Our original time series $: T s=\langle 1,2,3,1,2,3\rangle$
We use a basic window size 2 and a sliding windows size 6
We build 2 basic random vectors of size 2 :

$$
\mathrm{R} 1=\langle 1,-1\rangle, \mathrm{R} 2=\langle 1,1\rangle
$$

We build 2 random vectors RV1 and RV2 of size 6 using basic random vectors R1 or -R1 (to build RV1) and R2 or -R2 (to build RV2) . This choice is determined by a random vector b :
if bi = 1 we use R1 and if bi $=-1$ we use $-R 1$.
We set $b=\langle 1,-1,-1\rangle$

$$
\begin{aligned}
& \text { We obtain the following } \\
& \text { Sketch TS*(RV1,RV2): } \\
& \qquad \text { <(-1+-2+1), }(3+-4+-5)> \\
& <--2,-6
\end{aligned}
$$

We add two incoming values : < 3,2>
We remove the two first values in the series : <1,2>
And The series becomes : < 3,1,2,3,3,2>

time series	1	2	3	1	2	3	3	2
RV1			1	-1	-1	1	-1	1
RV2			1	1	-1	-1	-1	-1

New values in the time series

We update the current sketch by deleting the first dot product of the two outdated values Current sketch : < (-1 $+2+2+1),(3 *-4+-5)\rangle$

We add two incoming values : < 3,2>
We remove the two first values in the series : <1,2>
And The series becomes : < 3,1,2,3,3,2>

time series	1	2	3	1	2	3	3	2
RV1			1	-1	-1	1	-1	1
RV2			1	1	-1	-1	-1	-1

New values in the time series

We update the current sketch by deleting the first dot product of the two outdated values Current sketch : < (-i $+2+2+1$), (3*-4+-5) >

Then, the values are shifted and multiplied by 1 or -1 according to "b". Here "-2" becomes " 2 " because it moves from a position having value -1 to a position having value 1 in "b".

New sketch : <(2+1+?),(4+-5+?)>
Reminder $b=\langle 1,-1,-1\rangle$

We add two incoming values : < 3,2>
We remove the two first values in the series : <1,2>
And The series becomes : < 3,1,2,3,3,2>

time series	1	2	3	1	2	3	3	2
RV1			1	-1	-1	1	-1	1
RV2			1	1	-1	-1	-1	-1

New values in the time series

We update the current sketch by deleting the first dot product of the two outdated values Current sketch : < (-i + + $-2+1$), (3*-4+-5) >
And we add the values of the dot product restricted to the two incoming values.
$\begin{aligned} & \text { New sketch : }\langle(2+1+-1),(4+-5+-5)\rangle \\ &\langle 2,\end{aligned}$

And again, we add two incoming values : < 1,3>
We remove two values in the series : <3,1> The series becomes : < $2,3,3,2,1,3\rangle$

time series	3	1	2	3	3	2	3	1		
RV1			1	-1	-1	1	-1	1		
RV2			1	1	-1	-1	-1	-1	\quad	New values in
:---										
the time series										

We update the current sketch by deleting the dot product of the two outdated values
Current sketch : < $2+1+-1$), ($4(-5+-5)\rangle$
And we add the values of the dot product restricted to the two incoming values.
$\begin{aligned} & \text { New sketch : }\langle(-1+-1+-2),(5+-5+-4)\rangle \\ &<-4,-4>\end{aligned}$
We repeat the same process every timesteps...

