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Audio Collections

• Large audio/video collections exist on the Internet

• Many containing music and/or speech

• How can search engines effectively index this content?
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Motivation

• Metadata, e.g., obamaspeech.mov is insufficient

• We want to enable searching the content

• To accomplish that, transcribe with text-like units

• Issues: data is highly variable, transcription is difficult

• Primary challenge: uncertainty due to e.g., imperfect

• Statistical models in speech recognizer

• Music transcription in terms of notes or sounds
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Main Results
1. Music identification: content-based search for songs

2. Automata: bounds and algorithms for efficient search

3. Topic segmentation: topicality of speech streams

4



Music ID Overview

• Music ID scenario: match a few seconds of possibly 
corrupted or noisy audio to large song database

• Most previous work uses hashing, e.g., [Haitsma et al. ’01]

• For a database of 15K+ songs (1,000+ hours of audio), we

• Automatically learn music phoneme set and a unique 
phoneme sequence for each song

• Generate compact mapping from phoneme sequences 
to songs using weighted finite-state transducers

• Identify songs using Viterbi decoding

5



Full Song Recognition

• Want transducer mapping complete music phone 
sequences to corresponding songs (no snippets for now)

• Idea: one state chain per song

• Transition to final state has song identifier as output 
label (all other output labels are ε’s)

• Using generic automata operations, we construct a 
deterministic minimal transducer for efficient search
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Weighted Factor Acceptor

• Use numerical song id’s as weights on transitions

• Add epsilon transitions, make every state final

• Optimize while preserving total path weight [Mohri ’97]
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Main Results
1. Music identification: content-based search for songs

2. Automata: bounds and algorithms for efficient search

3. Topic segmentation: topicality of speech streams
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• We give new size bounds for the smallest deterministic 
automaton accepting the factors of a set of strings    

• Or of an automaton    accepting 

• We also give new efficient algorithms for the 
construction of suffix and factor automata

Automata Overview

• Factor automata enable efficient indexing and search, even 
when inputs are uncertain

• Music ID: 15,000 songs, 1,700 average phones per song

• # possible factors = 15,000 × 1,7002 ≈ 43 × 109
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Suffix & Factor Automata

• We start out with an automaton    recognizing strings in 

• Let        and        be the deterministic minimal automata 
recognizing the suffixes and factors of   , respectively

• To construct        make each state of    initial (by adding 
epsilons), determinize, minimize

• To construct        make each state of        final, minimize

• Consequence:

A U

S(A) F (A)

S(A) A

F (A) S(A)

|F (A)| ≤ |S(A)|

0 1
a

2
c

3
a

4

b
5

b

a
0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

aε
εε

ε

ε

A

10



Size Results

• Automaton   is  -suffix-unique if no two strings accepted 
by   share the same  -length suffix. Suffix-unique if

• Theorem: If   is suffix-unique, deterministic and minimal 
then its suffix and factor automata are bounded in size as

• Strong improvement vs. [Blumer et al. ’87]:

• When   is  -suffix-unique, deterministic and minimal, and 
accepts   strings and      is the part of    after removing all 
suffixes of length

A

kA

k = 1kA

A k

n Ak A

k

|F (U)|Q ≤ 2||U || − 3

Proposition 3. Let A be a k-suffix-unique deterministic automaton accepting
strings of length more than three and let n be the number of strings accepted by A.
Then, the following bound holds for the number of states of the suffix automaton
of A:

|S(A)|Q ≤ 2|Ak|Q + 2kn− 3, (9)
where Ak is the part of the automaton of A obtained by removing the states and
transitions of all suffixes of length k.

Proof. Let A be a k-suffix-unique deterministic automaton accepting strings of
length more than three and let the alphabet Σ be augmented with n temporary
symbols $1, . . . , $n. By marking each string accepted by A with a distinct symbol
$i, we can turn A into a suffix-unique deterministic automaton A′.

To do that, we first unfold all k-length suffixes of A. In the worst case, all
these (distinct) suffixes were sharing the same (k−1)-length suffix. Unfolding can
thus increase the number of states of A by as many as kn−n states in the worst
case. Marking the end of each suffix with a distinct $-sign further increases the
size by n. The resulting automaton A′ is deterministic and |A′|Q ≤ |Ak|Q + kn.
By Proposition 2, the size of the suffix automaton of A′ is bounded as follows:
|S(A′)| ≤ 2|A′| − 3. Since transitions labeled with a $-sign can only appear
at the end of successful paths in S(A′), we can remove these transitions and
make their origin state final, and minimize the resulting automaton to derive a
deterministic automaton A′′ accepting the set of suffixes of A. The statement of
the proposition follows the fact that |A′′| ≤ |S(A′)|. #$

Since the size of F (A) is always less than or equal to that of S(A), we obtain
directly the following result.

Corollary 3. Let A be a k-suffix-unique automaton accepting strings of length
more than three. Then, the following bound holds for the factor automaton of A:

|F (A)|Q ≤ 2|Ak|Q + 2kn− 3. (10)

The bound given by the corollary is not tight for relatively small values of k in
the sense that in practice, the size of the factor automaton does not depend on
kn, the sum of the lengths of suffixes of length k, but rather on the number of
states of A used for their representation, which for a minimal automaton can
be substantially less. However, for large k, e.g., when all strings are of the same
length and k is as long as the length of the strings accepted by A, our bound
coincides with that of [2].

Similar results can be obtained for the number of transitions of the suffix
automaton or factor automaton of a suffix-unique automaton (|S(A)|E ≤ 3|A|E−
4) and k-suffix-unique automaton (|S(A)|E ≤ 3|Ak|E + 3kn− 3k − 1), as in the
string case.

4 Factor Automata for Music Identification

We have verified the above insights into factor automata in the context of a music
identification system [9]. Music identification is the task of matching an audio

Proposition 3. Let A be a k-suffix-unique deterministic automaton accepting
strings of length more than three and let n be the number of strings accepted by A.
Then, the following bound holds for the number of states of the suffix automaton
of A:

|S(A)|Q ≤ 2|Ak|Q + 2kn− 3, (9)
where Ak is the part of the automaton of A obtained by removing the states and
transitions of all suffixes of length k.

Proof. Let A be a k-suffix-unique deterministic automaton accepting strings of
length more than three and let the alphabet Σ be augmented with n temporary
symbols $1, . . . , $n. By marking each string accepted by A with a distinct symbol
$i, we can turn A into a suffix-unique deterministic automaton A′.

To do that, we first unfold all k-length suffixes of A. In the worst case, all
these (distinct) suffixes were sharing the same (k−1)-length suffix. Unfolding can
thus increase the number of states of A by as many as kn−n states in the worst
case. Marking the end of each suffix with a distinct $-sign further increases the
size by n. The resulting automaton A′ is deterministic and |A′|Q ≤ |Ak|Q + kn.
By Proposition 2, the size of the suffix automaton of A′ is bounded as follows:
|S(A′)| ≤ 2|A′| − 3. Since transitions labeled with a $-sign can only appear
at the end of successful paths in S(A′), we can remove these transitions and
make their origin state final, and minimize the resulting automaton to derive a
deterministic automaton A′′ accepting the set of suffixes of A. The statement of
the proposition follows the fact that |A′′| ≤ |S(A′)|. #$

Since the size of F (A) is always less than or equal to that of S(A), we obtain
directly the following result.

Corollary 3. Let A be a k-suffix-unique automaton accepting strings of length
more than three. Then, the following bound holds for the factor automaton of A:

|F (A)|Q ≤ 2|Ak|Q + 2kn− 3. (10)

The bound given by the corollary is not tight for relatively small values of k in
the sense that in practice, the size of the factor automaton does not depend on
kn, the sum of the lengths of suffixes of length k, but rather on the number of
states of A used for their representation, which for a minimal automaton can
be substantially less. However, for large k, e.g., when all strings are of the same
length and k is as long as the length of the strings accepted by A, our bound
coincides with that of [2].

Similar results can be obtained for the number of transitions of the suffix
automaton or factor automaton of a suffix-unique automaton (|S(A)|E ≤ 3|A|E−
4) and k-suffix-unique automaton (|S(A)|E ≤ 3|Ak|E + 3kn− 3k − 1), as in the
string case.

4 Factor Automata for Music Identification

We have verified the above insights into factor automata in the context of a music
identification system [9]. Music identification is the task of matching an audio

[CIAA ’07, TCS ’09]
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Suffix Algorithm

• New bound shows that size of suffix or factor automaton 
is linear in size of the input automaton

• But constructing this automaton requires the use of 
generic weighted determinization and minimization

• We have a new linear-time algorithm specifically to 
construct the suffix automaton directly

• Can be converted into factor automaton in linear time

• Builds output automaton on the fly as input is traversed

[TCS ’09, TASLP ’09]
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Suffix Algorithm Example

• Original (input) automaton

• Resulting suffix automaton

• Traversed: 
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Algorithm Properties

• Complexity of suffix automaton construction algorithm is 
linear:

• Substantial improvement over previous suffix and 
factor automaton algorithms (determinization-based)

• For music ID task: 17x faster than previous

• Input automaton can be traversed in any order, and can 
operate in an online fashion

• Operates on suffix-unique input automata; non-suffix 
unique automata can be encoded by adding final symbol      
to each input string     of

O(|S(A)|) = O(|A|)

$i

xi A
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Main Results
1. Music identification: content-based search for songs

2. Automata: bounds and algorithms for efficient search

3. Topic segmentation: topicality of speech streams
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Topic Segmentation

• ...this protest has brought out thousands of serbs calling 
for the end of the milosevic regime. opposition leaders 
are confident milosevic’s days in power are numbered. on 
capitol hill tonight the senate approved 600,000 visas for 
skilled high technology workers...

• Question: can we segment spoken language by topic even 
with imperfect transcriptions?

• We give a novel topic segmentation quality measure

• We also develop new discriminative algorithms for topic 
segmentation of speech and text
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Topic Segmentation

• Previous work: many papers threshold the cosine distance

• Vocabulary                             , counts

• Cosine distance is effective [Hearst ’94] but compares 
only counts of a given word

• e.g., if one text mentions only  “football” and another 
mentions only “sports”, according to cosine distance 
they are not similar
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competing speech recognition hypotheses, rather then only the one-best, into the topic segmentation
algorithm can result in an improvement in segmentation quality.

1.1 Previous Work

Topic models or topic labeling algorithms assign a topic label sequence to a stream of text or speech.
Since a topic assignment to a stream of text or speech also implies a topic-wise segmentation of the
stream, these algorithms are also topic segmentation algorithms. Much of the recent work on topic
analysis has been focused on generative models, in which a text sequence is explained by a latent
sequence of topic labels. Let V = {w1, w2, . . . , wn} be the vocabulary of n words. Then an
observation a is an observed set of text or speech expressed through the empirical frequency (or
expected count) Ca(wi). for each wi ∈ V . A simple generative formulation of a topic model is

z = arg max
z

Pr(z|a) = arg max
z

Pr(a|z) Pr(z), (1)

where z is the topic label assigned. Under such topic models, the observation sequence is labeled
by decoding the maximum a posteriori sequence of topics accounting for the observations. In these
models, a is treated as a “bag of words,” meaning the order of the words in the text or speech stream
underlying a is generally not considered. In practice, a can correspond to a sentence, a window over
a text, an utterance, or a single word. In Latent Dirichlet Allocation (LDA) [4], the formulation of
equation 1 is used, but the distributions Pr(a|z) and Pr(z) are modeled as multinomial distributions
with Dirichlet priors. Hidden Topic Markov Models (HTMMs) [3] use an HMM structure where
each state corresponds to a topic z and an underlying topic model (such as LDA or n-gram), as in
[5, 6].

Generative topic analysis algorithms such as LDA and HTMM attempt to model the distribution of
words in a particular topic, the distribution of topic-to-topic transitions, and/or the global distribu-
tion of topic labels. Certainly if one can accurately model the distribution of the underlying topic
sequence, one can also easily solve the problem of topic segmentation or any other related problem.
However, our goal in this work is simpler – to arrive at the best topic-wise segmentation of a stream
of text or speech and, we endeavor to create an algorithm specifically designed for this problem. A
number of efforts have been made to create algorithms specifically for the segmentation task. In
TextTiling [7], word counts are computed for a sliding window over the input text. Text similar-
ity is then evaluated between pairs of adjacent windows according to a cosine similarity measure,Pn

i=1 C1(wi)C2(wi)√Pn
i=1 C1(wi)2

Pn
i=1 C2(wi)2

. The segmentation is obtained by thresholding this similarity function.

In this approach, words that are naturally more prevalent in the corpus effectively receive a higher
weight in the cosine score. One popular way to bypass this limitation is by using the term frequency–
inverse document frequency (tf–idf) [8] to weight each word’s contribution to the similarity score.
However, even with tf–idf weighting, considering words in isolation for topic segmentation results
in a natural impairment of the algorithms created. Word pair similarity can be used to move beyond
this limitation [9]. It is also possible to view the topic segmentation task as a binary classification
problem at every possible segment boundary, with maximum entropy models a popular classifier
choice [10, 11].

2 Measuring Topical Similarity

Let the input to a segmentation algorithm be a sequence of observations T = (x1, . . . , xm). We
refer to the correct segmentation provided by human judges of topicality or some other oracle as
the reference, and that provided by a topic segmentation algorithm to be evaluated as the hypoth-
esis. The most popular topic segmentation quality measure used in past work is known as the
Co-occurrence Agreement Probability, or CoAP. CoAP [10] is broadly defined as PD(ref, hyp) =∑

1≤i≤j≤m D(i, j) (δref(i, j)⊕δhyp(i, j)), where D(i, j) is a distance probability distribution over
observations i, j; δref(i, j) and δhyp(i, j) are indicator functions that are one if observations i and
j are in the same topic in the reference and hypothesis segmentations, respectively; and ⊕ is the
exclusive NOR operation (“both or neither”). In practice, the choice of D is almost always the dis-
tribution with its mass placed entirely on one distance k. CoAP scoring is then reduced to a single
fixed-size sliding window over the observations. CoAP is marked with several limitations, such as

2
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Similarity Measure

• Similarity for words: co-occurrence in a large corpus 

• Two segments      :

• Normalize:

• Well behaved: range [0,1] and 

a, b
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T

that it functions purely by analyzing the segmentation of the observations into topic-coherent chunks
without taking into account the content of the chunks labeled as topic-coherent, that it depends on
the choice of window size k and that it implicitly requires that the reference and the hypothesis
segmentations are obtained by placing boundaries in the same stream of text.

To develop an improved topic segmentation quality measure and novel segmentation algorithms, we
seek a general similarity function between segments of text and speech. One rudimentary similarity
function is the cosine distance. However, this is based on evaluating the divergence in empirical
frequency for a given word between the two segments. For example, if the first segment being
considered has many occurrences of “sport”, then a segment making no mention of “sport” but
mentioning “baseball” frequently would be assigned the same similarity score as a segment not
mentioning anything relevant to sports at all. To develop a more robust approach, let x, y ∈ V
be two words. If T is a training corpus, then let CT (x, y), CT (x), and CT (y) be the empirical
probabilities of x and y appearing together, and that of x and y appearing, in T , respectively. A
similarity measure between words is sim(x, y) = CT (x,y)

CT (x)CT (y) , which is just the pointwise mutual

information (PMI) [12] without the logarithm.

We will evaluate the total similarity of a pair of observations a and b as K(a, b) =
∑

w1∈a,w2∈b Ca(w1) Cb(w2) sim(w1, w2). Let A and B be the column vectors of empirical word

frequencies such that Ai = Ca(wi) and Bi = Cb(wi) for i = 1, . . . , n. Let K be the matrix
such that Ki,j = sim(wi, wj). The similarity score can then be written as a matrix operation,
K(a, b) = A"KB. We normalize to ensure that the score is in the range [0, 1] and that for any
input, the self-similarity is 1,

Knorm(a, b) =
A"KB

√

(A"KA)(B"KB)
. (2)

Proposition 1. Knorm is a positive-definite symmetric (PDS) kernel.

Proof. In the following, the empirical frequencies and expectations are computed as before over
a training corpus T . For notational simplicity we omit the subscript T . Let 1wi

be the indicator
function of the event “wi occurred.” Then

Kij =
C(wi, wj)

C(wi)C(wj)
=

E[1wi
1wj

]

E[1wi
]E[1wj

]
= E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

. (3)

Clearly K is symmetric. Recall that for two random variables X and Y , we have Cov(X, Y ) =
E[XY ] − E[X ]E[Y ] and observe that for all i,E [1wi

/E[1wi
]] = 1. Thus we have

Cov

(

1wi

E[1wi
]
,

1wj

E[1wj
]

)

= E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

− 1 (4)

Next, recall that any covariance matrix is positive semidefinite. Applying this fact to the covariance
matrix of equation 4, we get

m
∑

i,j=1

cicj E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

−
m

∑

i,j=1

cicj ≥ 0. (5)

Now, let 1 and C denote column vectors of sizem such that 1i = 1 and Ci = ci for i = 1, . . . , m.
Then,

m
∑

i,j=1

cicj = Tr(CC"
11

") = Tr(C"
11

"C) = Tr((C"
1)2) ≥ 0. (6)

Combining equations 5 and 6, we get
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K(a, b) =
∑

w1∈a,w2∈b

Ca(w1)Cb(w2)sim(w1, w2)

Knorm(a, b) =
K(a, b)√

K(a, a)K(b, b)

Knorm(a, a) = 1



Quality Criterion: CoAP

• Move sliding window across text, measure fraction of 
agreements between reference and hypothesis

• Limitations

• Does not take word content into account

• Very dependent on window size

• Incompletely defined for speech case
19

[Beeferman et al., ’99]
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New Quality Criterion

•                       and                        are reference and 
hypothesis segments, respectively

• New quality measure:

•          : indicator, one if reference segment   overlaps with 
hypothesis segment

• Spurious and missing segmentations penalized (a la CoAP)

• Word content of overlapping segments included in score

• Can use similarity scores other than

R = (r1, . . . , rk)

Q(i, j) i
j

This is a long long long utterance. This is a long utterance. This is a long utterance. This is a long long long utterance. Utterance. This is a long long utterance.

This is a long long utterance. This is a long long utterance.This is a long utterance. Utterance. Utterance. Utterance.Utterance.

Knorm
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m
∑

i,j=1

cicj E

[

1wi

E[1wi
]

1wj

E[1wj
]

]

≥
m

∑

i,j=1

cicj ≥ 0. (7)

This shows that theK is positive semidefinite. IfK(a, b) = A!KB, whereA is a column vector of

counts, A = (Ca(w1), . . . , Ca(wN ))!, and similarly with B, thenK(a, b) =< K1/2A,K1/2B >.
HenceK is a PDS kernel. Normalization preserves PDS, soKnorm is also a PDS kernel. !

This property of Knorm enables us to map word observations into a similarity feature space for the
support vector based topic segmentation algorithm we will present in Section 3.1. However, we first
use this general measure of similarity for text to create a topic segmentation quality measure that
we call the Topic Closeness Measure (TCM). TCM overcomes the limitations of CoAP discussed
above, and as we shall see in Section 5, correlates strongly with CoAP in empirical trials.

Let k and l be the number of segments in the reference and hypothesis segmentation, respectively.
Additionally, let r1, . . . , rk and h1, . . . , hl be the segments in the reference and hypothesis segmen-
tation, respectively. Q(i, j) quantifies the overlap between the two segments i, j. In this work,
Q(i, j) is the indicator variable that is one when reference segment i overlaps with hypothesis seg-
ment j, and zero otherwise. However, various other functions can be used forQ, such as the duration
of the overlap or the number of overlapping sentences or utterances. Similarly, other similarity scor-
ing functions can be incorporated in place ofKnorm. The topic closeness measure (TCM) between
the reference segmentationR and the hypothesis segmentationH is defined as

TCM(R, H) =

∑k
i=1

∑l
j=1 Q(i, j)Knorm (ri, hj)

∑k
i=1

∑l
j=1 Q(i, j)

. (8)

3 New Topic Segmentation Algorithms

Let the input be a sequence of observations T = (x1, . . . , xm). Then a topic segmentation algorithm
must decide the set b of topic boundaries in T , that is the set of indices i such that xi and xi+1 belong
to different topics. For i ∈ {δ, . . . , m}, we will refer to awindow of observations of size δ ending at i
as the setwi = {xi−δ+1, . . . , xi}. The windowing of a stream of observations is illustrated in Figure
1(a). Let si = s(wi, wi+δ) be either a similarity score or a distance between wi and wi+δ . If si is
a similarity score, we can hypothesize a segment boundary where the similarity signal dips below a
global threshold to define the boundary set b = {i : si < θ}. Because the range of the similarity
score on either side of a true boundary might vary, a more robust segmentation algorithm is to look
for local extrema in the similarity signal. This is accomplished by passing a window of size δ over
s and hypothesizing boundaries where minima or maxima occur in s, depending on whether s is a
similarity or distance score. Let si = Knorm(wi, wi+δ). Further, let the functions rmax(s, i, j) and
rmin(s, i, j) denote the minimum and maximum, respectively, in s in the index range [i, j]. Then we
obtain a segmentation algorithm by detecting local minima in s, and applying the absolute threshold

!!!!!!

(a) (b)

Figure 1: (a) An illustration of windowing a stream of observations. Each square represents an
observation, and the rectangle represents the current position of the window. To advance the window
one position, the window is updated to add the observationmarkedwith+ and to remove that marked
with −. (b) An illustration of two sets of observations being compared in feature space based on
their sphere descriptors. The dashed line indicates the shortest distance between the two spheres.

4
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Segmentation Algorithm

• A generic algorithm: window word counts, evaluate 
similarity, topic boundaries where similarity is small

•                                    : window of size 

• Our algorithm: use new similarity measure 

• Let                              , boundary set

• For robustness, look for local minima,

...

m∑

i,j=1

cicj E
[

1wi

E[1wi ]
1wj

E[1wj ]

]
≥

m∑

i,j=1

cicj ≥ 0. (7)

This shows that the matrix K is positive semi-definite. Now, if K(a, b) = A!KB, where A denotes
the column vector of the counts for the wi’s, A = (Ca(w1), . . . , Ca(wN ))!, and similarly with CB ,
then K(a, b) =< K1/2A,K1/2B >. Hence K is a PDS kernel. Normalization preserves PDS, so
Knorm is also a PDS kernel. !

This property of Knorm enables us to map word observations into a similarity feature space for the
support vector based topic segmentation algorithm we will present in Section 3.1. However, we first
use this general measure of similarity for text to create a topic segmentation quality measure that
we call the Topic Closeness Measure (TCM). TCM overcomes the limitations of CoAP discussed
above, and as we shall see in Section 5, correlates strongly with CoAP in empirical trials.

Let k and l be the number of segments in the reference and hypothesis segmentation, respectively.
Additionally, let r1, . . . , rk and h1, . . . , hl be the segments in the reference and hypothesis segmen-
tation, respectively. Q(i, j) quantifies the overlap between the two segments i, j. In this work,
Q(i, j) is the indicator variable that is one when reference segment i overlaps with hypothesis seg-
ment j, and zero otherwise. However, various other functions can be used for Q, such as the duration
of the overlap or the number of overlapping sentences or utterances. The topic closeness measure
(TCM) between the reference segmentation R and the hypothesis segmentation H is defined as

TCM(R, H) =
1
kl

k∑

i=1

l∑

j=1

Q(i, j)Knorm (ri, hj) . (8)

3 New Topic Segmentation Algorithms

Let the input be a sequence of observations T = (x1, . . . , xm). Then a topic segmentation algorithm
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belong to different topics. For i ∈ {δ, . . . ,m}, we will refer to a window of observations of size
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4

δ

b = {i : si < θ ∧ si = rmin(s, i− #δ/2$, i + #δ/2$)}

b = {i : si < θ}si = Knorm(wi, wi+δ)

rmin(s, i, j) = min(si, . . . , sj)

Knorm
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Ground Truth Comparison

• Plot of                       , blue lines: reference boundaries
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A Problem

• Consider the following text (human transcript):

• A powerful explosion tore through a cafe frequented by Russian soldiers, south of 
Chechnya’s capital Grozny, Sunday, killing at least eight people, including the owner of 
the cafe and four Russian soldiers. Russia’s Interfax News Agency quotes security 
sources as saying Chechen rebels have claimed responsibility for the attack. That’s our 
news summary till now. I’m David Coller, VOA News. 

• Or this one (speech recognition):

• the program one five emmys and carson was awarded the presidential medal of 
freedom and all the signed a law in nineteen ninety two more than fifteen million 
viewers tuned in to watch and say goodbye issue very hard.

• Substantial off-topic content (i.e., noise)

• This affects our similarity score: need to filter out noise
23



Removing Outliers/Noise

• Given a set of observations                        and mapping 
into feature space                , find compact description

• Sphere in feature space separates the bulk of the 
observations from the outliers

• Kernelized version:                               , dual problem
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space, a problem that is equivalent to the spheres problem for many kernels, including the one used
in this work. This problem is often referred to as one-class classification, and because the problem
formulation resembles that of support vector machines (SVM) [15, 16], often as the one-class SVM.

More formally, given a set of observations x1, . . . , xm ∈ X , our task is to find a ball or sphere
that, by enclosing the observations in feature space, represents a compact description of the data.
We assume the existence of mapping of data observations into a feature space, Φ : X "→ F . This
results in the existence of a kernel operating on a pair of observations, K(x, y) = Φ(x) · Φ(y). A
sphere in feature space is then parametrized by a center c ∈ F and radius R ∈ R. We allow each
observation xi to lie outside the sphere by a distance ξi, at the cost of incurring a penalty in the
objective function. The optimization problem written in the form of [14] is

min
R∈R,ξ∈Rm,c∈F

R2 + 1
νm

∑
i ξi

subject to ‖Φ(xi)− c‖2 ≤ R2 + ξi, ξi ≥ 0 for i ∈ [1,m]. (9)

The objective function attempts to keep the size of the sphere small, while reducing the total amount
by which outlier observations violate the sphere constraint. The parameter ν controls the tradeoff
between these two goals. Using standard optimization techniques, we can write the Lagrangian of
this optimization problem using Lagrangian variables αi ≥ 0, i ∈ [0,m]. Solving for c, we obtain
c =

∑
i αiΦ(xi). Substituting this back into the primal problem of equation 9, we obtain the dual

problem. As in that of SVMs, in the dual problem, the kernel k takes the place of dot products
between training observations. The dual problem is

min
α

∑m
i,j=1 αiαjK(xi, xj)−

∑m
i=1 αiK(xi, xi)

subject to 0 ≤ αi ≤ 1
νm ,

∑m
i=1 αi = 1. (10)

By substitution into the equation of a sphere in feature space, the classifier then takes the form

f(x) = sgn



R2 −
m∑

i,j=1

αiαjK(xi, xj) + 2
m∑

i=1

αiK(xi, x)−K(x, x)



 (11)

The resulting data description is a combination of the support observations {xi : αi (= 0}. The radius
can be recovered by finding the value that yields f(xSV ) = 0, where xsv is any support observation.
We note that for any kernel k such that K(x, x) is a constant, the sphere problem described above has
the same solution as the separation from the origin problem known as the one-class SVM [14]. We
have Knorm(x, x) = 1, thus the condition for equivalence is met and thus our geometric description
can be viewed as an instance of either problem.

The sphere data description yields a natural geometric formulation for comparing two sets of obser-
vation streams. To accomplish this, we can calculate the geometric shortest distance in feature space
between the two spheres representing them. This comparison is illustrated in Figure 1. Assume that
we are comparing two windows of observations w1 and w2. Let x1,1, . . . , xm1,1 and x1,2, . . . , xm2,2

be the word frequency counts, and let α1,1, . . . ,αm1,1 and α1,2, . . . , αm2,2 be the dual coefficients
resulting from solving the optimization problem of equation 10, for w1 and w2, respectively. The
resulting support vector descriptions are represented by spheres (c1, R1) and (c2, R2). Then, the
distance between the centers of the spheres is the Euclidean distance in the feature space. Since the
mapping Φ(·) is implicitly expressed through the kernel K(·, ·), the distance is also computed by
using the kernel, as

‖c1−c2‖2 =
m1∑

i,j=1

αi,1αj,1K(xi,1, xj,1)+
m2∑

i,j=1

αi,2αj,2K(xi,2, xj,2)−2
m1∑

i=1

m2∑

j=1

αi,1αj,2K(xi,1, xj,2).

(12)
The shortest distance between the spheres is simply obtained by subtracting the radii to obtain
dist(w1, w2) = ‖c1 − c2‖ − (R1 + R2). Note that it is possible for the sphere descriptors to
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Comparing Descriptors

• Solution to optimization: center

• Radius is recovered from classifier form

• To compare the “true” content (i.e., that excluding 
outliers) of two windows, we compare their descriptors

• Using the kernel, find shortest distance in feature space
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We note that for any kernel k such that K(x, x) is a constant, the sphere problem described above has
the same solution as the separation from the origin problem known as the one-class SVM [14]. We
have Knorm(x, x) = 1, thus the condition for equivalence is met and thus our geometric description
can be viewed as an instance of either problem.

The sphere data description yields a natural geometric formulation for comparing two sets of obser-
vation streams. To accomplish this, we can calculate the geometric shortest distance in feature space
between the two spheres representing them. This comparison is illustrated in Figure 1. Assume that
we are comparing two windows of observations w1 and w2. Let x1,1, . . . , xm1,1 and x1,2, . . . , xm2,2
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Lattices

• In a high error rate setting, the one-best recognition 
hypothesis is not informative enough

• Recognizer can output a lattice of competing hypotheses, 
each with an associated probability

• Can process to yield expected counts and confidence 
scores [Allauzen et al., ’03]
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Algorithms and Evaluation

• Sim algorithm:                              , find local minima

• SV algorithm:                          , find local maxima

• TDT: news speech (VOA, CNN, etc.) and text (NYT, etc.)

• Training set: 1,314 news streams with 21,420 stories

• Human transcriptions and text streams

• Development: 41 shows, 957 stories

• Testing: 69 shows, 1,674 stories
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si = Knorm(wi, wi+δ)

si = dist(wi, wi+δ)



Experiments

• Compare with hidden topic 
Markov model (HTMM) 
[Gruber et al. ’07]

• Generative context-
dependent topic model

• Noise is a problem for Sim

• SV is able to overcome 
noise and beat HTMM

• Lattice-derived information 
helps
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Input Type Algorithm Quality Measure

CoAP TCM

Text
HTMM 66.9% 72.6%

Sim 72.0% 75.0%

SV 76.6% 77.7%

One-best
HTMM 65.0% 61.5%

Sim 60.4% 62.8%

SV 68.6% 66.0%

Counts
HTMM 65.5% 62.4%

Sim 59.4% 63.4%

SV 68.5% 66.5%

Confidence
HTMM 68.3% 64.2%

Sim 59.7% 63.8%

SV 69.2% 66.8%
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