
[DEMO] OpenAlea: Scientific Workflows
Combining Data Analysis and Simulation∗

Christophe Pradal
UMR AGAP, CIRAD and Inria

Montpellier, France
christophe.pradal@cirad.fr

Christian Fournier
INRA

Montpellier, France
christian.fournier@inra.fr

Patrick Valduriez
Inria and LIRMM, Montpellier,

France
Patrick.Valduriez@inria.fr

Sarah Cohen-Boulakia
Inria, Montpellier, France

LRI CNRS 8623, U.Paris Sud
cohen@lri.fr

ABSTRACT
Analyzing biological data (e.g., annotating genomes, assem-
bling NGS data...) may involve very complex and inter-
linked steps where several tools are combined together. Sci-
entific workflow systems have reached a level of maturity
that makes them able to support the design and execution
of such in-silico experiments, and thus making them increas-
ingly popular in the bioinformatics community. However, in
some emerging application domains such as system biology,
developmental biology or ecology, the need for data analysis
is combined with the need to model complex multi-scale bio-
logical systems, possibly involving multiple simulation steps.
This requires the scientific workflow to deal with retro-action
to understand and predict the relationships between struc-
ture and function of these complex systems. OpenAlea (ope-
nalea.gforge.inria.fr) is the only scientific workflow system
able to uniformly address the problem, which made it suc-
cessful in the scientific community. The main originality
is to introduce higher-order dataflows as a means to uni-
formly combine classical data analysis with modeling and
simulation. In this demo paper, we provide for the first time
the description of the system involving an original combina-
tion of features. We illustrate the demonstration on a high
throughput workflow in phenotyping, phenomics, and envi-
ronmental control designed to study the interplay between
plant architecture and climatic change.

1. INTRODUCTION
Classical bioinformatics analysis (e.g. annotating genomes,
building phylogenetic trees, assembling NGS data) involves
the management and processing of huge data sets together
with the chaining of numerous complex and interlinked tools.

Scientific workflow systems aim at facilitating and rational-
izing the design and management of such tasks.They clearly
separate the workflow specification from its execution and
offer useful capabilities on both aspects, such as a user in-
terface to design workflows by composing tools [10], a sched-
uler to optimize the processing of huge amounts of data [5],
a provenance module [3] to keep track of the data used and
generated during an execution and ensure the reproducibil-
ity of the experiments [13].

However, the complexity of biological analysis increases in
emergent interdisciplinary domains addressing the study of
complex multi-scale systems that require numerical simula-
tions. In system biology for instance, analyzing the emergent
behavior of a large number of interactions within a biological
system requires simulating the interplay between the topo-
logical and geometrical development of the structure and its
biological functioning. This involves coupling models from
different disciplines, integrating experimental data from var-
ious sources at different scales (gene, cell, tissue, organism
and population), and analyze the reconstructed system with
numerical experiments.

While scientific workflow systems have mainly been designed
to support data analysis and visualization [10, 7, 8, 1], only
a few systems have attempted to support iteration or sim-
ulation [1, 10]. Most of the systems use either control flow
edges or define loops in the workflow specification with spe-
cific routing nodes (e.g. switch [6]). Kepler [1] uses black box
actors with different models of computation to provide iter-
ation processes. These solutions can lead designing overly
complex workflows that are difficult to understand, reuse,
and maintain [1]. Expressing control flow (iteration) in sci-
entific workflows is actually a difficult problem due to the ab-
sence of state variable and side-effect. To address this prob-
lem, we have proposed the concept of λ-dataflow, that makes
use of higher-order constructs in the context of dataflows
theory and thus allows to represent control flow using al-
gebraic operators [5] (e.g., conditionals, map/reduce...). λ-
dataflow allows to model retro-action. OpenAlea [12] is a
workflow system based on λ-dataflow and is able to uni-
formly deal with classical data analysis, visualization, mod-
eling and simulation tasks.



In this paper, we show how the notion of λ-dataflow allows
OpenAlea to uniformly deal with workflows involving data
analysis and simulation steps. Our demonstration intro-
duces the capabilities of OpenAlea on a workflow involving
high-throughput phenotyping, phenomics, and environmen-
tal control, to study the interplay between plant architecture
and climatic change. OpenAlea is a Python open source
project (openalea.gforge.inria.fr) that provides support to a
large community of users and developers.

2. USE CASE

Figure 1: Use case

We consider a use case in the context of crop plant breeding
[11], where high throughput data analysis needs to deal with
simulation models at different scales (genes, organism and
population). The objective of a breeding program is to pro-
duce plants that perform better than others (higher or more
stable yields) in a given environment. This is challenging as
environmental conditions vary a lot among cropping areas,
and are subjected to rapid change in a global warming con-
text. Model-assisted breeding aims at tackling this issue. It
combines ecophysiological plant models, which reduce phe-
notypic plasticity to a set of environment-independent plant
parameters (stable traits), genetic models that link genetic
profile (allele set) to stable traits, and simulation models
that run virtual experiments to predict crop performance
in a large set of environmental conditions. Model-assisted
breeding recently gained interest thanks to the development
of automated phenotyping platforms that allow for the mea-
surement of plant traits for a large number of accessions in
controlled conditions. For example, the M3P-PhenoArch fa-
cility1 allows to characterize daily plant growth and transpi-
ration for 1,600 individuals at a time, together with precise
control of water availability to the plants. It respectively
generates 52 GB of data per day, 2.75 TB per essay (for a
typical 50 days experiment) and 11 TB per year.

Managing such experiments is particularly challenging due
to the volume of data involved, and the multi-disciplinary
nature of the tasks, as it requires biological data produc-
tion, data analysis, mathematical and biological modeling,
and computer simulation. From a scientific workflow per-
spective, the main issue remains to combine (model-assisted)
data analysis and model simulation with retro-action.

3. OPENALEA
1http://www6.montpellier.inra.fr/lepse/M3P

This section introduces the OpenAlea system, with its pro-
gramming and execution models.

Figure 2: (a) OpenAlea workflow for simulating
Maize and Wheat crop performance based on pheno-
typic and environment data, and two image outputs
(b and c). Colors represent the organ’s type in (b)
and the amount of intercepted light in (c).

Actors and workflows. An actor in OpenAlea is an ele-
mentary brick (a.k.a. component or activity) that has a
name, a function object (a functor, a program, a web ser-
vice or a composite actor), and explicitly defined input and
output ports. A semantic type [1] is associated to each port
(with a corresponding color). A workflow is represented as
a directed multi-graph where nodes are actors, and directed
edges are data links between output and input ports (see
Fig. 2(a)). A workflow can become a (composite) actor in
another workflow to allow composition.

Dataflow variable. One of the major originality of Ope-
nAlea lies in the way iteration is handled by introducing a
specific kind of actor, called dataflow variable X. It allows
to specify that, at a given port, an actor receives an un-
bound variable rather than a value. Connecting an X to an
actor transforms a workflow into a lambda function, and al-
lows to express higher-order programming providing control
flow behavior using a set of algebraic operators. The three
iteration types can be expressed as [6, 4]: (1) counting loops
without dependencies (map operator), (2) counting loops
with dependencies (reduce and for operators) and (3) con-
ditional loops (while operator). In Fig. 2(a), the dataflow
variables and the algebraic operators are represented using
yellow and white nodes, respectively.

Execution. Dataflow execution in OpenAlea is orchestrated
in a model-driven manner (rather than input-driven): the



execution of a given workflow is launched in response to re-
quests for data of one of its actors. Such an actor can satisfy
the request when the upstream subworkflow has been exe-
cuted, that is, when all the relevant actors connected to its
input ports have been executed. When such an actor has
received its data on its input ports, it executes and places
data on its output ports. OpenAlea is able to deal with ex-
tremely large datasets to perform big data analysis in par-
allel environments. Additionally, it allows actors to be lazy
and blocked. When an actor is blocked, the execution is not
propagated to the upstream subworkflow and when the actor
is lazy, the execution is performed only if the actor’s inputs
have not changed compared to its previous execution. This
type of orchestration performs only the operations needed
to produce the required result, executing the subset of the
graph relevant to the output [2].

Algebraic operators and λ-dataflow evaluation. An al-
gebraic operator is an actor that iterates over first-order
function calls, and thus takes one or more functions as in-
puts. Ports that require a function have an associated se-
mantic type Function (colored in white). For instance, the
first input port of the map and reduce operators requires a
function as input (see Fig. 2.(a)). λ-dataflow evaluation dif-
fers from the classical evaluation when the workflow contains
at least one dataflow variable X. In this case, the execution
is decomposed into two stages. First, for each port of type
Function, a subworkflow is computed if the upstream sub-
workflow contains at least one dataflow variable. This sub-
workflow is defined by all the actors needed to produce the
data on this port, i.e. the upstream subworkflow and the
connected output port. This subworkflow is dynamically
transformed into a function (i.e. an actor) of one or several
variables corresponding to its dataflow variables. Second,
the evaluation of this function by algebraic operators con-
sists in replacing the variables by real data and evaluating
the subworkflow using the model-driven algorithm described
above.

Reproducibility. OpenAlea allows to make experiments re-
producible by providing two capabilities. First, it is able to
capture both prospective and retrospective provenance (fol-
lowing the PROV-DM model2), that is, it is equipped of
a provenance module that keeps track of the complete de-
scription of the workflows as well as the full history of the
data produced and consumed during each execution. Sec-
ond, and very originally, OpenAlea’s architecture is based
on IPython and makes use of IPython Notebooks [14] to
generate executable papers (see Fig. 3.(b)).

4. DEMONSTRATION
This section describes the main points of our demonstration
based on the workflow depicted in Fig.2. We show how users
can create or interact with highly expressive workflows (able
to perform analysis, modeling and simulation tasks), both
using the visual programming environment (Fig. 3(a)) and
IPython notebooks (Fig. 3(b)) of OpenAlea.

2http://www.w3.org/TR/prov-dm/

Reusing or designing a workflow. OpenAlea offers a vi-
sual programming environment where users are provided
with a set of predefined workflows and libraries of tools to
be combined to form new workflows (see the left part of Fig.
3(a), ”Package Panel”). Users can create new wrapped tools
by implementing them in Python. Each tool and workflow
is associated with some documentation and saved. Ports of
actors are typed and widgets can be associated with data
types to allow users interacting with the data (see the wid-
gets depicted in Fig. 3(a)).

(Re)Running a workflow. To execute a workflow, users
have to click on their output of interest (as OpenAlea is
model-driven). For instance in Fig. 2, by clicking on the
plot actor, users trigger the execution of all the actors of
the workflow, from top to bottom. If users click again on
any actor of the same workflow, they can visualize or access
to intermediate results. OpenAlea determines whether or
not any calculation has to be redone (default Lazy mode).
If no input or parameter change has occurred, data is not
recomputed. Otherwise, the subworkflow impacted by the
change is executed again. In Fig. 2(a), the is flowering actor
is a non-lazy or eager actor, colored in green. It is always
recomputed, even if its input data has not changed.

Using algebraic operators for simulation. Algebraic op-
erators are higher-order actors that take function as argu-
ment. In our demonstration, we use three different opera-
tors: map, reduce and while. Other types of algebraic oper-
ators in OpenAlea follow the same principle while users can
define their own operators. The map operator is a higher-
order function map :: (α → β) → [α] → [β]. Its argument
are a function f :: α → β (first port) and a set of elements
of type α (second input port). The map operator applies f
to each element of the set and returns the set of resulting
elements of type β. Similarly, the reduce operator takes
a function g of two variables and a sequence of elements
[xi] and returns one element. while is an iteration opera-
tor that takes three inputs: an initial element t0, a boolean
function cond and function h. It initializes a variable t with
t0 and iteratively applies the function h on t while cond(t)
is true. In the workflow in Fig. 2, the map actor takes a
λ-subworkflow f and a sequence of parameters S. The λ-
subworkflow f , composed of two actors (Plant Traits and
PlantArchitecture), takes a parameter set that corresponds
to one plant trait (e.g., leaf growth dynamic) and generates
an object that represents a fully parameterised individual
plant model to be simulated. The sequence S is produced
by the actor internal variability, and represents the intra-
genotype (inter-individual) variability of the trait. During
the execution, the map actor produces a sequence of individ-
ual plant models. The reduce operator concatenates this
sequence of plants into one graph corresponding to the crop
canopy. Finally, the while operator simulates the develop-
ment of the crop by iterating a growth function, that takes
into account environmental data (meteo01.csv), the state
and the specific parameters of each plant and the light in-
tercepted by each 3D organs. The later is computed from
the 3D geometry of the canopy. The simulation stops at the
flowering stage.
Last, this workflow is reused as a composite workflow (see



(a) (b)

Figure 3: OpenAlea (a) visual programming environment and (b) IPython notebook

Fig. 3.(a)) and run on a large set of genotypes to select the
most efficient plant variety in a given environment.

From workflow to executable paper. Execution of Ope-
nAlea workflows can be embedded into IPython notebooks
(Fig. 3(b)), able to produce executable papers, where users
can share, visualize and interact with input and output pro-
duced by each step of an in-silico experiment in a web-based
application.

5. CONCLUSION
Faced with the need of coupling data analysis with modeling
and simulation, OpenAlea provides a unique solution able
to extend the dataflow model of computation by introduc-
ing higher-order language constructs in a visual program-
ming environment. Introducing first-class functions allows
to design highly expressive workflows in a fully uniform way.
First-class functions are increasingly popular and have also
been introduced in several imperative languages like PHP,
VisualBasic, C# or C++. While OpenAlea is in used since
2007 (160,000 downloads, 1,200 unique visitors a month, 20
active developers) leading to several biological findings (e.g.,
[9]), this paper is the first to provide an overview of its ma-
jor capabilities and introduce the λ-dataflow concept. This
demonstration deals with the study of plant response to cli-
matic change illustrating the research challenges in areas of
high and increasing interest including big data analysis and
reproducible science.

Acknowledgements
Work done in the context of the Computational Biology In-
stitute (http://www.ibc-montpellier.fr)

6. REFERENCES
[1] S. Bowers, B. Ludascher, A. H. Ngu, and T. Critchlow.

Enabling scientific workflow reuse through structured
composition of dataflow and control-flow. In ICDE
Workshops, pages 70–70. IEEE, 2006.

[2] V. Curcin and M. Ghanem. Scientific workflow
systems-can one size fit all? In Proc. of Biomedical
Engineering Conference, pages 1–9, 2008.

[3] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludäscher,
T. M. McPhillips, S. Bowers, M. K. Anand, and

J. Freire. Provenance in scientific workflow systems.
IEEE Data Eng. Bull., 30(4):44–50, 2007.

[4] J. Dias, G. Guerra, F. Rochinha, A. L. Coutinho,
P. Valduriez, and M. Mattoso. Data-centric iteration
in dynamic workflows. Future Generation Computer
Systems, 2014.

[5] J. Dias, E. Ogasawara, D. De Oliveira, F. Porto,
P. Valduriez, and M. Mattoso. Algebraic dataflows for
big data analysis. In Proc. of IEEE Big Data, pages
150–155, 2013.

[6] E. Elmroth, F. Hernández, and J. Tordsson. Three
fundamental dimensions of scientific workflow
interoperability: Model of computation, language, and
execution environment. Future Generation Computer
Systems, 26(2):245–256, 2010.

[7] J. Freire, C. Silva, S. Callahan, E. Santos,
C. Scheidegger, and H. Vo. Managing rapidly-evolving
scientific workflows. Proc. of IPAW, pages 10–18, 2006.

[8] J. Goecks, A. Nekrutenko, and J. Taylor. Galaxy: a
comprehensive approach for supporting accessible,
reproducible, and transparent computational research
in the life sciences. Genome Biology, 11(8):R86, 2010.

[9] M. Lucas, K. Kenobi, D. Von Wangenheim, U. Voβ,
K. Swarup, I. De Smet, D. Van Damme, T. Lawrence,
B. Péret, E. Moscardi, et al. Lateral root
morphogenesis is dependent on the mechanical
properties of the overlaying tissues. Proc. of the Nat.
Academy of Sciences, 110(13):5229–5234, 2013.

[10] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan,
A. Nenadic, I. Dunlop, A. Williams, T. Oinn, and
C. Goble. Taverna, reloaded. In M. Gertz, T. Hey, and
B. Ludaescher, editors, Proc. of SSDBM, Heidelberg,
Germany, 2010.

[11] B. Parent and F. Tardieu. Can current crop models be
used in the phenotyping era for predicting the genetic
variability of yield of plants subjected to drought or
high temperature? J. of Experimental Botany,
65(11):6179–6189, 2014.

[12] C. Pradal, S. Dufour-Kowalski, F. Boudon,
C. Fournier, and C. Godin. Openalea: a visual
programming and component-based software platform
for plant modelling. Functional plant biology,
35(10):751–760, 2008.

[13] G. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig.



Ten simple rules for reproducible computational
research. PLoS comp. biology, 9(10):e1003285, 2013.

[14] H. Shen. Interactive notebooks: Sharing the code.
Nature, 515(7525):151–152, 2014.


