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Introduction

I Success of the relational model results from happy
combination of expressive power and simplicity

I Single data type + few operations
(select/project/join/aggregate) → simplicity

I Programmers of applications that depend on ordered events
face a dilemma

I They would like to use a relational database system, but the
model makes it hard to express queries over order.

I AQuery (and others) embodies philosophy that order can be
introduced without affecting simplicity (and improving
performance)[?][?][?]



AQuery: Sales Query

Please return the running three month moving average of sales.

1 SELECT month , avgs(sales , 3)

FROM Revenue

3 ASSUMING ASC month



AQuery: Sales Query

Please return the running three month moving average of sales.

1 SELECT month , avgs(sales , 3)

FROM Revenue

3 ASSUMING ASC month

The assuming clause creates an arrable ordered by month and the
running average query avgs performs the calculation.
That’s (most of) AQuery!



AQuery

I Modest syntactic and semantic extension to SQL 92

I Replaces unordered relational tables by ordered tables
(arrables which stands for array-tables), which can be sorted
by one or more columns[?]

I Modest syntactic and semantic extension to SQL 92: (i) Adds
one clause: assuming clause (order) (ii) Provides
order-senstive aggregates (iii) Go into and out of first normal
form.



SQL 92: Sales Query – inefficient AND incorrect

Please return the running three month moving average of sales.

1 SELECT t1.month , t1.sales ,

(t1.sales+t2.sales+t3.sales)/3

3 FROM Revenue t1, Revenue t2, Revenue t3

WHERE t1.month - 1 = t2.month and

5 t1.month - 2 = t3.month

Three-way join (inefficient) and misses the first two months. Can
be written correctly in SQL 99 but complex and inefficient.



AQuery: Moving Variance Query

Assume a table of the form prices(ID,Date,EndOfDayPrice) with
the last ten years’ data. Calculate a 12-day moving variance in
returns for stock tickers Leverages: assuming clause,
order-dependent aggregate (vars over 12 previous value, ratios
based on consecutive days). Gives for each ID, a vector of Dates
and variances.

1 SELECT ID, DATE ,

vars(12, ratios(1, EndOfDayPrice) - 1)

3 FROM prices

ASSUMING ASC Date

5 GROUP BY ID



SQL-99: Moving Variance Query

Assume a table of the form prices(ID,Date,EndOfDayPrice),
calculate a 12-day moving average in returns for stock tickers

1 SELECT ID , Date ,
VARIANCE( r e t s ) OVER (

3 ORDER BY Date ROWS
BETWEEN 11 PRECEDING AND CURRENT ROW

5 ) as mv
FROM

7 (SELECT
c u r r . Date , c u r r . ID ,

9 c u r r . EndOfDayPrice /
p r e v . EndOfDayPrice − 1 as r e t s

11 FROM
p r i c e s c u r r LEFT JOIN p r i c e s p r e v

13 ON c u r r . ID = p r e v . ID
AND c u r r . Date = p r e v . Date + 1)

15 GROUP BY ID



AQuery: Correlation Pairs (for self-study)
1 WITH

s t o c k s G r o u p e d ( ID , Ret ) AS (
3 SELECT ID ,

r a t i o s ( 1 , EndOfDayPrice ) − 1
5 FROM p r i c e s

ASSUMING ASC ID , ASC Date
7 WHERE Date >= max ( Date ) − 31 ∗ 6

GROUP BY ID )
9

p a i r s G r o u p e d ( ID1 , ID2 , R1 , R2 ) AS (
11 SELECT s t 1 . ID , s t 2 . ID ,

s t 1 . Ret , s t 2 . Ret
13 FROM

s t o c k s G r o u p e d st1 , s t o c k s G r o u p e d s t 2 )
15

SELECT ID1 , ID2 ,
17 c o r (R1 , R2 ) as c o e f

FROM FLATTEN( p a i r s G r o u p e d )
19 WHERE ID1 != ID2

GROUP BY ID1 , ID2



Optimizations for both sequential and parallel
implementations

I Rule-based optimization for predictability

I Tranformation rules yield demonstratable advantages

I Rules implemented as rewrites on abstract syntax tree.



Sort minimization [new, but clear]

I Detect order-dependent vs order-independent operations

I Sort only columns upon which operations are order-dependent.

I od(t) returns all columns affected by order-dependence, and
necessary to maintain semantics

SELECT ... FROM t ASSUMING S ....

sortS(t)

→
sortS(od(t)), (columns(t) \ od(t))



Push selections [classical]

I Generally perform selections before sorting and joins

I Except when doing so loses the benefits of indexes.

t ′ ← σW (sortS(t))

→
t ′ ← σW ′′(sortS(σW ′(t)))

where W ′ includes all selections up to first use of an
order-dependent aggregate, and W ′′ contains remaining selections.



AQuery: Sales Query (again)

Please return the running three month moving average of sales.

SELECT month , avgs(sales , 3)

2 FROM Revenue

ASSUMING ASC month

The assuming clause creates an arrable ordered by month and the
running average query avgs performs the calculation.



Push selections inside joins [classical]

t ′ ← σW (sortS(t1 ./ t2))

→
t ′ ← σW ′′(sortS(σW ′(σW1(t1) ./ σW2(t2))))

Selections before the first order-dependent aggregate can be
pushed down to join arguments, if all columns for a selection
pertain to a single argument. Equality-based selections are pushed
down (W1 and W2). W ′ contains single-argument selections,
which are pushed below the join while preserving helpful indexes.



Reorder selections [classical]

I Selections are reordered, while maintaining semantics, to use
helpful indices

σW (t)

→
W ′ ← [W1,W2, ...,Wn]

W ′′ ← Σn
i reorder(Wi )

σW ′′(t)

where W ′ is partitioned at each order-dependent aggregate,
guaranteeing safe commutation of selections. reorder rearranges
selections so as to take advantage of indices.



Sequential Implementation

I Recently rewritten codebase: pure Scala implementation

I Execution engine: q[?]

I Workflow: write AQuery code, compiler generates optimized q
code, execute using q interpreter

I Advantages: portability, transparency (user able to inspect
generated q code)



Related Work
I Among the excellent work in the development of time series

databases, much has focused on developing architectures that
allow for scalability and performance for simple queries, rather
than developing a performant language supporting complex
queries

I DruidIO[?]: open source data store for analytics. Column
oriented, but query language doesn’t suport common
functionality like joins

I Influxdb[?]: Limited query language, no user-defined
functions, no arbitrary sorting

I SciQL[?]: extends MonetDB[?] with first-class arrays for
scientific applications, allowing direct manipulation of array
and matrix structures. Comparable in expressability to
AQuery, but AQuery is designed to be a natural extension of
sql (and is faster).

I Excellent work but focused on reliability and scalability[?][?],
not query plans



Benchmarks

I Compare: AQuery, Python’s Pandas[?], Sybase IQ[?], and
MonetDB (with imbedded Python)[?]

I Experiments: financial benchmark from Sybase[?], MonetDB’s
benchmarking operation of quantile calculation, various
Pandas benchmarking operations from Panda’s historical
performance benchmark[?]

I We compare on our competitors’ benchmarks.



Experimental Setup

Experiments against Pandas and MonetDB are run in a single-user
setting on a MacBook Air with a 2-Core 1 .7 GHz Intel Core i7
processor, with 8GB of memory. The Sybase IQ comparison is
performed on a multi-user linux system with 4 16-Core 2.1 GHz
AMD Opteron 6272 processors, with 256GB of memory.

I Pandas version 0.17.0

I Numpy version 1.10.1

I Python version 2.7.5

I MonetDB version 1.7, built from the pyapi branch that allows
for embedded Python

I Sybase IQ version 16.0

I q version 3.2 2014.11.01

I AQuery compiler a2q version 1.0



Finance Benchmark

I Common financial operations (e.g. adjust prices for stock
events, find crossing points of moving averages, summarize
prices across different time horizons, test trading strategies)

I Simulated data, randomized as necessary (various parameter
values) data at different sizes (100K, 1M, and 10M
observations)

I Present average response time

I Data and sequential system soon available.



Finance Benchmark: Pandas Results
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Figure 1: AQuery is faster with stock history of 100K, 1M and 10M rows across
all queries. In various of these, AQuery’s average response time is orders of
magnitude shorter.



Finance Benchmark: Pandas Results
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Figure 2: AQuery is faster with stock history of 100K, 1M and 10M rows across
all queries. In various of these, AQuery’s average response time is orders of
magnitude shorter.



Finance Benchmark: MonetDB Results
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Figure 3: AQuery is faster across the board for 100K rows of stock history.
When we increment to 1M AQuery remains faster in 8 of 10 queries, and
comparable in the remaining 2. At 10M rows, AQuery is slightly slower for
query 2, comparable for query 7, and faster in all others.



Finance Benchmark: Sybase IQ Results
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Figure 4: With 100K and 1M rows, AQuery outperforms Sybase IQ in all of the
queries evaluated. At 10M rows, performance is a bit more varied, with larger
standard errors, but on average AQuery is faster in 8 of the 10 benchmark
queries.



Pandas Benchmark: Data Science Operations

I Picked a subset of operations used by Pandas to track
library’s historical performance evolution[?]

I Represents common tasks in data science, for example:
subsetting, grouping, summarizing, and merging data,
amongst others.

I Various baseline data sizes: 100K elements (as used in
Panda’s benchmarking), 1M, and 10M elements

I Randomly generate data and repeat experiments



Pandas Benchmark: AQuery Results
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Figure 5: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated.



Pandas Benchmark: AQuery Results
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Figure 6: For 100K rows, AQuery is on average faster in 6 of 7 cases. For 1M
and 3M rows, AQuery is faster in 5 of the 7 operations evaluated. The first set
of graphs excludes query 3, for ease of reading, given the vastly different
response time.



MonetDB Benchmark: Quantiles

I MonetDB’s ability to embed R[?], and more recently,
Python/NumPy [?], directly into a query makes it a very
flexible and appealing approach for data scientists and
developers looking to integrate their data storage/query and
analysis tools.

I AQuery’s performance in quantile calculation compared to
MonetDB’s performance using a performant NumPy function.
On the AQuery side, we implement a naive quantile function

I 100K, 1M, 10M, and 25M values

I Repeatedly generate random data sets



MonetDB Benchmark: AQuery Results
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Figure 7: AQuery outperforms in all the dataset sizes evaluated. While the
advantage narrows with larger data, we highlight AQuery’s implementation is
currently using a naive quantile calculation that involves sorting the entire array.



How does it stack up against q?: Finance Benchmark

I Performance on most queries is comparable

I There is some overhead in managing certain simple aquery
data structures

I Current joins available: equi-join and full outer join. Increasing
expressiveness of joins would erase most of remaining gap

I Gap is most evident in queries 1, 5, 6, which use lj in the q
version



How does it stack up against q?: Finance Benchmark
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How does it stack up against q?: Finance Benchmark
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A simple example

We explore a simple example, transformations, and resulting code.

<q>

2 \s 10

n:`int$5e6;
4 t:([]c1:n?100; c2:n?100; c3:n?100;

c4:n?100; c5:n?100; c6:n?100);

6 t:update c2:`g#asc c2 from t

</q>

8

// identity

10 function f(x){x}

12 select

sums(c3), max(c4)

14 from t

assuming asc c1, desc c2

16 where f(c1) >=50 and c2 > 50



A simple example: execution time
We consider various q implementations

// "declarative"

2 .kdb.q0:{ select sums c3 , max c4 from `c1 xasc `c2
xdesc t where 50<=f c1 , c2 >50}

// select before sort

4 .kdb.q1:{ select sums c3 , max c4 from `c1 xasc `c2
xdesc select from t where 50<=f c1 , c2 >50}

// reorder selections

6 .kdb.q2:{ select sums c3 , max c4 from `c1 xasc `c2
xdesc select from t where c2 >50, 50<=f c1}

q)\ts:10 .aq.q0[]

2 1961 150996080

q)\ts:10 .kdb.q0[]

4 10935 872416128

q)\ts:10 .kdb.q1[]

6 3558 218104736

q)\ts:10 .kdb.q2[]

8 3255 218104736



Decomposing our query
I Of course, anything AQuery writes, you can write
I But that doesn’t mean it won’t be annoying, or that reasoning

on the fly will guarantee equivalent results
I f is not order-dependent, push selections below sort
I c2 has a grouped attribute, execute that selection first
I Only c3 is involved in order-dependent operation
I Sort only c3

.aq.initQueryState [];

2 aq__t0 :.aq.initTable[t;"t";0b];

aq__t0 :?[ aq__t0 ;.aq.reorderFilter[aq__t0 ;((=; (f;{x^.

aq.cd x} `c1); 10);(>; {x^.aq.cd x} `c2; 50))];0b

;()];

4 aq__t0 :.aq.rekey[aq__t0 ;] .aq.sort [0! aq__t0 ;(( iasc;{x

^.aq.cd x} `c1);(idesc ;{x^.aq.cd x} `c2));({x^.aq.
cd x} `c3)];

aq__t0 :?[ aq__t0 ;();0b;((`c__0);(`c__1))!((.aq.sums1 ;{
x^.aq.cd x} `c3);(.aq.max;{x^.aq.cd x} `c4))];

6 aq__t0



Parallel AQuery: newest work

I Simple architecture, allows deeper reasoning for query
generation/transformation

I Novelty: Explores order-based optimizations in a distributed
setting



Parallel AQuery: Architecture

I Supermaster-master-worker architecture

I Supermaster: Communicates with user and assigns queries
provided by user to masters (each associated with one cohort
of workers)

I Each cohort has the same data as each other cohort.

I Reads go to one cohort and writes to all.



Parallel AQuery: Sample Architecture

Super-master

Master

Worker



Parallel Primitives

I Encapsulate all parallelism, allowing compositional reasoning
I Shuffle
I Map (-Reduce)
I Carry-lookahead
I Edge-extension

*Note on diagrams in following slides: red/solid lines repre-
sent instructions sent across nodes, while green/dashed lines
represent data sent across nodes



Map [classical]

I Predicate based partitioning of say table t – like the map in
the classic map-reduce.

I Intra-cohort

X

par
titi

on(t)

partition(t)
partition(t)

X

t ′

t ′′

t
′′′



Staged Reduce [classical]

I Each worker does its own reduction.

I Optionally, stage reduced results into smaller and smaller
summaries (e.g. for a global sum)



Carry-Lookahead Calculations [new]

I Some operations lend themselves to parallelizing intermediate
results followed by adjustments

I Example: Running (i.e., cumulative) sum of stock volumes
entails partitioning into separate chunks of time, performing
running sum in each chunk and then adding the intermediate
results. Like a carry-lookahead adder.

I Effectively, a map-reduce operation with: order-dependent
scan + adjustment function as a reduction operation



Carry-Lookahead Calculations

I partition(c): initial partition on column c

I adj(x , y): adjusts y by combining with x

t1

t2

t3

pa
rti
tio
n(
c)

partition(c)

partition(c)

t1

t ′2

t ′3

t1

t ′2 = adj(last(t1), t2)

...



Edge-Extension

I Window-based operations abound in order-dependent data
analysis

I Example: 7-day moving average of stock prices

I Dependencies across worker processes

I Solution: extend partitioned data with necessary replicated
data (maintaining order of tuples)

I Allows parallelized window-based computation



Edge-Extension

I drop(x , y): drop first x tuples of y

I last(x , y): last x tuples of y

I Results can be kept in worker processes, or sent back to
master (yellow) if these are final results

t1

t2

t3

ed
gev

als
(w

, t)

edgevals(w , t)

edgevals(w , t)

t1

t ′2

t ′3

t′1 = agg(t1)

edge1 = last(n, t1)

t′2 = drop(n, agg(edge1, t2))

edge2 = last(n, t2)

t′3 = drop(n, agg(edge2, t3))



Synchronize

I Maintains replication

I Upon a write-query q, results are copied from each worker in
the cohort to all of their respective counterparts

I Guarantees results available for later queries

q

...

...



Implementation

I Developed open-source library implementing primitives:
parallel.q

I Composes primitives to yield: distributed sorting, distributed
grouping, distributed crossing, distributed reference joins, in
addition to standard selections/projections/etc

I Standalone library allows users to write distributed queries in
an intuitive fashion

I Parallel AQuery translates standard queries into calls to
parallel.q, modularizing distributed logic

I Prior optimizations still apply (as rewritten abstract syntax
tree)

https://github.com/josepablocam/aquery2q/blob/parallel/src/parallel/parallel.q


Exploring performance in parallel.q

I Setup: 30 million float point numbers in-memory across 3
worker processes

I Experiments: Compare parallel.q performance versus serial q.
Serial q collects data from workers and computes centrally,
meanwhile parallel.q allows expressing the same in-memory
operations over the distributed dataset

I End Goal: AQuery compiler should translate the same simple
query into parallel.q formulation

I Experiment 1: Last value in running average (carry-operation)

I Experiment 2: Max value in 10-element moving average
(edge-extension)



Experiment 1: Code Comparison
Target AQuery (note that this translation has not yet been
implemented, and parallel.q has been written manually)

SELECT last(avgs(vals)) FROM nums

parallel.q

1 .qpar.q1.query :{

w:1;

3 f:{ select s:sums vals , ct:sums not null vals from nums};

adj :{[p;c] update s:s+p[0;`s], ct:ct+p[0;`ct] from c};

5 write:{`as set x};

.aq.par.master.carryOp[w;f;adj;write ];

7 {update a:s%ct from `as} peach .z.pd[];

.aq.par.runSynch[last .aq.par.workerNames [];({ select a from last as};::)]

9 }

standard q

1 .qser.q1.query :{-1# avgs raze {select vals from nums} peach .z.pd[]}



Experiment 2: Code Comparison

Target AQuery (note that this translation has not yet been
implemented, and parallel.q has been written manually)

1 SELECT max(avgs(10, vals)) FROM nums

parallel.q

1 .qpar.q2.query :{

w:10;

3 read:{ select vals from nums};

f:{ select 10 mavg vals from x};

5 write:{`ma set x};

.aq.par.master.edgeOp[w;read;f;write];

7 max {max ma} peach .z.pd[]

}

standard q

.qser.q2.query :{max 10 mavg raze {select vals from nums} peach .z.pd[]}



Performance Overview

Table 1: parallel.q allows users to take advantage of parallelism for in-memory
operations that otherwise require collecting (average execution time ms)

Experiment parallel.q standard q

1 512.19 648.87
2 999.34 1227.07



Performance Overview
We evaluate parallel.q scalability by testing with 3, 5 and 10
worker processes, on a machine with 12 cores. In each case, each
worker holds 10MM floating point numbers in-memory.
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Conclusions

I AQuery is a linguistically simple high performance database
system for time series and other ordered data.

I The concept of arrables and assuming and moving averages
constitute the backbone of the system

I Some new optimization problems can be handled with simple
powerful primitives.

I Here is a demo of the sequential version:

https://www.youtube.com/watch?v=ifIsj0Qr-qc&feature=youtu.be


Future Work

I Improve parallel system performance.

I Implement translation for parallel version

I Incorporate time series machine learning primitives.
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