similarly to read cost, update cost can be broken down to individ-
ual costs with respect to the exact access pattern. Thus, again, different
access patterns require different access method designs for optimal per-
formance.

• Insert a new key-value pair. An issue with inserts is that it mat-
ters how the new key value pair is inserted, in order to not disrupt
the existing data organization, which might in turn influence the
performance. Another issue is that insert performance – or inges-
tion rate – can be enhanced by techniques that allow accumulat-
ing key-value pairs out-of-place and then including them into the
core structure.

• Delete a key-value pair. Deleting a key may create some form
of fragmentation, which in turn, warrants future work in order
to reclaim the space occupied by deleted data. This delayed dele-
tion may cause additional space amplification and also privacy
challenges if the invalid data is not overwritten and kept on the
device for long periods of time.

• Update the key of a key-value pair. An issue with updates is
that the key-value pair might have to be moved to facilitate the
data organization. An update can also be viewed under some
conditions as a delete followed by an insert. The treatment of up-
dates affects the efficiency of reads and potentially that of future
inserts, deletes, or updates.

Memory Utilization. As storage becomes a more expensive resource,
e.g., by moving to more expensive non-volatile memories and to the
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cloud, the additional space occupied by auxiliary data, duplicate copies
of the data, indexing, and buffer space increases the monetary cost of
an access method design. On the other hand, using more memory for
the design of an access method can lead to lower read or update time
cost. For example, a logarithmic tree structure, or fractional cascading
uses additional space as a way to speed up search. Similarly, buffer
space to accumulate incoming data, or empty space in data containers
like a B+-Tree nodes uses additional space to facilitate updates.
Amplification as an Alternative Cost Definition. We defined
above read and write costs in terms of total number of blocks of slow
storage that have to be moved across the memory hierarchy. An al-
ternative way to think about cost is in terms of amplification. For
example, read cost can be defined as the excess number of data blocks
an operation is forced to read on top of the actual data blocks that
it needs. For example, a point query over a tree-like structure needs a
single data block that contains the target key value pair. However, it is
forced to read additional data blocks, in this case all the indexing blocks
it needs to locate the target data. These additional blocks consist the
read amplification. The definitions of write amplification and memory
amplification are similar in that they define the excess data blocks we
need to move during a write operation and the excess memory we need
due to the design of the access method. Thinking about the costs in
terms of amplification, as opposed to in terms of total number of blocks
of slow memory, is often helpful as it gives a sense of how close a design
is to the optimal.



3
Design Principles: Dimensions of a Design Space

We now present in detail the key design principles comprising the design
space of access methods. We view access methods design as a six-step
process where we make decisions about:

1. global organization, i.e., the way the data is organized in terms
of how the different data blocks are laid out,

2. search method, i.e., the algorithm used to search over the data,

3. indexing, i.e., structure such as metadata, or models, that help
accelerate access to individual data blocks,

4. local organization, i.e., the physical organization within each data
block that creates combined with the global decision creates a
global-local hierarchy,

5. update policy, i.e., the decision to update in-place vs. out-of-place,

6. buffering, i.e., the use of additional auxiliary space to group read
and write requests before applying them.

An access method design includes decisions in each one of these cate-
gories even if the decision for example, that there is no indexing. In the

20
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Data size (# elements (key-value pairs)) N

Page size (# elements that fit in a page) B

Data size (# pages) NB = N/B

# partitions P

index of searched key i

index of the page of the searched key iB = i/B

index of the partition of the searched key iP
selectivity s

radix length of the key domain r

Table 3.1: Parameters

rest of this section, we discuss in detail the possible decisions in each
step and how they affect the overall design in terms of the PyRAMID
performance properties.
Cost Model. To quantify the PyRAMID costs throughout this section
we use a simple cost model that uses the data set size in terms of num-
ber of elements N , the block size B that defines the access granularity,
and the number of partitions P . Table 3.1 contains all parameters in-
troduced in this section.

3.1 Global Data Organization

3.1.1 No Organization

Definition. The key value-pairs are physically stored without any par-
ticular order on the storage medium. As a result, any block my contain
any key-value pair without constraints in order or relationship of keys
that physically stored in close location.
Performance Implications. Since there is no underlying structure
in the data every query (point, short range, long range) has the same
cost O(NB), because it will have to sequentially scan the whole data
collection. Inserting new entries simply needs to append at the current
end of the collection having cost O(1), while deleting and updating
requires first to find the value to delete or update, hence there is an
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expensive read cost followed by a single write operation (overwrite the
deleted key, or swapping the updated keys).
Example. The most common example of no organization is traditional
physical data organization of heap files employed by most relational
database systems [192]. However, most access methods employ some
data organization to facilitate either read queries or amortize the up-
date cost. One example of the latter is the temporal organization which
is discussed next.

3.1.2 Temporal Organization

Definition. Temporal organization ensures that all items are physi-
cally stored following exactly the arrival order. This ensures that every
insertion creates minimal data movement.
Performance Implications. Incoming data items are simply ap-
pended to the existing data collection with cost O(1). Effectively, we
generate an ever growing log that absorbs data very quickly making
it appropriate for write-heavy applications. When queries need to read
data based on the arrival order, we can search the data quickly since
it is maintained in that order. This is similar to searching over sorted
keys. On the other hand, queries that search data based on a key need
to pay the cost of scanning the whole collection, even when the result
is a single key-value pair, or even when there is an empty query, having
a total cost of O(NB). One can improve on that at a cost in space by
creating a key-based index on top of the temporally stored items.

In the absence of an index, inserts may trade off space vs. time.
For example, when a new data item arrives we can either append the
item in the log as we described before, but then the dataset may con-
tain duplicates entailing three extra costs: (1) memory amplification
goes up for every duplicate key, (2) future queries need to resolve those
duplicates, and (3) a background process may be needed to run period-
ically to remove duplicates by keeping only the most recent version of
a key-value pair. The above approach sacrifices memory amplification
and maintenance costs. The other extreme is to perform updates in
place, as explained above.
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Example. Temporal organization is used naturally when new objects
are simply appended especially when the key is a timestamp. It is
particularly useful in cases like data(time)-series [246].

3.1.3 Range Partitioning

Definition. Range partitioning physically organizes the data in P non-
overlapping partitions based on different ranges of the key domain.
Performance Implications. The goal of any partitioning scheme is
to create “groups” of data objects – called “partitions” or “buckets” –
that have the same or about the same cardinality in order to divide the
N items to P partitions each having N/P objects. This is not always
possible; for example if there is no information about the data distri-
bution. In addition, it is not always necessary in order to achieve good
performance; for example, instead of equally distributing the data be-
tween partitions, the goal can be to equally distribute read or update
access frequency. In the general case, having P partitions with approx-
imately equal size allows for answering any point query by accessing
only one partition, accessing, on average, O(NB/P ) pages.

With respect to range queries, range partitioning allows to access
only the relevant data partitions. There is a possibility that a parti-
tioning will be accessed only to output one data item, but on average
we expect that a range query with selectivity factor s% to read s% · P
partitions with a total I/O cost of O(s% ·NB) pages. When the range
query has a very short range, then the query will almost always read
only one partition which will contain the interesting values in their
entirety, so with range partitioning the cost of short range queries is
the same as the cost of point queries, that is, O(NB/P ). Point queries
can be further optimized with auxiliary data structures, like member-
ship test data structures, and sparse indexing, to avoid unnecessary
accesses.

Modifications access the same number of blocks as searches, but
must meet some constraints as to how an update policy can work [23].
If the data is range partitioned, then after an insert, update, or delete,
they should remain range partitioned (otherwise we go to solutions that
hurt read performance – for example, we can perform lazy updates that
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future queries can resolve adaptively. Hence, a new object should be
inserted in the correct position, which can be achieved by moving half
of the data with cost O(NB/2) or by the less expensive ripple-insert
algorithm [115] with cost O(P/2). Updating and deleting requires to
first locate an object, so there is a point query followed by the delete
or update operation. As an additional consideration when deleting, the
empty slot created can either remain in-place (and thus, gradually,
deletes would cause fragmentation), it can be reclaimed and cause an
increased write amplification, or it can be reclaimed periodically to
amortize the write amplification caused.
Example. Range partitioning is frequently used either in its pure form
when sharding data in different nodes, or extents based on key ranges
of a column, or as one design decision for organizing data in non-
overlapping collections (like leafs for B+- Trees and their variations,
and SST files for LSM-Trees).

3.1.4 Sorted

Definition. A sorted data organization guarantees that at all times,
the data is sorted based on the key without requiring additional meta-
data, except the temporary scratch space needed when sorting the data.
Performance Implications. Having sorted data implies that point
queries can be answered using binary search, regardless of the to key
distribution, and has search complexity O(log2(NB)) in terms of disk
block reads. Given some knowledge about the distribution of the data,
the search complexity can be reduced further, using for example in-
terpolation search [186, 225] or exponential search [41]. With respect
to range queries, a sorted data organization allows us to quickly find
the beginning of the qualifying range and then simply consume it se-
quentially. On the other hand, facilitating inserts, updates, and deletes
can be expensive if we choose to maintain the strict sorting in a dense
data organization. In general, inserting in a sorted collection would re-
quire to always insert in the correct location, that is, move key-value
pairs “to their right” when a new value is inserted. This cost can be
approximated as O(NB/2) because on average half of the data would
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be moved for every insert. Similarly, deleting would require to consoli-
date the collection to avoid having holes and an update (from one key
to another) would require swapping the key-value pairs. The cost of
updating in-place can be mitigated by combining different data orga-
nizations with out-of-place update strategies using additional space for
buffering.
Example. A sorted organization is an extremely common organization
employed in key-value stores where data across all leaf level nodes in
B+-Trees [89] and data within each level of LSM-Trees [180] are sorted.

3.1.5 Hash Partitioning

Definition.Hash partitioning stores key-value pairs in partitions based
on the hash of the key This approach creates non overlapping hash-
based partitions.
Performance Implications. In contrast to the range partitioning
approach, each hash-based partition may not contain a range of keys
that is disjoint from the key ranges of other partitions. One of the ba-
sic properties of good hash functions [132, 134], is that they map the
expected inputs as evenly as possible (ideally uniformly, but in prac-
tice within a factor of 2) to the output domain. As a result, organizing
data using hash partitioning can easily create partitions with the simi-
lar sizes even in the absence of any information about the distribution
of the hashed keys. In order to get many of the benefits of range par-
titioning in addition to the benefits of hashing, one can use an order
preserving hash function [66] though this would typically mean that the
output distribution will not be as close to uniform as with a non-order-
preserving hash function, so the partition sizes may vary more. In this
case, hash partitioning will be able to support range queries as well. A
hash partitioning scheme supports a point query by retrieving only the
relevant partition, so, if a hash partitioning scheme has P partitions,
the I/O cost of a point query is O(NB/P ) pages, similar to the best
case for range partitioning. The fundamental difference is that for hash
partitioning this is also the average case. predictable behavior for point
queries, however, comes at the expense of the range query performance.
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Effectively hash partitioning cannot accelerate range queries; they need
to scan all key-value pairs. In specific cases of short range queries, and if
the domain is discrete, a short range query can be replaced by a number
of point queries, however, as the range grows this option becomes more
expensive. As with any range partitioning scheme, modifications first
perform searches and then perform the modification (insert, update, or
delete).
Example. The most common example of hash-partitioning is parti-
tioning phase of the hash-join algorithm and hash-index. They both
organizes key in buckets based on their hash to ensure faster retrieval by
searching smaller partitions. Note that, as in all partitioning schemes,
the internal organization of the partition can be different.

3.1.6 Radix Partitioning

Definition. An interesting middle-ground between range and hash par-
titioning is radix partitioning, which uses the bitwise representation of
the keys to partition the key-value pairs. In radix partitioning, a prefix
(which can be statically or variable sized) of the bitwise representation
of the key is used to map a range of values to a specific partition. Radix
partitioning may create partitions of vastly different sizes because cer-
tain prefixes may occur far more often than others.
Performance Implications. While radix partitioning is very simi-
lar to range partitioning with respect to its efficiency on the average
case of the uniform dataset, it relies on the bitwise representation to
create partitions with more balanced entropy. This can be further aug-
mented by the use of adaptive radix partitioning, where the length
of the radix used depends on the data distribution [149]. Similarly to
range partitioning, radix partitioning facilitates fast point queries and
range queries. Inserts must go to the partition with the corresponding
radix, possibly requiring restructuring.
Example. Radix partitioning has been used in modern design of join
algorithms and indexing as it needs to compare fewer bits to decide
which partitions to discard.
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3.1.7 Temporal Partitioning

Definition. In addition to a strict temporal organization, data items
can be accumulated into epochs, that each can have a different organi-
zation.
Example. Popular examples are the Log-Structured Merge Tree and
similar hash-based access method designs [54, 160, 182], which allow
for order-of-arrival ingestion and gradually organizes data based on its
keys.

3.2 Search without Indexing

Now that we have covered the different data organization we can match
each organization with the search algorithm that can be used and dis-
cuss the best choices for each one.

3.2.1 Full Scan

Applicable to: all data organizations for either a point or a range
query.
Performance.. The performance of a full scan depend only on the
data size and the query selectivity (due to predicate evaluation and
writing the output [130]). In terms of I/O cost a full scan will always
have to read O(NB) pages of data to find the selected object or objects.
As a rule of thumb, a full scan should be used if (i) we have no infor-
mation about the data organization, (ii) “no organization”, (iii) a pure
“temporal organization” is used, or (iv) the query will return a large
percentage of the initial data collection, i.e., it is a long range query
with high (i.e., large fraction) selectivity. The latter point is the topic
of access path selection [130, 208].
Optimizations. While a full scan has to access the entire data collec-
tion, its simple access pattern can be significantly optimized by tech-
niques that exploit modern hardware like parallelization (break the
data collection in multiple chunks and use a different processors to
scan each) and vectorization (exploit SIMD commands to increase the
throughput of comparisons). In general, applying the same techniques
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in the other search algorithms is more challenging because they lack
the repetitive sequential accesses of the same data types.

3.2.2 Binary Search

Applicable to: all sorted, range partitioned, and can be combined
with radix partitioned organizations for either a point or a range query.
Performance.. Binary search finds the desired value in a sorted col-
lection after O(log2(NB) + 1) accesses, or if the data is partitioned in
P partitions, in O(log2(P ) + NB/P ) accesses. If the query is a range
query the binary search will be followed by sequential accesses to the
subsequent values. In turn, the cost of the queries will depend on the se-
lectivity factor of the queries in a linear fashion. A key benefit of binary
search is that its complexity does not depend on the data distribution.
Optimizations. In addition to binary search, a sorted collection can
be searched with a ternary search that creates three groups, or generally
with a l-ary search with l groups, leading to O(logl(N)) search cost.
More complex algorithms like exponential [41] and interpolation search
[186, 225] are treated as a special case, because while they can be
employed on any sorted collection, they provide significant benefits
depending on the data distribution.

3.2.3 Direct Addressing

Applicable to: hash and radix partitioned organizations for either a
point or a range query.
Performance. When we have very accurate information about the
data distribution we can implement direct addressing with cost O(1).
The classical example is a perfect hash function that gives the exact
unique location of a key within a collection because of the uniformity of
the hash function. In addition, a radix partitioning scheme also leads to
direct addressing with respect to the partition or even the position of
the block containing the desired key within the data collection. When
direct addressing is possible it should be preferred. In some cases, like
radix partitioning, both binary search and direct addressing are possi-
ble, however, the search algorithm of choice is usually direct addressing.
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3.2.4 Data-Driven Search

Applicable to: all sorted, range partitioned, and can be combined
with radix partitioned organizations for either a point or a range query.
Performance. A class of search algorithms that lie in between sorted
search and direct addressing allow to exploit possible knowledge of
the distribution, using it as a hint about how to direct the searching.
Interpolation search [186, 225] effectively uses the information collected
at the current step to discard not only half of the remaining data – as
binary search is doing – but as much as possible, assuming that the
distribution is uniform. By contrast, exponential search [41] allows for
a very efficient search algorithm of an unbounded array, or conversely, of
a very efficient search of a sorted array where the value we are looking
for is in the beginning of the array. Exponential search performance
depends on the final position of the searched item rather than the size
of the overall data collection. If the desired element is in page iB, the
complexity is O(log2(iB)) compared to O(log2(NB)) for binary search.
These data-driven search algorithms can be used in any collection that
is sorted or organized based on the key.

3.3 Search with Indexing

In the previous subsection we covered in detail the different ways we can
search a collection of keys depending on the employed data organization
but without indexes. Instead, we can employ auxiliary metadata, called
a navigable index, that allows us to find the item in question.
Memory Management. The discussion on indexing in this section
assumes an ideal memory management of a limited number of blocks
M . This ideal memory management is often approximated by buffer
replacement policies that attempt to keep the most useful pages in
memory. For example, the least recently used (LRU) replacement policy
keeps always the M most recently used pages assuming that the future
accesses will most probably be one of the most recent accesses. There is
a wealth of buffer replacement policies which are out of the scope of this
analysis. Here, we assume that we have an oracle that always allows
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us to keep the M most useful pages. In practice, for tree indexing, this
means that we can in memory the necessary pages to guarantee that
the first l levels do not necessitate a disc access.

Similarly to any search algorithm on base data, the goal of an index
is to locate the position(s) of entries with key k.1

Here we draw the parallels between the search algorithms described
in Section 3.2 and the corresponding indexing approaches.

3.3.1 Full Scan → Sparse Indexing

Similarly to a full scan, a variety of sparse indexing approaches can
be built over any data organization. In particular, for every physical
data page, or in general, for an arbitrary collection of pages, we can
store membership test data structures like Zonemaps [173], Column
Imprints [214], and Bloom filters and its variants [38, 43, 75]. The core
idea behind a membership test data structure is that it can identify at
low cost whether it is safe to avoid accessing a portion of base data.
For example, using Zonemaps, we create small summaries of each data
block (or potentially a larger chunk) of a data collection, which does
not have to be sorted or specifically organized. These small summaries
contain the information for the minimum and maximum per chunk and
allow to completely skip a chunk when the searched key fall outside its
range. Similarly, Column Imprints store a lightweight histogram that
allows for more accurate data skipping. In both and in general in sparse
indexing approaches, there might false positives, that is some of the
chunks that are not discarded will be fully scanned only to find no
matches. Overall sparse indexing, reduces the scan ratio: the fraction
of the data items that need to be scanned. Adapting a scan algorithm or
any search algorithm to incorporate sparse indexing requires to simply
check the appropriate filter before accessing each part of the data.

1In particular, the position(s), page(s), or partition(s) that entries with key k are
stored.
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3.3.2 Binary Search → Binary, K-Ary Trees, B+-Trees

When a collection of keys is sorted, binary search leads to logarithmic
cost of searching by exploiting the order and iteratively safely discard-
ing half of the data in every iteration. With the aid of auxiliary meta-
data we are able to discard P − 1 out of P partition of the data. In
particular, storing the partition boundaries that create P equal parti-
tions in size we can safely avoid reading P − 1 partitions. In order to
be able to do this iteratively, similarly to what binary search is doing
we keep decomposing each of the partitions into P equal partitions,
creating more, decreasing in size, layers of metadata, that allow us to
safely discard P − 1 out of P partitions at each level. Such a k-ary
tree allows us to quickly search a sorted collection of keys and reduces
the search time from logarithmic with base 2, to logarithmic with base
P . When P = 2 the k-ary trees perform exactly like a binary search,
and take the shape of binary trees. While k-ary trees enable efficient
searching, they suffer when the sorted collection of keys is updated. In
order to facilitate dynamic workloads, both the sorted collection and
the auxiliary metadata are organized in logical nodes and the resulting
tree can be updated in-place without having to move large portions of
the data. The k-ary trees, however, can be a case where less is more
if the workload is read-intensive. The compact nature of k-ary trees
with minimal metadata make them hardware-conscious because when
reading a tree node in a cacheline, we can make full use of it, as it is the
equivalent of searching the all the partitions created by the P fanout.

3.3.3 Direct Addressing → Radix Trees, Hash Indexes

Instead of scanning or iteratively searching, an alternative approach is
to use the binary representation of the keys to directly locate where
they are physically stored, through hashing or a radix search. The most
common approach for direct addressing is hashing. Hashing is partic-
ularly good for highly skewed distributions. A hash index creates an
unordered associative array and maps (hashes) the keys of a skewed
distribution to a (close to) uniform distribution using an ideal hash
function. Cryptographic hash functions offer good uniform distribu-
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tions but are more computationally expensive. In order to ensure cor-
rectness, hash indexes employ various ways of handling collisions (key
being hashed to the same hash value), in various ways including among
others chaining, linear hashing, and open addressing.

Another approach is employing a radix tree. Radix trees use each
bit of the binary representation of the keys to form a binary tree that
upon searching we directly know which child to follow in order to lo-
cate the leaf corresponding to the key in question. To increase space
efficiency and reduce random access during tree traversals, nodes that
have valid values in only one child can be merged with the child. Fur-
ther space efficiency can be achieved if two (or three) contiguous bits of
the binary representation are always merged effectively creating a radix
tree with four (or eight) children which would also fit in a cacheline and
increase locality. Radix trees and their space-optimized variations effi-
ciently support both point and range queries when the data distribution
is not highly skewed.
Manos: Maybe some examples of decent hash functions and a pic-
ture.

3.3.4 Data-Driven Search → Learned Indexes

The metadata used by search trees attempt to map the real distri-
bution of the data to a uniform distribution (by creating equi-depth
histograms, or nodes with the same size). Hash indexes are particu-
larly successful at this, often able to map a potentially highly skewed
distribution to a nearly (within a factor of 2) uniform one. Data-driven
search algorithms calculate the expected position of a key (assuming a
uniform distribution). A natural next step is to learn the actual distri-
bution of the data and subsequently use this learned index to predict
the expected location of a key in a sorted collection [135]. The orig-
inal learned indexes proposal employs machine learning models and
the auxiliary metadata as model coefficients that are calculated after
training. For example, FITing-Tree [84] uses linear models to replace
each tree node, achieving a huge compression of the internal tree nodes.
Essentially each tree node with fanout F , has F pointers and F value
separators, while a learned index node that employs a linear model only
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needs to store the two coefficients for the linear approximation. There
are several interesting challenges in learned indexes, like bounding the
indexing error and supporting updates, however, they are the first step
towards the indexing counterpart of data-driven search algorithms.
Manos: a picture would be helpful here

Learned indexes also present a RUM tradeoff. For example, storing
a model is generally space efficient, so it has minimum memory ampli-
fication compared to a classical (metadata-based) index. On the other
hand, a learned index is data dependent, so it will require substantial
maintenance effort during updates, leading to higher update cost, or to
lazy updates that would lead to higher read cost.

3.3.5 Achieving Robust Performance with Search Trees

While performance is a key requirement for any data system and data
access method, performance stability (predictability) is also expected.
Dynamic search trees achieve both by ensuring low (logarithmic) search
cost, and re-organizing their structure when updates cause an imbal-
ance of the tree that would also affect the performance stability.
Logarithmic Method. Bentley proposed that most search algorithms
can be decomposed [39] into (recursive) search algorithms in disjoint
sets. This key observation is then used to prove that every decompos-
able search algorithm has logarithmic cost, which has been used as the
core intuition behind both search algorithms (e.g., binary) and search-
able data structures (e.g., k-ary trees and B+-Trees).
Fractional Cascading. A k-ary search tree comprises of several levels
that each contains a sorted collection of key separators. In order to
reduce the search cost, each sorted level is connected with the following
one with intermediate pointers to allow discarding increasing portions
of the overall data collection. These pointers allow to navigate the
search effort of one sorted level only to the useful (not yet search)
part of the subsequent level. This way of optimizing iterative searches
is called fractional cascading [57], and is the principle behind any the
pointer connections between levels in any tree data structure.
Rotations and Rebalancing. Through the logarithmic method and
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fractional cascading we build access method with optimal search time
when data is static and organized as a pre-processing step. We already
discussed that search trees can support dynamic insertions (or general
updates including deletes) but this might affect the balanced structure
and hence the worst-case latency of a query. In order to address this,
dynamic search trees allow for rotations and rebalancing. Binary tree
variations offer self-balancing through rotations [207]. AVL-Trees [2]
and Red-Black-Trees [32] are two notable examples. New designs of
self-rotating self-balancing binary trees are still under development in
order to ensure the rotations will not affect the whole tree path, and
they will have a minimal, localized to the updated region, cost [99]. For
the dynamic search trees that have more than two children, that is, B+-
Trees and their variations, rebalancing is maintained with the process
of splitting and merging nodes having an invariant that every node will
be at least 50% full. A split (merge) might lead to a recursive split
(merge) starting from the leaf all the way to the root in the worst case.
In most cases, though, a local rebalancing between the last two levels
is enough, and exponentially less frequently this propagates to higher
levels. While this leads to an expensive worst-case insert (delete), the
cost is amortized, and this approach ensures that the tree will always be
balanced, hence offering the same (logarithmic) search cost for every
part of the key domain. While the textbook algorithms include the
merging of nodes as outline above, frequently, they are not performed
because it has been shown that in general dynamic workloads merging
is wasteful and nodes should be kept even when they are underutilized
and removed if empty [125].

3.4 Local-Global Hybrid Data Organization

After deciding on the global data organization, the search methods,
and the use of indexing to accelerate accessing the data in Sections 3.1,
3.2, and 3.3, the next decision to make is the local data organization,
i.e., the organization of data within the blocks. In each block or par-
tition, a different data organization decision can be made. A block or
partition can have any of the available data organizations previously
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described: none, temporal, sorted, range partitioned, hash partitioned,
or radix partitioned. In this section, we focus on the interplay between
a global and a local data organization, and the resulting hybrid data
organizations.

Each data organization option discussed previously can be classified
as a terminal or a non-terminal option. In particular, no organization,
sorted organization, and temporal organization are terminal options
because no further refinement is possible. On the other hand, all par-
titioning schemes (range, radix, hash, temporal) create groups of data
objects – partitions – that each one internally can be organized in a
different way. Below we describe hybrid data organizations that are al-
ready described in the literature and that can be derived by combining
fundamental data organizations.

3.4.1 Range - Sorted (Traditional B+-Trees)

The leaves of the traditional B+-Trees [89] can be viewed as a hybrid
data partitioning scheme that combines range partitioning at the high-
level (per node) and sorted organization at the node level. Every time
we want to perform a search we first need to find the appropriate
partition (leaf) and then search within the sorted partition (either using
binary search or a full scan of the partition). Finding the partition can
be done using one of the above search algorithms or using additional
metadata for faster indexing as discussed in Section 3.3.

3.4.2 Range - Range (Fractal B+-Trees)

The design of B+-Trees has been traditionally optimized for hard disks,
and hence the node size – which can also be viewed as a partition – is
tailored to the disk I/O unit size [87]. When a B+-Tree is used across
multiple levels of the memory hierarchy (disk, main memory, cache
memories) it is important to access data chunks whose size is appro-
priate for each level of the memory hierarchy. For example, the fractal
B+-Tree organizes data in nodes sized according to the disk access
unit, and internally each node is organized in a mini-tree following the
unit size of cache memory [60], that is, a cache line. Effectively frac-
tal B+-Trees have a hybrid data organization with two levels of range
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partitioning.

3.4.3 Range - Temporal (Insert-Optimized B+-Trees)

Classical B+-Tree designs assume that the nodes contain items (or
nodes) that are sorted. This property can facilitate efficient search-
ing. When nodes are written to a storage medium or a non-volatile
memory, however, reorganizing the contents of the node every time
can be expensive. To address this two approaches have proposed B+-
Trees with nodes that internally are not sorted. The unsorted B+-Tree
for non-volatile memories [61] aims at minimizing write amplification
and the Bw-Tree design [150] aims at faster updates through logging.
Both approaches effectively support range partitioning of the data to
different leaf nodes, but unsorted data for each node as data arrives.

3.4.4 Range - Range - ... - Range (Bulk-Loaded B+-Trees, Sorted,
Adaptive Indexing, Cracking)

Recursive range partitioning creates a nesting organization strategy
that leads to fully sorting data. Nesting range partitioning necessarily
terminates when all items are sorted either as a bulk-loaded B+-Tree
[89] or as a sorted array. In addition to this extreme termination of
the recursion, data can be recursively range partitioned up until the
granularity that makes a difference (that is, a memory page size if data
resides on disk, or a few cache-lines if data is already in memory). The
actual values that will serve as range separators during the recursive
partitioning can either be determined by the workload, as in traditional
cracking approaches [110, 114, 116] Dennis thinks we can’t assume the
reader knows what those traditional cracking approaches are, or chosen
to balance the partitioning effort evenly throughout the domain as in
early adaptive indexing approaches [94], or a hybrid of the two [100,
118, 204].

3.4.5 Range - Hash (Bounded Disorder)

Starting from range partitioning as a first decision, we can also organize
each partition by hashing. This scheme efficiently supports both point
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queries and range queries. Point queries are directed to the appropriate
range partition within which they can use direct addressing (hashing).
Range queries will consume the corresponding range partitions similar
to the way they can be executed in the case of pure range partitioning.
A design that combines in that manner range and hash partitioning is
the bounded disorder access method [155] which organizes keys in large
ranges and within each range the keys are hashed forming a tight hash
organization. Dennis doesn’t understand what "tight" means

3.4.6 Radix - Sorted (Radix Trees)

Up to now we considered hybrid data organizations where the first
decision was to range partition. A different decision could be to radix
partition data. So the keys can be organized using a prefix of their
radix representation. To address practical considerations like handling
duplicates and maintaining good performance when there are areas
of the domain that are sparse, objects that are partitioned together
are typically kept sorted„ This then combines radix partitioning with
sorted data organization. Adaptive radix tree [149] and Masstree [168]
are the two classical such designs.

3.4.7 Hash - Temporal (Chained Hash Table)

Instead of radix partitioning the first decision in a hybrid choice can
be hash partitioning. This creates buckets of values that are hashed
together, so a second data organization decision needs to be taken
for each partition. A typical decision is simply to append items on the
same bucket as they arrive effectively using temporal organization. This
hybrid between hash partitioning and temporal organization is used by
the textbook chained hash table [192].Dennis asks whether this is really
called textbook chained hash table

3.4.8 Temporal - Sorted (LSM Trees)

Another data organization that was introduced above was to tempo-
rally partition data. This allows for very cheap insert as incoming data
are simply appended. However, as more data are being collected it is
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becoming very expensive to search. A way to mitigate this problem is
to reorganize each temporal partition (or epoch) in a way that it would
be easier to search, for example by sorting. Sorting benefits both range
and point queries. Taking this combination of temporal partitioning
and sorting a step further by combining all epochs of equal size at ev-
ery reorganization level, the Log-Structured Merge Trees (LSM-Trees)
offer a very good balance between read and update performance [182].
Dennis thinks this paragraph would be incomprehensible to a beginner
without a picture

3.4.9 Temporal - Radix/Hash (LSM Tries)

A different approach for reorganizing epochs is instead of sorting them
to hash partition them. This approach will be able to efficiently support
point queries – similarly to what hashing offers – but not range queries.
Alternatively, each epoch can also be radix partitioned this would al-
low for direct addressing for point queries but at the added benefit of
supporting range queries as well. These two hybrid data organizations
have been proposed as a trie-based LSM-Tree and the LSM-Trie to
support large data collections with many point queries having very low
write amplification [235].
Manos says: in this section I will add a performance implication
paragraph in each section

3.5 Update Policy: In-place vs. Out-of-place

For every organized data collection an incoming update request will
have one of the two possible treatments. It will either change the current
organization by placing the new item (or update an existing item) in
its rightful place according to the organization, or it will be maintained
as a pending update in a different place and the update will have to
be reconciled with the base data at a later time. These two policies are
termed in-place and out-of-place accordingly.

When employing an in-place update policy, the key-value pair of key k
has always one version, which is the current one. On the other hand,
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when employing an out-of-place update policy, there might exist
several versions of the key-value pair for key k which have to be

reconciled before the valid one is returned to the user.

Note that out-of-place updates and buffering updates (discussed
in the next section) are similar, yet not identical concepts. Buffering
updates refers to the space and time needed to keep an update in a
temporary space prior to its final location. The final location of a new
or an updated item may be either in-place, when it is stored in the
same container with the rest of the data, or out-of-place, if it is stored
in a new container.

3.5.1 In-place Updates

Following in-place updates, once we have an organized data collection
and we receive a new item (or an update), the result of the insert
(update) should be a new data collection with the same organization
that includes that latest item. For example, if we have a sorted col-
lection and we insert a new key k, it will have to be inserted in the
position dictated by the sorting order. If the data collection was range
partitioning, the new item will have to be placed physically in the cor-
responding partition. In-place updates is a common update policy used
in several data structures including textbook B+-Trees, hash indexes,
bitmap indexes, sorted linked lists and others. In-place updates leave
the data collection in a state that it can be very efficiently read by fu-
ture access requests and has no extra memory consumption, however,
it moves all the re-organization burden upon updates, hence the update
performance suffers.
Impact on PyRUMID Costs. This is the default approach, assumed
in the insert/update/delete costs above.

3.5.2 Deferred In-place Updates

A variation of in-place updates, when they are combined with buffering
updates locally is the deferred in-place updates. These are updates
that will eventually end up in the expected position according to the
selected data organization, yet this will happen in a secondary step of
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reconciliation. Deferred in-place updates are employed by approaches
that do not want to eagerly reorganize data for each update, but want
to quickly converge to the desired data organization like cracking [114],
buffer repository trees [47] and fractal trees [136]. Deferred updates
are temporarily stored as part of one partition of the access method
and are quickly integrated in an in-place manner with follow-up read
queries or a background operation. Another variation of deferred in-
place updates creates additional metadata to indicate where the new
update would physically go if it were to be merged [107]. This leads to
very fast queries when when working on both the base data and the
pending updates assuming that everything fits in memory. Deferred
in-place updates require some buffering space, in order to ensure that
read queries will be able to find close any recently inserted or updated
element close to the base data, and further defer the re-organization
effort in order to reduce the update cost.
Impact on PyRUMID Costs. When performing a deferred in-place
updates, essentially every insert/update/delete operation has to pay
the search cost to find the partition or block that it needs to be added
to, without having to perform the local re-organization, rather using a
local buffer.

3.5.3 Out-of-place Updates

Out-of-place updates completely avoid interfering with the current data
organization and are stored in new data containers with their own orga-
nization, which is often the same but it could be potentially different.
Contrary to deferred in-place updates, out of place updates have a
single buffer space for the whole data collection, and have a more ex-
pensive reconciliation process. The key idea of out-of-place updates is
that (a) they are stored sequentially because they are part of a new
container – and as a result they are tailored for cases that random ac-
cess is expensive, and (b) they do not affect the organization and the
accessing process of the pre-existing data. The out-of-place paradigm
is classically followed by Log-Structured Merge (LSM) Trees [182] and
has since been used in a number of access methods to facilitate efficient
updates. The update cost is minimal, because any new or updated en-
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try is simply appended in the global buffer space. However, as a result,
any read query has to go through the base data, and through the entire
global buffer to provide an accurate answer. Space-wise out-of-place up-
dates allow for duplication as an updated entry does not immediately
update in-place leading to potentially several invalid entries. Overall,
out-of-place updates aggressively minimize update cost at the expense
of both increased read cost and increased space utilization.
Impact on PyRUMID Costs. Out-of-place updates avoid the search
part altogether, leaving for future work both the work needed to find
the appropriate partition or block and the local re- organization.

3.5.4 Differential Out-of-place Updates

A variation of out-of-place updates is the concept of differential out-of-
place updates. The key idea is that when updating an existing entry,
differential out-of-place updates have very small size because they store
only the difference from the old value rather than not the whole value
[209]. This allows for quick and space-efficient updating but has higher
cost during reading because often the differential update is not enough
and has to always be reconciled with the base data.
Impact on PyRUMID Costs. This is an optimization when com-
pared to out-of-place updates only with respect to storing less metadata
for each update.

3.6 Buffering: Batching Requests

Once the data organization, the use of auxiliary space for indexing, and
the update policy are decided, an access method may use additional
space to further accelerate read and writes requests in the form of
buffering. Using buffering for reads and for writes have performance
benefits for different reasons. Buffering read requests allows for better
scheduling, while buffering incoming writes allows the data structure
to apply them in one go. In essence, buffering allows a data organization
to avoid repetitive unnecessary trips to the same physical location or
partition.
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Buffering reduces read (write) cost by using additional space to batch
incoming read (write) requests, which can then be processed

concurrently and hence amortize their overall cost.

In either case, buffering is a classical manifestation of the RUM
conjecture [27] and follows the benefits of the buffer technique [14]. An
access method design optimizes read performance (when batching read
requests) by using additional space to buffer incoming read requests
(hence the tradeoff is extra space for better read performance) and/or
it optimizes write performance (when batching writes) by using addi-
tional space to buffer incoming writes (inserts, updates, or deletes). We
further differentiate two types of batching updates, one globally for the
whole domain, and one locally, for a single partition.

Orthogonally to this discussion, buffering can be beneficial to in-
struction cache locality. In particular, by allowing a specific piece of
code to buffer its output as opposed to send it to the next logical oper-
ator and then be called again, we can keep the instruction caches warm
and avoid instruction cache thrashing [101, 243].

3.6.1 Buffering Reads

When an access method buffers read requests, it can answer all of them
(or a carefully selected subset) by a single access to the base data.
A typical example of an access method that buffers reads has been
proposed as shared scans (also known as cooperative scans) that are
heavily employed by analytical data systems [16, 51, 85, 101, 102, 123,
170, 189, 191, 222, 248]. The benefit of batching reads is that it
allows for concurrent execution of queries without using more
CPU resources and without requiring more data accesses. On
the contrary, a single access over the same data set – coupled with
buffer space for read requests, and the metadata needed to keep track
which items qualify for each query – is enough to answer all queries of
the batch.
Impact on PyRUMID Costs. Buffering reads does not have direct
impact on PyRUMID costs, other than the use of extra space in or-
der to exploit to the maximum degree the available bandwidth of the
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underlying storage.

3.6.2 Cache Pinning as a Special Case of Read Buffering

A special form of read buffering is cache pinning. While caching is
not a design dimension of an access method, rather it is a system-
wide feature, cache pinning can be thought of as a particular form of
buffering. Consider that cache pinning would buffer in fast memory a
small set of objects that are frequently read. So in this case, the access
method can identify frequently read items and suggest to the cache that
if they are pinned the overall number of slow accesses will be reduced
dramatically.
Impact on PyRUMID Costs. Cache pinning is the explicit request
to keep popular or useful pages in the cache, hence, in this respect
it increases the memory cost to offer lower latency for reading the
specified blocks.

3.6.3 Buffering Updates

Orthogonally to batching read requests, an access method can buffer
updates and support batch processing for updates. Even a single up-
date causes data movement and data reorganization, hence, by batching
updates, an access method separates the access patterns, and updates
do not interfere with other concurrent read operations. Access meth-
ods that target reads-intensive applications often buffer updates and
apply them sequentially in batches. On the other hand, access methods
that target transactional workloads typically apply each update inde-
pendently. While buffering updates can be seen as an update policy, it
is the tradeoff between memory and update efficiency that has more
implications than only the out-of-place update policy, which makes it
a design dimension of its own.
Impact on PyRUMID Costs. Buffering updates uses additional
memory space in order to enable out-of-place updates. It exploits a
tradeoff between memory usage and delaying the searching and the
local reorganization work needed after an update.
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3.6.4 Buffering Updates Locally

We differentiate between buffering updates and buffering updates lo-
cally, to showcase that when a data organization strategy has been
selected, updates can be buffered in a per-partition basis. This allows
the updates to be stored close to the targeted base data, and hence fu-
ture read queries would need to merge only those updates. In addition,
an access method tailored to the exact workload may buffer updates
in one part of the domain, and opt to apply updates immediately in
another part of the domain.
Impact on PyRUMID Costs. Buffering updates locally uses ad-
ditional memory space in order to enable deferred in-place updates.
It exploits a tradeoff between memory usage and delaying the local
reorganization work needed after an update.

3.7 Contents Representation

For every access method design, another key decision is how to phys-
ically represent the indexed data. The exact choice of the contents
representation indexed by an access method influences not only the ac-
cess performance, but also the update process, the resource utilization,
and the algorithms that can be used during query processing.

3.7.1 Key-Record

A natural way to store data is to store the indexing key along with
the entire row. This model captures the traditional way relational sys-
tems store data in heap files, by treating the row ID as the key, and
the whole tuple as the record. In general, this is also used by indexed
files where a B+-Tree on the key stores in its leaf nodes entire records,
and by json objects, where the “value” of the key-value paradigm is
the stored record. Under the key-record model, we also classify indexes
that store a subset of the attributes of the relational tuple, but al-
ways have access to the same subset, that is, a secondary index with
multiple attributes stored in the leaf nodes. The key-record contents
representation approach is also termed alternative-1 data entry [192].
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3.7.2 Key-Row ID

An alternative representation used in secondary indexing, and in some
implementations of columnar storage is the key-row ID model, where
for every existing key we store all the row IDs that this key exists. This
model captures both the standard approach of how B+-Trees are orga-
nized (alternative-2 and -3 data entry [192]), as well as the columnar
storage implementation followed by MonetDB using Binary Associa-
tion Tables (BATs) [113], where every column is a binary table, with
the first attribute being the object identifier (the Row ID in our ter-
minology) and the second attribute the actual stored value (the key in
our terminology).

3.7.3 Key-Pointer

When the access method is purely in-memory or uses pointer swiz-
zling [228] to convert row IDs to in-memory addresses [95], the contets
of the access method are represented by the indexed key and the cor-
responding pointer(s). This approach is generally used by any access
method operates purely in-memory and wants to ensure fast access
to the original data location irrespectively of the exact data format
followed in the base data.

3.7.4 Key-Bitvector

Finally, another alternative is an existence bitvector for every key
of the domain. This approach captures all the bitmap indexing ap-
proaches [52] and offers a different storing, compressing, and execution
model. Bitvectors can be aggressively compressed using variations of
run-length encoding techniques, and data can be processed directly
on the bitvectors for several operations including selection, projection,
joins, and sorting. The bitvectors can further exploit efficient bitwise
operations when in-memory and, hence, consume data a very high pace.



46 Design Principles: Dimensions of a Design Space

3.8 Adaptivity

Another essential design dimension is adaptivity. That is, access meth-
ods may react to workload patterns and adapt some of their core design
dimensions to better match the performance requirements. In principle,
it is possible to apply adaptivity on top of any design dimension dis-
cussed so far. The exact way to properly apply adaptivity as well as the
performance effects may vary. The fundamental principle remains the
same though: as the workload evolves the access method also evolves,
e.g., by reorganizing the base data or indexes to better support the
incoming requests. In fact the goal of adaptivity may be to do just
enough to support the existing workload. Exactly because there is no
perfect data structure, state-of-the-art designs “over-prepare” for mul-
tiple scenarios. For example, a sorted data set or a B+-Tree can support
any range query efficiently. However, a particular workload may need
only certain partitioning which may be much faster to prepare and
maintain.

Adaptivity is the process that treats every access as a hint as to how to
change the current state of any of the previously mentioned design

decisions of an access method.

Compared to the rest of the design dimensions, adaptivity has only
recently gained attention as a promising design dimension in terms
of: (i) the existence of applications that need adaptivity, and (ii) the
viability of design and implementation of adaptive approaches. Appli-
cations that need adaptivity appear at an increasing pace because of
more volatile workloads of user facing application and diverse hardware
of cloud settings. Implementation viability improved due to the ability
to hold hot data in large memories, which allows to avoid pushing every
data reorganization action to disk.

3.8.1 Adaptive Sorting

The first design option for adaptivity is adaptive sorting. The primary
design method for adaptivity is physical data reorganization. The key
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concept is that every access to the dataset can be used as an opportu-
nity to reorganize data. Under this design, the dataset is not organized
a priori, rather, every access is piggy-packed with a reorganization step.
Hence, adaptive sorting is gradually bringing the data collection closer
to a sorted data collection. The region of the domain that is sorted can
either be connected with the most recent query or not. Note that adap-
tive sorting is adaptively applying a data organization decision. As the
data is being gradually more organized, a read query can be executed
on average more efficiently, while an update query would increase the
work needed to organize the data collection. In any case, adaptive sort-
ing does not incur any space overhead, other than the temporary space
needed to physically re-organize data in every step.
Query-Driven. The most common special case is the query-driven
adaptive sorting. The key concept is that every reorganization step is
driven by the most recently executed query (hence it would speed up
a potential subsequent execution of the same query). This principle
is used by approaches like Splay Trees [215] where nodes that were
recently touched are moved up in the tree hierarchy. Another instan-
tiation of the same principle is Database Cracking [114] which uses
every range query as a hint to create a partition containing the data
requested by the specific query by physically reorganizing the data.
Query-Independent. Another approach is to use the access of the
query as an opportunity to re-organize, yet, not the accesses portion
of the data. This design avoid over-fitting to the executed queries and
gradually organizes the whole data collection. Such query-independent
approaches have been proposed in the context of the Stochastic Crack-
ing [100].
Hybrid. A third approach is the hybrid of the query-independent and
the query-driven adaptive sorting. This approach used the query as a
hint in some cases while organizing other parts of the data collection
in the remaining re-organization steps [100]
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3.8.2 Adaptive Vertical Partitioning

In addition to adaptively organizing the data based on the values, an-
other action that can happen adaptively, is the decision how to verti-
cally partition different data items that are part of the same key-value
pair or row in a relational data system. While this decision is typically
taken statically before any data operation (for example, a row-store or
a column-store), adaptive vertical partitioning allows an access method
to use hints from recent queries as to how to vertically partition the
data collection. The system monitors workload execution and then ma-
terializes (that is, creates a new copy of) the data in a new layout con-
tinuing the workload execution. This technique has been proposed by
the H2O system [9] for read-only workloads and by the Peloton system
[15] for mixed read-update workloads. Adaptive vertical partitioning
is orthogonal to any adaptive sorting the system may employ on top,
however, the two can be combined and potentially co-optimized, which
still an open research question.

3.8.3 Adaptive Update Merging

The two prior subsections discuss read adaptivity only, as the process
of gradually preparing data for future read queries. In general, for every
access method design, we want updates to be correct and fast without
interfering with our read queries.

In addition to that, the design of an access method can adapt as
a result of an increased number of updates. For example, a B+-Tree
can have nodes that are read-optimized or write-optimized based on
the ratio of reads and writes [162]. Thus, a fundamental change can
be to switch update policy from in-place to out-of-place in order to
absorb more incoming updates. Update adaptivity is much more recent
direction which has more untapped potential especially in use-cases
with update-intensive workload bursts.

3.9 Discussion

In this chapter we discuss the six fundamental design dimensions that
can describe a large space of access methods. When designing an access
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method more decisions have to be made with respect to performance
tradeoffs. Notable examples are (i) how to trade off space for computa-
tion (e.g., the tradeoff of compression space efficiency and its compu-
tational cost), and (ii) how to allocate cache space for frequently read
items, to avoid expensive retrieval from slow storage.
Adaptive Indexing. Splaying Trees can be considered as the first
adaptive indexing approach [215]. The primary design concept is that
data that has been recently touched moves up the tree. This means that
when a query traverses the tree, it will likely find recently accessed data,
higher in the tree and as such it will terminate the search faster. This
same concept has also been applied in LSM-trees, with the work on
Splaying LSM-trees [156] where every data item touched by a query is
returned at the buffer of the LSM- tree. Effectively the idea of splaying
organizes data based on a “recently accessed” policy which resembles
the behavior of a cache. Indeed, the Splaying LSM-trees work showed
that one of the primary benefits comes from the potential to avoid the
need for a separate cache, thus minimizing memory requirements.



4
Mapping Access Methods to the Design Space

[Here we want to show how past access method designs can be easily
captured but also how this classification can lead to new designs. For a
number of classes of data structures (Trees, Tries, Hash index, Bitvectors,
Zonemaps) we provide details with respect to how the designs are cre-
ated when combining design decisions and what is the impact on design
trafeoffs.]

[This will have a small overlap with the discussion about the dimensions
in the previous paragraph. But we can make sure that the survey part is
here! ]

• Base Data, Data Layouts, and Scans, problem: fast query pro-
cessing without updates, approach: column layouts+sparse in-
dexing+parallel computation+workload-awareness+information
theory, examples: column stores + fast scans + sharing+ crack-
ing+byte slice ...

• B+ Trees, problem: point queries + updates, approach: fractional
cascading, content representation, examples:

• LSM ...

50
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• Tries, problem: not rely on dataset size, but fixed access latency,
approach: tries, examples: ART

• Bitmap, problem: effcient access in low-cardinality columns, ap-
proach: data representation

4.1 Cost Model

[We may want to have a section here that introduces a unified cost model
for a subset of data structures – we may reuse material from CIDR]

4.2 Reducing Read Amplification: Data Layouts & Scans

[Decisions about partitioning gives us the basic organization of data
and columns. We can store the clustered, ordered, partitioned. Dif-
ferent decisions affect query, insert, and update performance. When
combined with adaptivity, columnar storage yielded database cracking
[114, 115, 116, 92, 90, 100, 91, 205, 188, 187].]
Challenges. [read (ideally) only relevant data] [what are the problems?
point query? updates? distribution?]
Design Abstraction. [basically only data organization] [Here we con-
nect with one of the design options discussed in Section 3 – there is no
need to redefine the principle only to mention it and to introduce the
abstraction]

4.2.1 Physical Design

[basically whether to sort. with adaptivity we got cracking]

4.2.2 Adaptive Physical Design

The classical access method that applies a physical design decision
(“sorted”) adaptively is database cracking [114], which sorts a data
collection adaptively. Database cracking continuously reorganizes base
data to match the query workload. Every query is used as an advice
on how the data should be stored. Cracking does this by building and
refining indexes partially and incrementally as part of query processing.
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By reacting to every single query with lightweight actions, database
cracking manages to adapt to a changing workload instantly. The more
queries arrive, the more the indices are refined, the more performance
improves, and eventually it reaches the optimal performance, i.e., the
performance we would get from a manually tuned system.

The main idea in the original database cracking approach is that
the data system reorganizes one column of the data at a time and only
when touched by a query. In other words, the reorganization utilizes
the fact that the data is already read and decides how to refine it in
the best way. Effectively the original cracking approach overloads the
select operator of a database system and uses the predicates of each
query to determine how to reorganize the relevant column. The first
time an attribute A is required by a query, a copy of the base column
A is created, called the cracker column of A. Each select operator on A
triggers the physical reorganization of the cracker column based on the
requested range of the query. Entries with a key that is smaller than
the lower bound are moved before the lower bound, while entries with
a key that is greater than the upper bound are moved after the up-
per bound in the respective column. The partitioning information for
each cracker column is maintained in an AVL- tree, the cracker index.
Future queries on column A search the cracker index for the partition
where the requested range falls. If the requested key already exist in the
index, i.e., if past queries have cracked on exactly those ranges, then
the select operator can return the result immediately. Otherwise, the
select operator refines on-the-fly the column further, i.e., only the parti-
tions/pieces of the column where the predicates fall will be reorganized
(at most two partitions at the boundaries of the range). Progressively
the column gets more “ordered” with more but smaller pieces.

Database cracking as a concept has been studied in the context of
main-memory column-stores [114, 205]. The cracking algorithms have
been adapted to work for many core database architecture issues such
as: updates to incrementally and adaptively absorb data changes [115],
multi-attribute queries to reorganize whole relations as opposed to only
columns [116], to use also the join operator as a trigger for adaptation
[110], concurrency control to deal with the problem that cracking effec-
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tively turns reads into writes [91, 90], and partition-merge-like logic to
provide cracking algorithms that can balance index convergence versus
initialization costs [118]. In addition, tailored benchmarks have been
developed to stress-test critical features such as how quickly an algo-
rithm adapts [92]. Stochastic database cracking [100] shows how to be
robust on various workloads, and [94] shows how adaptive indexing
can apply to key columns. Finally, recent work on parallel adaptive
indexing studies CPU-efficient implementations and proposes cracking
algorithms to utilize multi- cores [11, 188] or even idle CPU time [187].

The database cracking concept has also been extended to provide
adaptive indexes for time series data [244, 245] as well as for more broad
storage layout decisions, i.e., reorganizing base data (columns/rows)
according to incoming query requests [9], or even about which data
should be loaded [8, 111]. Cracking has also been studied in the context
of Hadoop [197] for local indexing in each node as well as for improving
more traditional disk-based indexing which forces reading data at the
granularity of pages and where writing back the reorganized data needs
to be considered as a major overhead [93].
Adaptive Partitioning and Indexing. Similar to cracking, other
systems have identified the upfront loading cost as a big overhead
[178]. To address this cost, and support arbitrary queries that might
have different nature both as time changes, and for different parts of
the indexed files, Slalom proposes a new logical partitioning strategy
which creates overlapping physical partitions and builds a different set
of indexes for each partitioning depending on the queries that reach the
specific partition. After deciding which should the partitions be, Slalom
builds Bloom filters, B+-Trees, Bitmaps, and Zonemaps for each par-
tition depending on the type and the selectivity of the most frequent
queries.
Adaptive Data Layouts. The same concept of adaptivity as dis-
cussed above for sorting and indexing, can also be applied on base
data. That is, base data can change its shape to adapt to the workload.
For example, the two fundamental data layouts for relational database
systems are column-based and row-based storage. While the columnar
layouts are better for more analytical queries and queries that require
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few attributes from a table so that projection cost remains low, row-
based layouts are better for transactional workloads that touch only
few tuples and queries where many attributes are necessary. H2O first
proposed the idea that a system with adaptivity for base data can tran-
sition between these two layouts and their hybrids (i.e., organizing data
in column groups) [9]. The idea is that the system monitors the work-
load over a period of time and then it makes a decision based on a model
that tracks data accesses. It then materializes the new data layout and
continues procession the workload. While H20 focused on read only
workloads, Peloton [15] focuses on both reads and writes while recent
work also shows that the decision can be made with genetic algorithms
[117]. Adaptive data layouts is orthogonal to any adaptive indexing the
system may employ on top, although the two may be co-designed (this
is an open topic).

4.2.3 Membership Test Indexes

[If we are scanning for a single value, or a small set of values, we can first
have a membership test. This can happen with a whole [43]]
Bloom Filters. Bloom in Oracle: [13] Original paper: [43] Variations:
[10, 201, 141, 159]
Cuckoo Filters. [75, 172, 58] Morton: [46]
Quotient Filters. [38, 185]
Zonemaps. [[80, 195, 219, 220, 237] and its variants can provide the
information which rows belong to set (e.g., a range).]
Column Imprints. [A variation is Column Imprints [214] which stores
a compact histogram per cache line.]
Information-Theoretic Scan Acceleration. [ByteSlice,BitWeaving]
[78] [152]

4.3 Efficient Random Access: B+-Trees and Variants

[A wealth of approaches about B-Trees [33, 34, 88, 89, 147] take into
account the aforementioned dimensions one by one. With regards to the
design dimensions B-Trees start as a combination of range partitioning and
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logarithmic design. When adding the log-structured updates a new group
of designs of variants of B-Trees was introduced. Typically these designs
were also storage-friendly and memory-friendly [150, 127, 176]. – let’s
also classify [221, 126, 122] –Buffering is another aspect that augmented
the design space of B-Trees. In particular, there are Tree index structures
that buffer reads: Fractal Tree/BRT/COLA [36], LA-Tree, [4], IPL [146],
BFTL [232], FlashDB [177] ADS [244]. Another approach is to buffer
updates. This happens in a number of designs: IPLB [176], LA-Tree [4], and
Positional Delta Tree [107]. Finally, another approach is to buffer requests
and take into account the opportunity to execute in parallel some requests
[199, 242, 14]. Another design dimension used by PDT, IPLB, LA-Tree
and PBT [86] is differential updates. Finally, when combined with sparse
indexing tree indexing resulted in approximate tree indexing: BF-Tree [19].
Bounded disorder access methods [155, 157] introduced the concept of a
balance between range and hash partitioning which can happen with an
tree-like index with hashing on the leaves. When B-Trees were combined
with adaptivity we got adaptive indexing [118, 90, 91]. ]

[my current understanding is that we need subsection here about flash-
friendly b-tree approaches where we would list how all different decisions
would affect convert the trees to flash friendly]
Challenges. [quickly locate data we are looking for. update in place.]
Design Abstraction. [data organization + index + buffer +update-
pocy + read-adaptivity for adaptive indexing]

4.3.1 B+-Tree Designs

4.4 Reducing Write Amplification: LSM Trees and Variants

[The cornerstone idea is Differential files [209], and then the LSM paper
[182]]

[LSM Trees [182] were proposed as a way to amortize the number of
physical inserts in a write-intensive workload. They achieve that by natu-
rally buffering updates in a first level and pushing them as a group to lower
levels (each level is as a result an epoch of updates). Several variations
were proposed hereafter [213, 235] that optimize specific aspects of the
searching. With regards to the design dimensions LSM-Trees start as a
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combination of time partitioning and logarithmic design. When combining
LSM-Trees with fractional cascading as a design dimension new designs
were proposed: FD-Tree[151], bLSM[206].

More about LSM:
LSM-Trie [235] merges less greedily by using T substructures in each

level. That way it reduces write-amplification by a factor of T , at the
expense of losing the ability to do range-queries. BigTable uses LSM-
Trees with a fixed size ratio equal to ten between adjacent levels [55].
Bigtable also uses Bloom filters to avoid reading unnecessary levels. These
Bloom filters are tuned statically and uniformly across levels. In addition,
Cassandra [138], LOCS [226], VT-Tree [213], and bLSM [206] build on
top of BigTable, LevelDB, and LSM-Trees to provide logarithmic access
method design. LOCS [226] is a version of LevelDB that utilizes SSD par-
allelism. VT-Tree [213] avoids repeatidly writing sorted data by stitching
non-overlapping runs. bLSM [206] restricts the number of levels, restricting
read and write performance irrespectively of the workload. ]

[and variants like stepped merge [121] and MaSM [24, 25] use time par-
titioning (e.g., epochs) and partially range partitioning (e.g., within each
epoch) and combine this with native log-structured updates and buffering.
]
Challenges. [initially random writes in HDD, also write-amplification,
fragmentation due to splitting, space amplification due to fragmentation]
Design Abstraction. [data organization + metata + out-ofplace up-
dates + mention that adaptivity is something discussed more work to be
done]

4.4.1 Leveled LSM Designs

4.4.2 Tiered LSM Designs

4.4.3 Hybrid LSM Designs

4.4.4 Hash-based LSM Designs

4.5 Balance Space and Read: Tries and Variants

[Tries were introduced to decouple search time from dataset size (and
couple it with the domain) [81, 175]. More recently a hardware-aware
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implementation was proposed [149]. With regards to the design dimensions
Tries start as a combination of radic partitioning and logarithmic design. ]
Challenges.
Design Abstraction.

4.5.1 Trie Index Designs

4.6 Reduce Space Amplification: Bitmap Indexing

Challenges.
Design Abstraction.

4.6.1 Bitmap Index Designs

[A different category of data structures used for indexing is bitvectors,
forming a bitmap index, by encoding each value of the domain with a
bitvector which has one bit per row of the relation [231, 180, 183, 52, 53].
Bitmap Indexing is commonly used for a number of applications ranging
from scientific data management [233] to analytics and data warehousing
[56, 163, 202, 217, 218, 234]. Bitmap indexes are utilized by several popu-
lar database systems, including open-source systems like PostgreSQL and
commercial systems like Oracle [210], SybaseIQ [163, 183], and DB2 [50].
When combined with buffering, differential updates, and adaptivity this
resulted in the design of Upbit [28].]

4.7 Making Access Methods Hardware-Friendly

[Here we explain that some of the dimensions are typically used to make
an access method hardware friendly and we will give some typical examples
like: [107, 24, 19, 25, 151, 153, 93, 86, 199]]

4.8 Other Access Methods

[There are more access methods. Here we focus on mature classes of access
methods that are used as integral parts of storage managers. However, if
we dive in the details of data structures and in-memory data structures



there are more options. Two popular examples are Hash Indexes and Skip
Lists, but also variations of trees, like binary trees, avl trees, red-black
trees, and so on.]
Hash Indexes. [A way to organize and index data is through hashing.
Here we will make a brief mention of hash indexing.]
Skip Lists. [Here we shall discuss the concept of skip lists [190] and the
more recent variant that is lock free [79]]
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5
Design Opportunities

[Here we can specifically focus on the opportunities that are shown through
the “design table” for new designs - and also mention some of out latest
results. The idea is to showcase that (1) there is room for more research
and (2) our classification helps to pinpoint to research directions.]

[This is kept as a separate section because it seems that it can be
interesting for the reader to have easy access. If it is too small we can
connect it back to the previous section]

The final part of the survey presents open problems. A recurring
theme of this survey is that by studying and classifying access method
designs we observe that there are strategies for achieving a specific
optimization goal, e.g., optimize for read performance. In fact there
are two fundamentally different ways to reach a static point in the
read/update/memory design space: either by a static design, or by an
adaptive design which eventually leads to the desired design point. A
number of new research directions build upon this concept. For exam-
ple, how can we build access methods that support a dynamic optimiza-
tion goal, which is reached either by a static or an adaptive to the work-
load design [27, 129]? In addition, can we build an “access method de-
sign optimizer” to help us choose the right access method given specific
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hardware and workload properties [27]? Similar directions are taken at
the system level. For example, can we build a declarative storage en-
gine that does not have to chose between being either row-oriented or
column-oriented [65, 72]? In the final part of the tutorial, we discuss
these open problems and we highlight opportunities for innovation.

5.1 The Design Space As A Design Advisor

[here we can discuss about the idea that one can use the clustering for
structured design, i.e., to create tools etc that use this classification to
help with design]

5.2 A Richer Design Space

[include additional dimensions that can be considered for the tradeoffs and
have a more holistic discussion about future steps in further refining the
design space and the analysis/classification further highlighting that this
is going to be a constant effort ]

[Are these 7+1 all the dimensions we would ever need? Are there
more dimensions? The answer is that probably the design space would
be more fine-grained in the future, so here we discuss a few potential
new dimensions and introduce the concept of a modular design space (in
addition to a modular access method design).]

5.2.1 Concurrency

[Concurrency can be discussed as a new dimension. Here we will discuss
as an open research questions that if there is a way to add concurrency
ad hoc to any design (or virtually any design) then we can definitely argue
that concurrency is a new dimension. Here we can present a few concepts
coming out of ongoing ideas.]

Let the number of items in a node be NodeItems. Let the total
number of items be TotItems. Let the number of operations (insert,
delete, update, search) that enter per second be NumProc. In a tree-like
structure, each leaf node is hit by NumProc * NodeItems/TotItems per
second. In a Log Structured Merge Tree (LSM) like structure, the root



node is hit NumProc times per second. Denote that as ProcPerNode.
The basic unit of cost of concurrency control is the time one process

prevents other processes from accessing nodes times the number of such
nodes. Holding a latch on a node for LatchTime thus costs LatchTime
* max(0, (ProcPerNode - 1)). The subtraction of 1 is due to the fact
that one process (the one holding the latch) locks the node. The max
is due to the fact that the cost cannot be negative.

Further, the maximum throughput per node is 1/LatchTime. So if
ProcPerNode > (1/LatchTime), then latching will be the bottleneck.

In a tree structure, holding a latch on a parent node having a fanout
of f would have a cost of LatchTime * max(0, (f*ProcPerNode) - 1)).
Denote this as ParentCost. Now let’s consider a situation where we
latch the parent and the child for a split (lock-coupling). If the time
to modify the child is T1 and the time to modify the parent is T2
(normally T1 > T2, because data must be moved at the child level
whereas only a pointer needs to be added at the parent level) then the
total concurrency cost is (T1 + T2) * ParentCost. If the two latches
occur separately, then the cost is LeafCost*T1 + T2*ParentCost. Thus,
it is always better to lock just the two separately.

The downside to doing such decoupled locking is that certain
searches will have to do extra work. Using a link technique, the ex-
tra work is (almost always) traversing a single link (though more is
possible). Using a give-up technique, the extra work is (again, almost
always) going back to the parent and then going to the next node. This
happens only in the case that data has been moved from a node which
is rare enough that it can be ignored in the average case.

We can use this model to compare data structures as well. For ex-
ample, in a log-structured merge tree, the latch time per insert, delete,
or update (summarized as an upsert for LSM trees) is short, because
normally each upsert modifies only the in-memory root node. Never-
theless, the total throughput per second is bounded by 1/LatchTime
if there is a single root node, because each upsert must access the root
by itself. If that throughput is insufficient for the incoming traffic, then
we might want a hybrid structure, e.g. a hash function that routes to k
roots, for some number k, so that the single LSM tree becomes k LSM



trees.

5.2.2 Distributed Systems

[Here we discuss the question of distributing the system and the access
method to multiple nodes. While this seems like an expected addition to
the roster of dimensions the argumentation and modeling would require
to add more levels of abstraction in order to include network latency and
other costs that do not exist in the ]

5.2.3 Privacy

[Privacy can be a new dimension] [Here we should actually connect with
the delete element and the right-to-be-forgotten]

5.2.4 Caching: Using Space for Cheaper Reads

Caching: orthogonally to the buffering policies, access methods use ad-
ditional space for caching of recent reads. This allows the access meth-
ods to facilitate faster reads at the expense of additional space.

5.2.5 Hardware-Oblivious Designs

[Cache-oblivious designs aim at removing from the programmer the need to
take into account specific characteristics of the underlying memory (cache,
in particular) hierarchy. There are several examples of interesting pieces of
work towards this direction, however, it is a common intuition that cache-
oblivious solutions succeed in having approaches with lower asymptotic
complexity at the expense of higher constants which oftentimes makes
them less practical. Here we will survey such cache-oblivious solutions and
expand on the aforementioned tradeoff.]



6
Summary

[Since we already have a section for open research based on dimensions
this should be a summary and outlook with higher-level open research
problems. ]
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Appendices



Dennis Suggestion

Access methods support the dictionary operations of:
Point Search – given a key value k, find the value associated with

k.
Range Search – given a range of keys k1 and k2 with k1 le k2, find

all the key-value pairs for keys k between k1 and k2 inclusive.
Update – given a key k and value v, replace the value of k in the

data structure by v.
Insert – insert a key k and value v into the structure if k is not

already present.
[and maybe bulk load]
Delete – given a key k, remove k and any associated value in the

data structure.
We measure performance by average case time complexity. With

large Random Access Memories (RAMs) and much larger secondary
storage memories, space is less of a consideration unless it impacts on
time. This impact may manifest for example if an access method has
so much space overhead that it pushes data from a faster memory (e.g.
cache) to a slower memory (e.g. RAM).

The extreme differences in speed in the memory hierarchy suggest
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that the only important cost is the cost at the slowest level of that
hierarchy. For example, if a tree-based access method stores its first
few levels in RAM and the last levels on secondary storage, all that
matters is the cost at those last levels.

.0.1 Inter-Block Organizations

Array – contiguous sequence of blocks in some combination of primary
or secondary memory. Arrays can be sorted or unsorted.

Linked list – a set of blocks, linked together by pointers. Linked
lists can be sorted or unsorted.

Logarithmic tree structure – a set of blocks with a root in a tree-like
structure. Suppose that for block b, the lowest key is denoted low(b)
and the greatest key is denoted high(b). In this structure high(b) <
low(b’) where b’ is to the right of b. Major parameters are block size
and fanout and whether the tree is balanced or not.

Hash structure – Usually, this means open hashing in which a key
is mapped by a hash function into a target value and some portion of
that target value is used as an address leading to a linked list of blocks.

Trie (each node is a block) – [I’m thinking this is a special case of
a logarithmic tree structure for our purposes]

Multi-copy structure e.g. LSM and BW-tree (each node is a block)
– Structures in which the same key k can appear multiple times and
where the currently valid value associated with a key k (i.e. the logical
value associated with k) is the value associated with the last insert on
k.

.0.2 Time Measurement for Block Organization

We partition the time into secondary memory cost, RAM cost, and
cache cost. Cache cost applies only to within block accesses. If the size
of the data structure is larger than the size of RAM, then secondary
memory cost dominates. Otherwise, RAM cost dominates.

In what follows, we assume we are storing N items each of size s
in bytes. Available memory space of this data structure M bytes Each
block has b bytes. Each range query requires r items.



Unordered Array structures

If N * s > M, then on average, each point search, insert, delete, and
update will require secondary memory cost: ((N*s) - M)/2b block ac-
cesses, because one will have to search half the blocks in secondary
memory. Range queries have a far greater chance to require scanning
the entire structure, because there is no order, so the secondary memory
cost is likely to be (((N*s) - M)/b) block accesses.

If N*s <=M, then each each point search, insert, delete, and update
will require RAM cost: ((N*s)/2b) block accesses. Range queries will
require RAM cost: ((N*s)/b) block accesses.

Ordered Array structures

The analysis here is the analysis of the logarithmic tree structure with
fanout of 2, except that insert costs are much higher. Ordered arrays
are never useful.

Logarithmic tree structures

fanout F, items per leaf L.
First we calculate how many levels of blocks will be within memory.

M/b blocks will be in memory. This translates to 1 + logF (M/b) levels
assuming top levels stay in memory which would be the case for most
modern block replacement schemes. Call this number InMem.

There are N/L leaves. Assuming a reasonably large fanout (e.g.,
5 or greater), virtually all nodes are leaf nodes, so the structure is
completely within memory if N/L < M/b.

If N/L < M/b, point search/insert/update/delete have RAM cost:
InMem. Range queries have RAM cost: InMem + r/b because the items
are all ordered.

If N/L > M/b Point Secondary: (1 + floor(logFN/L) − InMem)
secondary memory block accesses Range search has secondary cost the
point search cost + r/b.

Splits occur for 1/L of the inserts and cost an extra block access.
This is inconsequential provided L is 10 or more.



Hash Structures

A well-designed hash structure should require one access to a block
for any point search, insert, delete, or update. That is: if N*s > M,
then secondary memory cost: (1 - M/(N*s)) because on the average
the fraction M/(N*s) of the blocks will be available in RAM. If N*s
<= M, then RAM memory cost: 1

Range queries in general will require accessing min(r, (N*s/b))
blocks either in secondary memory or primary memory, because ev-
ery block will have to be searched for each element in the range.

Multi-copy Structures

insert/delete/update is RAM: 1 block access.
Point and range search operations require accessing potentially ev-

ery block, but in practice (thanks to Bloom filters) requires only one
secondary access. So that means that if N*s > M, then secondary cost
is 1. If N*s <= M, then RAM: 1 block.

.0.3 Organization within leaf nodes

A leaf node may consist of k blocks, each of b bytes. We assume that
blocks are in memory when they are accessed. So the time here is all
RAM time and cache time assuming the blocks can fit into cache.

A range search takes RAM: k access + Cache: O(kb)
Unordered – for all other (non-range) operations, RAM: k access +

Cache: O(kb)
Cracked – for all other (non-range) operations, RAM: 1 access +

Cache: O(b)
Sorted – for (non-range) search, update, marking delete, RAM: 1

access + Cache: O(log(b))
Hash – For all other operations RAM: 1 access + Cache: O(1)
Log-structured block – for all insert, delete, update RAM: 1 access

+ Cache: O(1). For all point and range searches, RAM: k access +
Cache: O(kb).
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