
ELMR: Efficient Lightweight Mobile Records

Arvind Kumar, Jay Chen, Michael Paik, Lakshminarayanan Subramanian
New York University

arvind.kumar@nyu.edu, jchen@cs.nyu.edu, mpaik@cs.nyu.edu, lakshmi@cs.nyu.edu

ABSTRACT

Mobile devices are increasingly being used as clients for a
wide suite of distributed database-centric healthcare applica-
tions. This is particularly true in developing regions where
the bulk of healthcare delivery is handled by community
health workers due to lack of doctors. The wide availability
of GSM cellular services and the ubiquity of cheap mobile
phones make these latter a promising platform for enabling
new healthcare applications in these settings. In this paper
we describe Efficient Lightweight Mobile Records (ELMR),
a system that provides a practical protocol for accessing and
updating database records remotely from low-end mobile
devices using the 140-byte SMS channel. Achieving this
objective is a challenging task due to stringent bandwidth
and message cost constraints. The design of ELMR em-
ploys a reduced query set, semantic compression, and a user-
centric intermittent database consistency model to reduce
bandwidth and per-packet costs. Additionally, ELMR in-
cludes an SMS reliability layer to cope with spotty wireless
service, and a lightweight privacy model to prevent identity
spoofing and theft of sensitive data.

1. INTRODUCTION

In rural regions around the world, especially under-
developed areas, it is often difficult to gain access to
basic healthcare. In these areas much of the burden of
healthcare delivery falls on community health workers
(CHWs) with limited skills and expertise. The massive
penetration of cellular services in such regions around
the world position mobile devices and applications to
revolutionize the way healthcare is delivered by provid-
ing a channel for these CHWs to gain on-demand access
to relevant data to improve quality of treatment. Most
countries in Africa have over 50% cellular coverage [2]
and a significant fraction of their rural population owns
or has access to a mobile phone.

Despite this promising trend, the usage of mobile
devices by rural populations has been extremely con-
strained due to low purchasing power and extremely
high usage costs. In a recent survey of AIDS patients
in rural Ghana citesmarttrack, we found that while 30-
40% of the rural population owned a mobile phone,

nearly 30% of the users made less than one call a week
and more than 80% of the users made less than one call
a day [5] From the service provider’s perspective, ex-
isting usage rates need to be maintained to break even
in these markets especially given low user densities in
rural areas. In addition, we found that most users use
low-end mobile devices and are unfamiliar with smart-
phones.

Several recent research and developmental efforts
around the world such as OpenRosa [4], OpenMRS [3],
and Voxiva [6] have explored the use of mobile phones
as a low-cost computing platform for distributed health-
care applications. However, these existing systems are
not scalable and sustainable in developing contexts for
a variety of reasons. First, the software implemen-
tation itself is typically too heavyweight for low-end
mobile phones, calling for the additional expense of
smartphones. In addition these systems rely on SQL
database implementations on standard TCP/IP net-
working stacks. These in turn depend on GPRS net-
work connectivity which is feasible only in urban set-
tings; in most rural settings only voice and Short Mes-
saging Service (SMS) capabilities (140 byte packets) are
available.

On the opposite end of the spectrum are lightweight
applications designed with high access (and therefore
only SMS) in mind such as FrontlineSMS [1]. In these
systems only SMS messages are used, so very little in-
frastructure is required and low-end mobile phones are
adequate. The main drawback of these systems is that
forms and structured data are not designed as a part of
the messaging system. The result is feature-poor sys-
tems using ad-hoc messages and responses that do not
utilize the limited bandwidth efficiently.

To address these limitations, we designed and imple-
mented Efficient Lightweight Mobile Records (ELMR),
a generic record system that is both feature-rich and
cost effective. ELMR runs on low-end mobile phones
and across the extremely bandwidth-constrained SMS
channel enabling health workers and patients in rural
areas to fetch and update their patient records and doc-
tors to remotely track their patients’ health. ELMR em-

1

ploys a client-server architecture, where a mobile client
provides an interface to a stationary physical database.
An append-only database model suited to data collec-
tion is applied, and the rare cases of data inconsis-
tency are handled by the server administrator and users.
ELMR also provides a lightweight reliability protocol
to handle SMS message losses and a simple authentica-
tion mechanism for privacy. Finally, ELMR employs a
suite of optimizations including semantic compression,
cached updates, and message aggregation to make max-
imum use of limited bandwidth.

2. MOTIVATION

In this section, we describe the typical usage scenario
of mobile devices for healthcare in rural developing re-
gions and the corresponding shortcomings of existing
mobile solutions in these contexts.

2.1 Typical Usage Scenarios

For the past three years, we have been directly work-
ing with several large hospitals and AIDS care centers
in India, Ghana and South Africa, each of which serves
over a million patients per year. Our application sce-
nario is motivated by the healthcare delivery setting in
these regions. There are three types of agent in these
contexts: CHWs, patients and doctors. Patients reside
primarily in rural areas, and 30-75% of rural patients
possess cell phones [5]. CHWs and doctors may ei-
ther be stationed in specific locations or conduct mobile
health camps across different rural areas on a periodic
basis.

The typical usage scenario we envision consists of
a doctor or CHW diagnosing a patient in a mobile
camp or primary health care center (PHCC), using a
mobile phone to fetch and update the patient’s medi-
cal records.In most rural areas, GPRS connectivity is
scarce and most health workers use low-end cell phones
which have basic Java capacity. Therefore, communica-
tion on mobile phones should either be voice-based or
SMS-based, of which we choose the latter as the former
requires speech recognition tools or call centers, which
represent increased hardware and software requirements
or human capital cost, respectively. We describe three
usage scenarios that occur on the field:

Scenario 1: A CHW conducts a mobile camp in a vil-
lage where the health worker measures the CD4 count1

of each patient and updates his health record. The
CHW or a remote doctor may be able to fetch the CD4
history of a patient to track the progress of the HIV
infection.

Scenario 2: Patients can use mobile phones to re-
port their medication consumption along with any side-
1CD4 count represents the level of T-helper cells in the
bloodstream and is used along with viral load tests to indi-
cate the prognosis of HIV in an infected patient.

effects or other indications of adverse reaction.
Scenario 3: A CHW diagnoses a patient with a col-

lection of symptoms but is unsure of the diagnosis, and
may use the system to search for health records of other
patients who have displayed the same set of symptoms.

In all of these example scenarios and most others
in this context, the total amount of information that
is being fetched and updated by the mobile device is
relatively small compared to the size of the database.
Hence, it is reasonable to expect the information to be
compressable into one or few SMS messages. ELMR
uses semantic compression techniques to minimize the
number of bits for every operation, enabling ELMR to
aggregate several operations into a single SMS message.

2.2 Pitfalls of Existing Approaches

To understand the necessity for ELMR and its design
rationale we describe three simple ways of implementing
a mobile record system:

Non-interactive SQL: In this case a full-fledged
database system (e.g. Microsoft Access) runs on the
client mobile device. During the day the user inter-
acts with the local database and at the end of the day
user manually synchronizes with the central database.
This approach has two benefits. First, this allows the
system to operate in disconnected environments. Sec-
ond, this approach is not bandwidth constrained since
all the operations can be synchronized with the central-
ized database in bulk over a high bandwidth connection
or physical connection to the central database. This
non-interactive approach is currently adopted by many
existing systems [3, 4, 6].

There are fundamental problems with this approach.
The period of non-interactivity with the central database
can be very high in such a system, particularly if the
user is physically remote from the central database loca-
tion; in many scenarios, the health workers or patients
may not regularly travel to areas with higher-bandwidth
GPRS connectivity to synchronize the database. We
found that a significant fraction of rural patients visit
the neighboring town once in 6 months [5] During such
extended periods, the devices could be damaged or stol-
en, irretrievably destroying collected data. Also, such
solutions require powerful (and commensurately expen-
sive) mobile devices with significant storage capable
of running computationally intensive database appli-
cations. Furthermore, the advanced features provided
by a complete database system are not needed. Fi-
nally, without some definite (and simple) model for in-
termittent consistency, user updates and queries to the
database may yield stale or incorrect results.

Interactive SQL: In this case a user-friendly frontend
interfaced with a SQL query engine running on each mo-
bile device communicates with a centralized database
running on a remote server. The application intqeracts

2

with the query engine, which in turn sends SQL queries
to the remote server and receives responses. Many of
the existing interactive systems [3, 4] depend on data
connectivity solutions such as GPRS/EDGE and rely
on the TCP/IP socket interface, not present on low-end
phones common to the contexts we are considering.

SQL over SMS: Existing SMS based systems [1] are
inefficient and offer only limited functionality. Sending
a single complex SQL query can easily result in sending
large numbers of SMS messages, and a single poorly
written query (e.g. select * from foo) can return
huge datasets using large numbers of costly messages; in
the regions we are targeting each SMS costs 5-25 cents
and thus the total cost for such a query could run into
the hundreds of dollars for a large table.

Optimizing the semantics of the usage scenario to the
low bandwidth of SMS is the main problem that ELMR
seeks to address. In the next section, we describe the
design of ELMR in greater detail.

3. ELMR DESIGN

At a high level, the architecture of ELMR is simple: a
client running on the user’s mobile phone accesses the
remote database by sending and receiving SMS mes-
sages to and from the server. The novelty lies in the
manner in which these messages are encoded.

Each type of data interaction (i.e. form or infor-
mation request) is defined with a schema, the sum of
which are contained in a Schema Description File. This
file is an XML document defining each schema’s fields
and their associated datatypes, interaction modes (e.g.
read/write, read-only), etc. Identical copies of this file
are held on remote clients and the server.

The client maintains a small queue of recent opera-
tions. When the queue is full, or the client needs im-
mediately access to data present on the server, it builds
the required SMS messagess for the queued operations
using the appropriate schema(s) and sends the messages
to the server. Upon receipt, the server decodes the mes-
sages according to the same schema definitions and re-
sponds accordingly.

3.1 Restricted Set of Operations

ELMR’s motivating problem is medical record sys-
tems, and it targets developing regions where the only
data connectivity is via SMS. While there are innumer-
able possible SQL queries that may be issued in order to
access the database in the traditional SQL model, if we
look at domain-specific operations required for medical
record systems (e.g. create, fetch, update, and search),
only a few specific queries are useful, and we design
ELMR around these. This allows the client application
to be simple and lightweight.

We support only the following operations: create,
append, update, destroy, search, fetch, and aggreg-

ate fetch. In a given command message, the first 3
bits contain the operation ID and the subsequent 8 bits
contain the schema ID. Following these are various bits
reserved for control information and the payload con-
taining the variable-length data sent to perform the op-
eration specified by the operation ID.

3.2 Semantic Compression

ELMR employs semantic compression which reduces
the number of messages exchanged between the client
and server to complete an operation by reducing pay-
load space required for each command’s requisite data.
Each schema, each field of each schema, and each oper-
ation is assigned an identifier using a small number of
bits, concatenated appropriately to form a small fixed-
width record.

To better utilize the space in each SMS message we
limit the types of fields in a schema. These simple data
types encompass the fields typical in medical forms:

1. Date
2. Integer
3. String
4. Boolean
5. Multiple Choice

We optimize by automatically assigning the minimum
number of bits to each datatype (e.g. 1 bit to booleans)
during schema encoding and decoding. In addition,
each integer and date field carries a precision modifier
and each multiple choice contains a finite number of
options, which aids in correctly assigning the minimum
number of bits to make the most of the 140-byte SMS
payload. Variable-length strings have a 1-byte length
value prepended to them. An example of a definition
might be

<field name="weight"
type="integer"
min="0"
max="511"/>

which would cause the semantic compression engine to
appropriately allocate 9 bits to the value of this field.
Future implementations of this engine will take data
distribution into account to provide better compression
over large data sets with high probability, e.g. allocat-
ing 8 bits as most weights fall under 256 and using extra
bits as necessary for outliers.

3.3 Lightweight SMS Reliability

SMS message delivery is not 100 percent reliable, nor
are the messages that do arrive guaranteed to be in or-
der. In rural regions SMS loss rates have been observed
to be as high as 10%. Since ELMR uses SMS service for
communicating with the server, reliability is important

3

to our system. Implementing a reliability model similar
to TCP/IP would be excessively complex and expen-
sive over SMS. For example, a sliding window protocol
is designed for efficient bulk data transfer, but in ELMR
bulk data transfer is not a primary design goal. Also,
protocols that require multiple rounds of acknowledge-
ments are out of the question since each message incurs
a relatively high cost. To keep the cost as low as possible
for the user, we propose a thin layer of reliability that
attempts to, but does not guarantee 100% reliability.

In ELMR every operation is client-driven and not
server-driven, i.e. pull and not push. Interactions be-
tween the client and server are divided into sessions,
each of which is comprised of one or more aggregated
operations. The basic protocol for reliability is a stop-
and-wait protocol across a session as opposed to across
each message. We briefly outline our protocol below.

Session Definition:

1. Every session has a unique 8 bit identity.

2. Each message in the session contains a 4-bit se-
quence indicator.

3. A session contains at most 16 messages.

4. A session has 3 phases.

Phase 1: The client initiates a session2 and then sends
at most 16 messages to the server. The first of these
messages has a single bit set indicating that it is the
first message in the session and uses its sequence num-
ber field to indicate the total number of messages in the
session. The server waits for SMS messages and does
not send any acknowledgements.

Phase 2: After either a certain amount of time passes
and the session times out or all messages are successfully
received by the server, the server sends a message with
a 16-bit ACK vector. The vector contains 1’s for the se-
quence numbers which have been received, and 0’s for
those wihch have not. The client retransmits these miss-
ing messages, if any, when the ACK vector is received.
If the server is waiting for missing messages but does
not receive them, it attempts one more round of send-
ing an ACK vector and waiting for a response, then fails
the session. Once the server has received all messages,
either in the first round or in a subsequent retransmis-
sion round, the ACK may either be sent immediately
or piggybacked on a response in phase 3. If messages
are still not received the server resends a NACK one
last time. If messages are received the server sends an
ACK.

2it may optionally send an initialization vector to initialize
its encryption, and would then an ACK back from the server
containing the same IV.

Phase 3: The server sends up to 16 messages in response
to the client in a session. In this case, the client does
not ACK the server messages unless the client receives
some of the messages and others are lost. This is the
mirror of phase 2 from the client side. If all messages
are received or all messages are lost, the client does not
send a NACK.

In this protocol, a session may not complete under
three scenarios:

1. All messages from client to server are lost.

2. All messages from server to client are lost.

3. Transmission of the initialization vector is lost in
either direction.

In any of these cases, the client times out and asks the
user whether he wishes to retry the session.

3.4 User Driven Consistency

Consistency requirements vary depending on the en-
vironment and application of the system. In scenar-
ios where explicit consistency guarantees are required,
timestamps and conflict resolution mechanisms can eas-
ily be incorporated into our design to resolve conflicting
updates in favor of the latest update. In addition, incon-
sistencies can either be handled by the system adminis-
trators or the users themselves. However, in other sce-
narios where perfect consistency is not required ELMR
allows reduced consistency at a lower cost. This is useful
for a data collection system where only a single CHW
has ownership over certain records and immediate up-
dates are not necessary. To facilitate these common
types of intermittency requirements we have designed
ELMR to operate with both immediate and lazy ac-
knowledgements.

Immediate Acknowledgements - In an immediate ac-
knowledgement model the server sends an acknowledge-
ment immediately after each session initiated by the
client. The client also sends an acknowledgement back
to the server in order to notify the server that the client
has received the response from the server.

Lazy Acknowledgements - In the lazy acknowledge-
ment model the client does not expect an immediate
acknowledgement from the server. Instead, the client
caches transaction for which no acknowledgements are
received and marks them as not committed, or ’dirty’.
The server is then responsible to acknowledge these
transactions in aggregate during future interactions with
the client. The client deletes these cached transac-
tions only when it receives an acknowledgment from
the server.

3.5 Privacy

4

Table 1: Example user permission information
maintained by the server
Phone
Number

ID Secret Key Permissions

918932 213 132781029 Schema1,op1,op2,flag
Schema2,op3,op4,noflag

Privacy and secrecy are of paramount importance in
any system dealing with medical records. ELMR al-
lows any client to send a request, but the server decides
whether a request can be executed or not. In order
to restrict access to the database, in ELMR, we imple-
ment security based on symmetric key stream encryp-
tion. The server maintains a list of phone numbers,
their access types, and their secret keys. Each client is
given a secret key at the time when client application is
deployed on client’s cell phone. Periodically, the client
generates an initialization vector meant to create an
updated version of its symmetric key. The periodicity
of this behavior is tunable based on cost/privacy con-
straints as the two additional messages do incur some
economic cost. Additionally, a 16-bit CRC is added to
each message. Together, these prevent replay attacks
and substitution attacks.

ELMR implements simple privacy and authentication
models. The privacy model of ELMR addresses two
basic questions: first, who can access the parts of the
database and second, to what extent can an authorized
user access each record? The authentication model en-
sures that the sender is actually who he says he is. In
ELMR these requirements are satisfied by the server
maintaining in a table the authorized users and their
permissions (Table 1).

The first, second, and third columns are self-
explanatory. The last column specifies the list of pos-
sible operations on different schemas with an extra flag
field that is used to provide record level access con-
trol. If the flag field is present for a particular user that
means only those record would be available to the user
which have got their primary field equivalent to the user
ID specified in the privacy table.

Upon receiving the properly decryptable message, the
server verifies that the client under consideration has
sufficient privileges to perform the operation which is
being requested. If the client does not possess these
privileges, the server aborts the request and returns an
access violation message back to the client.

3.6 Further Optimizations

ELMR is designed to be a cost-effective solution. There-
fore, minimizing the number of SMSs exchanged is es-
sential. There are a number of simple optimizations
that are incorporated into ELMR that are helpful and
implemented to various degrees. We have not yet eval-

uated these in detail as they are minor compared to the
other aspects of our system design.

Batched Updates - In ELMR the client caches updates
and append transactions in its local memory and sends
them to the server only when client has sufficient data to
construct a nearly complete SMS. This greatly reduces
the number of SMSs transferred.

Lazy Updates - We optionally queue updates as above,
and send them opportunistically appended to realtime
fetch requests, in order to save payload space.

Further Optimizations - Depending on the consistency
level required for the application, a further optimization
could be to send the delta between the cached version
and the updated version of the record. In some cases
this would be smaller than simply sending the entire set
of operations.

4. EVALUATION

We performed a preliminary evaluation of ELMR us-
ing real medical forms used by hospitals in Africa. Due
to privacy concerns we were unable to obtain live data
to drive our evaluation, so we were forced to use sim-
ulated field entries for our results. Our evaluation is
composed of two parts: we evaluate the effectiveness of
ELMR at reducing the size of messages and analyze the
message overhead of our reliability protocol.

4.1 Message Size

We began this portion of the evaluation by translat-
ing a complete new patient form and a checkup form
into the ELMR schema format along with the possible
range for each field in the form. A HIV simple pa-
tient intake form (Intake), and a longer followup form
for HIV/TB were translated for use with ELMR. These
two forms were chosen since they are common medical
database operations in the regions we are focused on.
We updated the schema by automatically assigning the
optimized type for each field using ELMR’s semantic
compression scheme. We then populated the data in
the forms using random numbers generated according
to the length of the numeric fields, and single words
taken from a small dictionary randomly. To arrive at
a lower bound on the benefits of using ELMR we have
not optimized the Intake or HIV/TB forms in any way.
These forms are both quite large (109 and 195 fields
respectively), and would likely be streamlined for field
use. Also, strings can often be converted to multiple
choice with a large dictionary of drugs and typical fill-
in-the-blank answers. Figure 1 illustrates the resulting
average size per data type. As the effectiveness of se-
mantic compression is a function of the data types, we
broke down the results according to the data types of
the original forms. Gzip is the average compression rate
for single messages. Gzip(100) refers to the average op-
eration across 100 aggregate operations. ELMR is the

5

Date
Boolean
Multiple Choice
String
Integer

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

EL
M

R
EL

M
R+

G
zip

(1
00

)
G

zip
G

zip
(1

00
)

Na
ive

EL
M

R
EL

M
R+

G
zip

(1
00

)
G

zip
G

zip
(1

00
)

Na
ive

Si
ze

 (B
yt

es
)

Compression Scheme
Update Create

Figure 1: Field sizes after various compression
schemes

benchmark where only semantic compression is used.
We observe that semantic compression improves upon
the uncompressed version for both Intake and HIV/TB.
We can see that the uncompressed performs the most
poorly in both cases. The Gzip compression performs
only slightly better than uncompressed for HIV/TB and
worse for Intake, and the Gzip(100) further compacts
strings across messages. ELMR is not currently op-
timizing string fields using semantic compression, but
if we simply compress the strings in ELMR using Gzip
we achieve the best results as seen in ELMR+Gzip(100)
reducing the unmodified payload size by nearly 50% in
the aggregate case.

4.2 Reliability and Consistency Overhead

Because there is no direct comparison to be made
with existing systems that rely on TCP/IP, we imple-
mented a simple SMS message simulator to measure the
overhead of ELMR’s SMS reliability and consistency
protocol across different loss rates. Using the same
messages as before, we simulated our protocol over a
range of loss rates from 0 to 20%. We setup this experi-
ment with each operation being sent as a session with no
message aggregation and immediate acknowledgements.
The message payloads are semantically compressed. Fi-
nally, if an entire session is dropped, we simulate a user
resending the message after the timeout. Our results
are shown in Figure 2. We observe from the results
that the overhead is low even for loss rates of up to 20%.
Our protocol manages to provide reliable communica-
tion while incurring minimal additional overhead well
beyond the expected maximum loss rate of 10%.

5. CONCLUSION

In this paper we have presented ELMR, a system de-
signed to meet the urgent need for better communi-
cations in healthcare in the context of the developing
world. It has been designed around the context-specific
goals of robustness and cost-effectiveness, and the more
general goals of privacy and efficacy.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20

Nu
m

be
r o

f S
M

S
M

es
sa

ge
s

pe
r 1

00
 O

pe
ra

tio
ns

Bi-Directional % of SMS’s Dropped

SMS Messages Transmitted vs Loss Rate

Create
Update

Figure 2: Lightweight SMS reliability vs SMS
loss rate

We believe that ELMR fills a significant gap in ser-
vice provision in the context in question and hope to
deploy pilot projects shortly in Africa and India with
our partners.

6. REFERENCES

[1] FrontlineSMS. http://www.frontlinesms.com/.
[2] International Telecommunication Union.

http://www.itu.int/.
[3] OpenMRS. http://openmrs.org/wiki/OpenMRS.
[4] OpenRosa. http://www.openrosa.org/.
[5] A. Sharma, M. Paik, A. Meacham, G. Quarta,

P. Smith, J. Trahanas, B. Levine, M. A. Hopkins,
B. Rapchak, and L. Subramanian. The Case for
SmartTrack. IEEE/ACM Conference on
Information and Communication Technologies and
Development (ICTD), 2009.

[6] Voxiva. http://www.voxiva.com/platform.php.

6

