
Fast Window Correlations Over Uncooperative Time Series∗

Richard Cole Dennis Shasha Xiaojian Zhao
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

{cole,shasha,xiaojian}@cs.nyu.edu

1. ABSTRACT
Data arriving in time order (a data stream) arises in fields

including physics, finance, medicine, and music, to name a
few. Often the data comes from sensors (in physics and
medicine for example) whose data rates continue to improve
dramatically as sensor technology improves. Further, the
number of sensors is increasing, so correlating data between
sensors becomes ever more critical in order to distill knowl-
ege from the data. In many applications such as finance,
recent correlations are of far more interest than long-term
correlation, so correlation over sliding windows (windowed
correlation) is the desired operation. Fast response is de-
sirable in many applications (e.g., to aim a telescope at an
activity of interest or to perform a stock trade). These three
factors – data size, windowed correlation, and fast response
– motivate this work.

Previous work [30, 35] showed how to compute Pearson
correlation using Fast Fourier Transforms and Wavelet trans-
forms, but such techniques don’t work for time series in
which the energy is spread over many frequency compo-
nents, thus resembling white noise. For such “uncoopera-
tive” time series, this paper shows how to combine several
simple techniques – sketches (random projections), convolu-
tion, structured random vectors, grid structures, and com-
binatorial design – to achieve high performance windowed
Pearson correlation over a variety of data sets.

2. MOTIVATION
Many applications, from space sensors to finance, generate

multiple data streams. Such applications share the following
characteristics:

• Updates come in the form of insertions of new elements
rather than modifications of existing data.

• Data arrives continuously.

∗This work has been partly supported by the U.S. National
Science Foundation under grants NSF IIS-9988345, N2010-
0115586, MCB-0209754 and CCR-0105678.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’05, August 21–24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008 ...$5.00.

• One pass algorithms to filter the data are essential be-
cause the data is vast. However, if the filter does its
job properly, there should be few enough candidates
that even expensive detailed analysis per candidate
will have only a modest impact on the overall run-
ning time. “Few enough” does not imply extremely
high precision. In our experiments a precision of even
1% can still reduce computation times compared to
a naive method by factors of 50 or more because the
order of magnitude is linear instead of quadratic.

In this paper we describe one of several problems having
to do with the relationship of many different time series:
the discovery of time series windows having high Pearson
correlations. We call this problem windowed correlation. In
contrast to the considerable recent body of work on massive
data streams [10, 26, 14] where the assumption is that data
can be read once and is not stored, we assume an initial
filtering step must be completed in one pass, but a second
pass may search for data in a well-organized and potentially
growing data structure.

3. PROBLEM STATEMENT
A data stream, for our purposes, is a potentially unending

sequence of data in time order. For specificity, we consider
data streams that produce one data item each time unit.

Correlation over windows from the same or different streams
has many variants. This paper focusses on synchronous and
asynchronous (a.k.a. lagged) variations, defined as follows.

• (Synchronous) Given Ns streams, a start time ts, and a
window size w, find, for each time window W of size w,
all pairs of streams S1 and S2 such that S1 during time
window W is highly correlated (over 0.95 typically)
with S2 during the same time window. (Possible time
windows are [ts · · · ts + w − 1], [ts + 1 · · · ts + w], · · ·)

• (Asynchronous correlation) Allow shifts in time. That
is, given Ns streams and a window size w, find all time
windows W1 and W2 where |W1| = |W2| = w and
all pairs of streams S1 and S2 such that S1 during W1

is highly correlated with S2 during W2.

3.1 What Makes a Time Series Cooperative?
Given Ns streams and a window of size winsize, comput-

ing all pairwise correlations naively requires O(winsize ×
(Ns)

2) time. Fortunately, extremely effective optimizations
are possible, though the optimizations vary according to the
type of time series.

• Category 1 (“cooperative”): The time series of-
ten exhibit a fundamental degree of regularity, at least
over the short term, allowing long time series to be
compressed to a few coefficients with little loss of infor-
mation using data reduction techniques such as Fast
Fourier Transforms and Wavelet Transforms. Using
Fourier Transforms to compress time series data was
originally proposed by Agrawal et al. [3]. This tech-
nique has been improved and generalized by [12, 24,
29]. Wavelet Transforms (DWT) [5, 13, 28, 33], Singu-
lar Value Decompositions (SVD) [22], and Piecewise
Constant Approximations [21, 19, 27, 34] have also
been proposed for similarity search. Keogh has pi-
oneered many of the recent ideas in the indexing of
dynamic time warping databases [18, 32]. The per-
formance of these techniques varies depending on the
characteristics of the datasets [30].

• Category 2 (“uncooperative”): In the general case,
such regularities are absent. However, sketch-based
approaches [2, 15] can still give a substantial data re-
duction. These are based on the idea of taking the
inner product of each time series window, considered
as a vector, with a set of random vectors (or equiv-
alently, this can be regarded as a collection of pro-
jections of the time series windows onto the random
vectors). Then the guarantees given by the Johnson-
Lindenstrauss lemma [17] hold. In time series data
mining, sketch-based approaches have been used to
identify representative trends [8, 16], maintain his-
tograms [31], and to compute approximate wavelet co-
efficients [13], for example.

4. CONTRIBUTIONS OF THIS PAPER
Previous work [35, 30] showed how to solve the windowed

correlation problem in the cooperative setting using high
quality digests obtained via Fourier transforms. Unfortu-
nately, many applications generate uncooperative time se-
ries. Stock market returns (change in price from one time
period (e.g., day, hour, or second) to the next divided by
initial price, symbolically (pt+1 − pt)/pt) for example are
“white noise-like.” That is, there is almost no relation from
one time point to the next.

For collections of time series that don’t concentrate power
in the first few Fourier/Wavelet coefficients, which we have
termed uncooperative, we adopt a sketch-based approach.
There are several difficulties to overcome:

1. Unfortunately, computing sketches directly for each
neighboring window is very expensive. For each new
datum, for each random vector, it costs O(sw) time
where sw is the size of the sliding window. (We will
be using 25 to 60 random vectors.) To reduce this ex-
pense, we combine two ideas: convolutions and “struc-
tured random vectors” to reduce the time complexity
to O(sw/bw) integer additions and O(log bw) floating
point operations per datum and random vetor. The
length bw is the time delay before a correlation is re-
ported (e.g., if sw were an hour then bw might be a
minute).

2. Even with this, we obtain sketch vectors of too high
a dimensionality for effective use of multi-dimensional
data structures. We combat this well-known “curse of

…
…

Stock 1

Stock 2

Stock 3

Stock n

Sliding

windowTime

axis

Basic window

Time Point

Figure 1: Sliding windows and basic windows.

dimensionality” by using groups of sketches and com-
bining the results as in the scheme due to [23].

3. There are four parameters to be set (two of which
we introduce later). Optimizing these parameters to
achieve good recall and precision requires a search through
a large parameter space. For this we use combinato-
rial design. We validate both the use of combinatorial
design and the stability of the parameter choices ex-
perimentally through bootstrapping.

The end result is a system architecture that, given the
initial portions of a collection of time series streams, will
determine (i) whether the time series are cooperative or not;
(ii) if so, it will use Fourier or Wavelet methods (because
they are faster by a constant); and (iii) if not, it will discover
the proper parameter settings and apply them to compute
sketches of the evolving data streams.

Thus, our contributions are of two kinds: (1) a greatly
improved and more general solution to the on-line correla-
tion problem; and (2) a synthesis of techniques – sketches,
structured random vectors, combinatorial design with neigh-
borhood search, and bootstrapping – that may be useful for
many other problems.

5. ALGORITHMIC IDEAS
Following [30, 35], our approach begins by distinguishing

among three time periods from smallest to largest.

• timepoint – the smallest unit of time over which the
system collects data, e.g., a second.

• basic window – a consecutive subsequence of time-
points over which the system maintains a digest (i.e.,
a compressed representation) e.g., two minutes.

• sliding window – a user-defined consecutive subsequence
of basic windows over which the user wants statistics,
e.g., an hour. The user might ask, “which pairs of
streams were correlated with a value of over 0.9 for
the last hour?”

Figure 1 shows the relationship between sliding windows
and basic windows.

The use of the intermediate time interval called the basic
window yields two advantages [30, 35],

1. (Near online response rates) Results of user queries
need not be delayed more than the basic window time.
In this example, the user will be told about correla-
tions for the 2PM to 3PM window by 3:02 PM and

Comparison over Return Data

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900

Data Points

D
is

ta
n

ce Real Dist

Sketch

SVD

Real Dist

Sketch

SVD

Figure 2: The sketch approach is superior to the
Singular Value Decomposition, Wavelet, and Dis-
crete Fourier Transform approaches for uncooper-
ative time series. Of those three, Singular Value
Decomposition is the best so is the one to which
sketches are compared.

correlations for the 2:02 PM - 3:02 PM window by
3:04 PM.1

2. (Free choice of window size) Maintaining stream di-
gests based on the basic window allows the compu-
tation of correlations over windows of arbitrary size
(chosen up front) with high accuracy.

5.1 The Sketch Approach
The sketch approach, as developed by Kushilevitz et al.

[23], Indyk et al. [15], and Achlioptas [2], provides a very nice
guarantee: with high probability a random mapping taking
points in Rm to points in (Rd)2b+1 (the (2b+1)-fold cross-
product of Rd with itself) approximately preserves distances
(with higher fidelity the larger b is).

Quantitatively, given a point x ∈ Rm, we compute its
dot product with d random vectors ri ∈ {1,−1}m. The
first random projection of x is given by y1 = (x ∗ r1,x ∗
r2, ..., x∗rd). We compute 2b more such random projections
y1, ..., y2b+1. If w is another point in Rm and z1, ..., z2b+1

are its projections using dot products with the same random
vectors then the median of ‖y1−z1‖, ‖y2−z2‖, ...‖y2b+1−
z2b+1‖ is a good estimate of ‖x−w‖. It lies within a θ(1/d)
factor of ‖x − w‖ with probability 1 − (1/2)b.

Sketches work much better than Fourier methods for un-
cooperative data. Figure 2 compares the distances of the
Fourier and sketch approximations for 1,000 pairs of 256
timepoint windows having a basic window size of length 32.
As you can see, the sketch distances are close to the real
distances. On the other hand, the Fourier, Wavelet, and
even SVD approximations work very poorly for uncoopera-
tive data, because the information needed to capture unco-
operative time series is spread out over all their coefficients.

Our approach is to use a “structured” random vector. The
apparently oxymoronic idea is to form each structured ran-
dom vector r from the concatenation of nb = sw/nb random
vectors: r = s1, ..., snb, where each si has length bw. Fur-
ther each si is either u or −u, and u is a random vector

1One may wonder whether the basic window and therefore
the delay can be reduced. The tradeoff is with computation
time. Reducing the size of the basic window reduces the
compression achieved and increases the frequency and hence
expense of correlation calculations.

Stock Return Data (N=64)

0

0.02

0.04

0.06

0.08

0.1

0.12

Complete Random Vector Structured Random Vector

Random Vector Compositions

(Bar line: standard deviation of error)

R
el

at
iv

e
E

rr
o

r

Figure 3: Real pairwise distance, estimated sketch
distances for 64 random vectors, and estimated
sketch distances for 64 structured random vectors.

in {1,−1}bw. This choice is determined by a random bi-
nary nb-vector b: if bi=1, si=u and if bi=0, si=−u. The
structured approach leads to an asymptotic performance of
O(nb) integer additions and O(log bw) floating point opera-
tions per datum and per random vector. In our applications,
we see 30 to 40 factor improvements over the naive method.

In order to compute the dot products with structured ran-
dom vectors, we first compute dot products with the random
vector u. We perform this computation by convolution once
every bw timesteps. Then each dot product with r is simply
a sum of nb already computed dot products. (We explain
this in more detail in the appendix of [7].)

The use of structured random vectors reduces the random-
ness, but experiments show that this does not appreciably
diminish the accuracy of the sketch approximation, as we
can see from Figure 3.

Though structured random vectors enjoy good performance,
as we will see, please note that a clever use of unstructured
(that is, standard) random vectors together with convolu-
tions can lead to an asymptotic cost of O(log sw log(sw/bw))
floating point multiplications per datum. Structured ran-
dom vector approaches use O(log bw) multiplications and
O(sw/bw) additions per datum. For the problem sizes we
consider in this paper, the structured random vector ap-
proach is faster, though in principle it needs to be weighed
against the small loss in accuracy.

5.2 Partitioning Sketch Vectors
In many applications, sketch vectors are of length up to

60. (In such a case, there are 60 random vectors to which
each window is compared and the sketch vector is the vector
of the dot products with those random vectors). Multi-
dimensional search structures don’t work well for more than
4 dimensions in practice [30]. Comparing each sketch vector
with every other one destroys scalability though because it
introduces a term proportional to the square of the number
of windows under consideration.

For this reason, we adopt an algorithmic framework that
partitions each sketch vector into subvectors and builds data
structures for the subvectors. For example, if each sketch
vector is of length 40, we might partition each one into ten
groups of size four. This would yield ten data structures. We
then combine the closeness results of pairs from each data
structure to determine an overall set of candidate correlated
windows 2.

2Note that we use correlation and distance more or less in-

5.3 Algorithmic Framework
Given the idea of partitioning sketch vectors, we have to

say how to combine the results of the different partitions.
This introduces four parameters, as we will see. Suppose
we are seeking points within some distance d in the original
timeseries space.

• Partition each sketch vector s of size N into groups of
some size g.

• The ith group of each sketch vector s is placed in the
ith grid structure (of dimension g).

• If two sketch vectors s1 and s2 are within distance
c × d in more than a fraction f of the groups, then
the corresponding windows are candidate highly cor-
related windows and should be checked exactly. The
remaining issue is to choose good values for c, f and g

5.4 Combinatorial Design
The above framework eliminates the curse of dimensional-

ity by making the groups small enough that multi-dimensional
search structures (even grid structures) can be used. The
framework also introduces the challenge of optimizing the
settings of four parameters: the length N of the sketch vec-
tor, the size g of each group, the distance multiplier c, and
the fraction f .

Our optimization goal is to achieve extremely high recall
(above 0.95) and reasonable precision (above 0.02). We are
satisfied with a fairly low precision because examining even
50 times the number of the winning pairs on the raw data
is much much better than examining all pairs, as we show
later in our experiments.

Increasing the size of the sketch vector improves the accu-
racy of the distance estimate but increases the search time.
In our experiments, accuracy improved noticeably as the
sizes increased to about 60; beyond that, accuracy did not
improve much. Larger group sizes also improve accuracy,
but increase the search time. A typical set of possible pa-
rameter values therefore would be:

Size of Sketch (N): 30, 36, 48, 60
Group Size (g): 1, 2, 3, 4
Distance Multiplier (c): 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1, 1.1, 1.2, 1.3
Fraction (f): 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

As we will see, every possible selection of parameter val-
ues requires a test on many pairs of windows (typically a
few million) in order to get a robust set of parameters. For
this reason, we would like to avoid testing all possible set-
tings (2,080 in this example). Instead, we use combinatorial
design.

Combinatorial design is effectively a disciplined sampling
approach with some guarantees [6]. The key idea of n-factor

terchangeably because one can be computed from the other
once the data is normalized. Specifically, Pearson correla-
tion is related to Euclidean distance as follows:

D2(x̂, ŷ) = 2(1 − corr(x, y))

Here x̂ and ŷ are obtained from the raw time series by com-

puting x̂ = x−avg(x)
σx

, where σx =
p

Pn

i=1(xi − avg(x))2.

a1 a2 a3 a4
0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1
0 0 1 1
1 1 0 0

Table 1: Example of Two-Factor Combinatorial De-
sign.

Data title precmean
cd precstd

cd precmean
ex precstd

ex

spot exrates 0.18 0.02 0.2 0.03
cstr 0.16 0.02 0.18 0.03

foetal ecg 0.22 0.01 0.25 0.008
evaporator 0.007 0.0001 0.007 0.0001
steamgen 0.32 0.02 0.34 0.01

wind 0.001 0.001 0.001 0.0001
winding 0.05 0.02 0.06 0.02

eeg 0.12 0.03 0.14 0.07
price 0.11 0.04 0.14 0.03
return 0.008 0.002 0.009 0.001

Table 2: Combinatorial design vs. exhaustive search
over a parameter search space of size 2,080.

combinatorial design is that the tests will cover all n-way
combinations of parameters. For concreteness, two factor
combinatorial design requires that for every pair of param-
eters (a.k.a. factors) p1 and p2 and for every value v1 from
p1 and v2 from p2, some experiment will test p1.v1 and
p2.v2 together. This property is not the same as exhaustive
search, of course. For example, if there were 4 binary vari-
ables, one possible two factor combinatorial design would be
the one found in table 1.

In our example, a two-factor combinatorial design would
reduce the number of experiments from 2,080 to only 130.

When faced with a sampling proposal like combinatorial
design, one must ask whether some global optimum is missed
through sampling. This could be a particularly significant
issue if small changes in parameter values could yield large
changes in time or quality of result. We call such a situation
parameter discontinuity and the hoped-for opposite param-
eter continuity.

Fortunately, across a wide variety of data sets, our frame-
work appears to enjoy parameter continuity. So the best
value found by combinatorial design is close to that returned
by exhaustive search. Table 2 illustrates this. In the table,
we have listed the precision of the best parameters for each
data set after doing the bootstapping tests. Here “best”
is defined as those having average recall ≥ 0.99 and stan-
dard deviation for recall≤ 0.001 as well as reasonably high
precision and low standard deviation for precision.

In fact, we use parameter continuity in a second way: the
c and f values may take any real value. For the purposes of
sampling them with combinatorial design, however, we make
them discrete. Once we find a good set of discrete values, we
may want to find better values by exploring a local neigh-
borhood around that good set. For example, if the optimal
set has c = 0.7, then we will search 0.63, 0.64, 0.65, 0.66,
0.67, · · · , 0.74, 0.75, 0.76, 0.77. We call this local neighbor-

hood search refinement. To see whether separating the re-
finement step from the initial parameter search works well,
we tested whether an exhaustive search on a dense parame-
ter space (c values having two digits of precision in our case)
would have yielded a substantially different result from a
combinatorial design followed by refinement approach. Us-
ing combinatorial design gave the same recall as exhaustive
search and a precision at least 86% as good as exhaustive
search across the variety of data sets from the UC Riverside
collection[7, 20].

5.5 Bootstrapping To Determine Parameter Ro-
bustness

Optimizing parameter settings for one data sample may
not yield good parameter settings for others. For exam-
ple, suppose that we find the optimal parameter settings
for stock return data over the first month. Will those set-
tings still work well for a later month? Without further
assumptions we cannot answer this, but we can estimate
out-of-sample variability by using bootstrapping [11].

The goal of bootstrapping is to test the robustness of a
conclusion on a sample data set by creating new samples
from the initial sample with replacement. In our case, the
conclusion to test is whether a given parameter setting with
respect to recall and precision shows robust good behavior.
To be concrete, suppose we take a sample S of one million
pairs of windows. A bootstrapped sample would consist of
one million pairs drawn from S with replacement. Thus the
newness of a bootstrapped sample comes from the dupli-
cates.

We use bootstrapping to test the stability of a choice of
parameters. After constructing each bootstrapped sample,
we check the recall and precision of that sample given our
chosen parameter settings. Provided the mean recall over
all bootstrapped samples less the standard deviation of the
recall is greater than our threshold (say 0.95) and the stan-
dard deviation for precision is low, then the parameter set-
ting is considered to be good. This admittedly heuristic
criterion for goodness reflects the idea that the parameter
setting is “usually good” (under certain normality assump-
tions roughly 3/4 of the time).3

Otherwise, we take a bigger sample, perform combinato-
rial design, optimize, bootstrap, and do the standard devi-
ation test again.

6. EXPERIMENTS
Our approach has many interacting parts. We use sketches,

partition them into groups, and then combine the results
from the groups. We use an optimization approach based
on sampling (two-factor combinatorial design) of the param-
eter space and of the data space. None of this can be well-
justified theoretically without some rather onerous assump-
tions.

3 An alternative, which avoids a parametric normality as-
sumption, is to sort the calculated recalls over all the boot-
straps and take the value that is x% from the lowest where
x could be typically 1, 5 or 25. We have done this for our
data (results not shown) and recalls of the 1% from lowest
bootstrap value are very close to the mean whenever the
normality assumptions lead us to a “usually good” conclu-
sion. Precisions can vary by a factor of two however. In
summary, both parametric and non-parametric tests lead to
the same conclusions on these data sets.

Sketch Distance/Real Distance

0

0.5

1

1.5

2

2.5

cs
tr ee

g
wind

ev
ap

or
ato

r

fo
eta

l_e
cg

sp
ot_

ex
rat

es

ste
am

ge
n

wind
ing pr

ice

ret
ur
n

Practical Data Sets

R
a
ti

o

standard deviation

mean

(a) Sketch

DFT Distance/Real Distance

0

0.5

1

1.5

2

2.5

cs
tr ee

g
wind

ev
ap

ora
tor

fo
eta

l_e
cg

sp
ot_

ex
rat

es

ste
am

ge
n

wind
ing pr

ice

ret
ur

n

Practical Data Sets

R
at

io standard deviation

mean

(b) DFT

Figure 4: DFT distance versus sketch distance over
empirical data

Fortunately, we have several data sets from stock market
data and from the UC Riverside repository [20] that afford
us an empirical test of the method.4

The Hardware is a 1.6G, 512M RAM PC running RedHat
8.0. The language is K (www.kx.com).

6.1 Experiment: how common is the uncoop-
erative case?

In this experiment, we took a window size of 256 (sw =
256 and bw = 32) across 10 data sets and tested the accuracy
of the Fourier coefficients as an approximation to distance
compared with structured random vector-based sketches.
Figure 4 shows that the Discrete Fourier Transform-based
distance perform badly in some data types while our sketch
based distance works stably across all the data sets. On the
other hand, when the time series closely resemble a random
walk, as for stock price data, the Fourier series approach
gives significantly better precision levels at the same recall
as compared with the sketch method. Database people will
appreciate the following analogy to data structures: sketches
are like B-trees (the default choice) and Fourier Transform
approaches are like bit vectors (better in some cases).

4The stock data in the experiments are end-of-day prices
from 7,861 stocks from the Center for Research in Security
Prices (CRSP) at Wharton Research Data Services (WRDS)
of the University of Pennsylvania [1]. All the other empirical
data sets came from the UC Riverside Time Series Data
Mining Archive [20] maintained by Eamonn Keogh. The
number of time series in each of those data sets ranges from
1,365 to 13,736.

Comparison of Processing Time

0

0.2

0.4

0.6

0.8

1

1.2

pr
ice

re
tu
rn

ev
ap

or
ato

r

sp
ot
_e

xr
ate

s

w
in
di
ng cs

tr ee
g

fo
eta

l_
ec
g

ste
am

ge
n

w
in
d

Practical Data Sets

N
o
r
m

a
li

z
e
d

 T
im

e

sketch
dft

scan

Figure 5: System performance over a variety
of datasets. Minimum recall for approximation
method is 99%

6.2 Experiment: How good is bootstrapping?
The operational claim of bootstrapping is to simulate sam-

ples across a whole data set by repeated samples from a
single initial sample. In our case, we want the optimal pa-
rameters found on one sample (with bootstrapping) to meet
the recall and precision thresholds on completely disjoint
samples. As shown in our technical report [7], using the pa-
rameters derived from a training sample (and confirmed by
bootstrapping) of a data set works well across that entire
data set. We also show there that different data sets should
have different sets of parameters.

6.3 Performance Tests
The previous subsection shows that the sketch framework

gives a sufficiently high recall and precision. The next ques-
tion is what is the performance gain of using (i) our sketch
framework as a filter followed by verification on the raw data
from individual windows compared with (ii) simply compar-
ing all window pairs. Because the different applications have
different numbers of windows, we take a sample from each
application, yielding the same number of windows.

To make the comparison concrete, we should specify our
software architecture a bit more. The multi-dimensional
search structure we use is in fact a grid structure. The rea-
son we have rejected more sophisticated structures is that
we are asking a radius query: which windows (represented
as points) are within a certain distance of a given point? A
multi-scale structure such as a quadtree or R-tree would not
help in this case. Moreover, the grid structure can be stored
densely in a hash table so empty cells take up no space.

Figure 5 compares the results from our system, a Fourier-
based approach, and a linear scan over several data sets.
To perform the comparison we normalize the results of the
linear scan to 1. The figure shows that both the sketch-
based approach described here and the Fourier-based ap-
proach are much faster than the linear scan. Neither is con-
sistently faster than the other. However as already noted,
the sketch-based approach produces consistently accurate
results though the Fourier-based one wins when the data
resembles a random walk.

7. SUMMARY AND FUTURE WORK
Correlation can indicate that two time series exhibit sim-

ilar trends. Windowed correlation is useful because it indi-
cates that the two time series trend together over a certain
duration of time. We call this a co-trending measure. Many

applications such as finance privilege the recent past (e.g.,
the last two hours) over the distant past (e.g., yesterday),
so an important special case has to do with windowed cor-
relation over the most recent windows.

This paper has proposed an efficient algorithm for rapidly
discovering highly correlated windows synchronously or with
lags. Experiments validate the usefulness of our algorithm
for many data sets, both synthetic and real.

Our measure of correlation is Pearson correlation which
is closely related to Euclidean distance over a normalized
vector space. Other co-trending measures have of course
been invented such as cointegration [4], mutual information
[9], and matching pursuit [25]. Preliminary indications are
that techniques similar to the ones we have studied may be
used for those problems. The long-term goal is to find fast
algorithms for data-rich co-trending problems. The present
paper is a step in that direction.

8. ACKNOWLEDGMENT
Warm thanks to Eamonn Keogh of University of Califor-

nia at Riverside for his data sets.

9. REFERENCES
[1] Wharton research data services(wrds).

http://wrds.wharton.upenn.edu/.

[2] D. Achlioptas. Database-friendly random projections.
Santa Barbara, CA, May 2001. ACM
SIGMOD-PODS.

[3] R. Agrawal, C. Faloutsos, and A. Swami. Efficient
similarity searching in sequence databases. In
Proceedings of the 4th International Conference of
Foundations of Data organization and Algorithms
(FODO), pages 69–84, Chicago, Illinois, MN, 1993.
Springer Verlag.

[4] C. Alexander. Market Models: A Guide to Financial
Data Analysis. John Wiley & Sons, 2001.

[5] K.-P. Chan and A. W.-C. Fu. Efficient time series
matching by wavelets. ICDE, 1999.

[6] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C.
Patton. The combinatorial design approach to
automatic test generation. IEEE Software, 1996.

[7] R. Cole, D. Shasha, and X. Zhao. Fast window
correlations over uncooperative time series. Technical
report, Department of Computer Science, New York
University, New York, NY, 2005.

[8] G. Cormode, P. Indyk, N. Koudas, and
S. Muthukrishnan. Fast mining of massive tabular
data via approximate distance computations. ICDE,
2002.

[9] T. M. Cover and J. A. Thomas. Elements of
Information Theory. Wiley, New York, 1991.

[10] E. Drinea, P. Drineas, and P. Huggins. A randomized
singular value decomposition algorithm for image
processing. Panhellenic Conference on Informatics
(PCI), 2001.

[11] B. Efron and R. J. Tibshirani. An Introduction to the
Bootstrap. Chapman & Hall/CRC, 1994.

[12] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases.
Minneapolis, MN, May 1994. ACM SIGMOD.

[13] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One-pass

summaries for approximate aggregate queries. VLDB,
2001.

[14] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. SIGMOD, 2001.

[15] P. Indyk. Stable distributions, pseudorandom
generators, embeddings and data stream computation.
In Proceedings of the 41st Annual Symposium on
Foundations of Computer Science, page 189. IEEE
Computer Society, 2000.

[16] P. Indyk, N. Koudas, and S. Muthukrishnan.
Identifying representative trends in massive time series
data sets using sketches. VLDB, 2000.

[17] W. Johnson and J. Lindenstrauss. Extensions of
lipschitz mapping into hilbert space. Contemporary
Mathematics, 26, 1984.

[18] E. Keogh. Exact indexing of dynamic time warping.
VLDB, 2002.

[19] E. Keogh, K. Chakrabarti, S. Mehrotra, and
M. Pazzani. Locally adaptive dimensionality reduction
for indexing large time series databases. SIGMOD,
2001.

[20] E. Keogh and T. Folias. The ucr time series data
mining archive. Riverside CA. University of California
- Computer Science & Engineering Department, 2002.
http://www.cs.ucr.edu/∼eamonn/TSDMA/index.html.

[21] E. Keogh, M. P. K. Chakrabarti, and S. Mehrotra.
Dimensionality reduction for fast similarity search in
large time series databases. Knowledge and
Information Systems, 2000.

[22] F. Korn, H. Jagadish, and C. Faloutsos. Efficiently
supporting ad hoc queries in large datasets of time
sequences. SIGMOD, 1997.

[23] E. Kushilevitz, R. Ostrovsky, and Y. Ranbani.
Efficient search for approximate nearest neighbors in
high dimensional spaces. STOC, 1998.

[24] C. S. Li, P. S. Yu, and V. Castelli. Hierarchyscan: A
hierarchical similarity search algorithm for databases
of long sequences. ICDE, 1996.

[25] S. Mallat and Z. Zhang. Matching Pursuit With
Time-Frequency Dictionaries. IEEE Transactions on
Signal Processing, 1993.

[26] G. Manku, S. Rajagopalan, and B. Lindsay. Random
sampling techniques for space efficient online
computation of order statistics of large datasets.
SIGMOD, 1999.

[27] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos,
and W. Truppel. Online amnesic approximation of
streaming time series. ICDE, 2004.

[28] I. Popivanov and R. Miller. Similarity search over time
series data using wavelets. ICDE, 2002.

[29] D. Rafier and A. Mendelzon. Similarity-based queries
for time series data. ACM SIGMOD, 1997.

[30] D. Shasha and Y. Zhu. High Performance Discovery
in Time Series: Techniques and Case Studies.
Springer, 2003.

[31] N. Thaper, S. Guha, P. Indyk, and N. Koudas.
Dynamic multidimensional histograms. Madison,
Wisconsin, 2002. ACM SIGMOD.

[32] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and
E. Keogh. Indexing multi-dimensional time-series with
support for multiple distance measures. SIGKDD,

2003.

[33] Y. L. Wu, D. Agrawal, and A. E. Abbadi. A
comparison of dft and dwt based similarity search in
time-series databases. The 9th ACM CIKM Int’l
Conference on Information and Knowledge
Management, 2000.

[34] B. K. Yi and C. Faloutsos. Fast time sequence
indexing for arbitrary lp forms. VLDB, 2000.

[35] Y. Zhu and D. Shasha. Statstream: Statistical
monitoring of thousands of data streams in real time.
Hong Kong, China, August 2002. VLDB.

	Abstract
	Motivation
	Problem Statement
	What Makes a Time Series Cooperative?

	Contributions of this Paper
	Algorithmic Ideas
	The Sketch Approach
	Partitioning Sketch Vectors
	Algorithmic Framework
	Combinatorial Design
	Bootstrapping To Determine Parameter Robustness

	Experiments
	Experiment: how common is the uncooperative case?
	Experiment: How good is bootstrapping?
	Performance Tests

	Summary and Future Work
	Acknowledgment
	REFERENCES -9pt

