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What Does Biological Computing Mean?

Part I

• Algorithmist: ”I think of algorithm. Biologists

will implement. I will enjoy fame and glory.”

Paradigm for string and graph comparison algo-

rithms. Combinatorial Pattern Matching conf;

low ratio utilty/cleverness

• Computer architect/physicist: There is a foun-

dational problem in biology that can be solved

only through massive computation. Protein

folding based on molecular dynamics (femtosec-

ond n-body steps that must scale up to mil-

lisecond duration) as in David Shaw’s machine.

Protein folding based on machine learning (Rosetta).



What Does Biological Computing Mean?

Part II

• Biologist: could some computer scientist help

me analyze data through anova and tell me that

my gene is important? This is bioinformat-

ics. What database people have done: work

on query languages for ordered data for tree

and graph data (e.g. Jignesh Patel/Rosalba

Giugno), provenance (Peter Buneman, Susan

Davidson, Juliana Freire), visualization (Spot-

fire from Shneiderman/Sungear by Chris Poult-

ney). Good and useful.

• Computer science/biologist: computer scien-

tist helps identify promising experiments; devel-

ops new hypotheses, applies machine learning

and active learning (Daphne Koller).



Power of Active Learning

1. Given a large search space (e.g. many differ-

ent input levels of carbon, nitrogen, light, and

hormones), propose a well-separated subset of

those condition-values (using combinatorial de-

sign) as an experiment and then, depending on

the results of the experiments, propose a new

set. Goal is to find the conditions that are most

important. Active learning and sampling with

guarantees.

2. Biological data comes in two flavors: lots of

”omic” scale data (species-wide) but of poor

quality; a tiny bit of high quality data obtained

by laborious techniques knockouts/overexpressors.

Goal: use machine learning/data mining to pre-

dict precise results from low quality data.

Can’t always do this because trained machine

learning model may have too low a precision

based on cross-validation on the training data.

Active learning in that case entails figuring out

which other high quality data to ask for.



What Does Biological Computing Mean?

Part III

• Computer scientist/engineer: Think about bi-

ology as a computational substrate and try to

compute with it (Leonard Adelman, Richard

Lipton, DNA computing conference).

This is what I propose to talk about.



DNA Hash Pooling and its Applications

Here I’d like to talk about a database-inspired algo-

rithm that one could use to solve some important

biological problems and to do so IN A WET LAB.
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The Challenge

In ecological systems (human gut, lakes), want to

answer questions such as

• (Genome Detection) Is some known gene se-

quence present at least in part in an environ-

mental sample?

Ex: is a pathogen present?

• (Similarity Discovery) How similar are two un-

sequenced samples in terms of sequence con-

tent?

Motivation: try to find the sequences in the

two samples that cause the same effect.



Techniques Available

• If you have intact cells, look for common ”16S

rRNA” to find common species.

Difficulties: (i) you may not have intact cells;

(ii) some cell types may be much more fre-

quent than others; (iii) extraction and analysis

requires effort.

• If you know beforehand which sequences may

be of interest, you may use a microarray (pre-

pared in advance) which can test for thousands

of sequences simultaneously.

Difficulty: you may not know in advance what

to look for.

• Break the DNA you are given into small pieces

and find the sequence of random pieces, hoping

to find a match in a database.

Difficulties: (i) may repeatedly sequence pieces

from the most frequent genomes; (ii) genome

of interest may be absent from database.



Our Goals

• Don’t count on intact cells at least not for all

species of interest.

• Don’t have time or resources to prepare mi-

croarrays for all possibilities or don’t know in

advance.

• Want to detect rare species as well as frequent

ones.



Fundamental Observation

The first step to naming/sequencing what is in

common between two mixtures is to discover com-

mon subcomponents of mixtures (i) without regard

to frequency and (ii) without an a priori idea of

what they are.

Our approach: ”hash” the mixtures into buckets

(here called pools) characterized by labels and then

compare the sequences having similar labels.



In What Sense Hashing?

Consider a set S1 of 10,000 integers ranging in

values from 0 to 1 billion and another set S2 of

20,000 integers in the same range. Both sets could

contain many duplicates.

Suppose we want to discover which integers are

common to the two sets.

Approach 1: Design a hash function h that maps

each integer to say 100 different values. Take each

member s of S1 and put s in a “pool” labeled

(”S1”, h(s)). Similarly for each member t of S2,

put t in (”S2”, h(t)). To find the intersection, we

need only compare ”S1” pools and ”S2” pools such

that the hash values are the same, e.g. (”S1”, 17)

with (”S2”, 17).

Difficulty: there will be many distinct values (col-

lisions) in each pool.



How to Reduce Collisions

Approach 2: Design two different hash functions h1

and h2 that each maps an integer to 100 values.

Now characterize each s in S1 by “pool” (”S1”,

h1(s), h2(s)) and each t in S2 by (”S2”, h1(t),

h2(t)).

The pools have fewer distinct values.

Smaller pools have fewer duplicates.

Our technique closely follows this model and shares

the essential properties, though the functions are

chemical not mathematical.



Technology We Use

A restriction enzyme cuts a DNA strand at a cer-

tain letter sequence called a “recognition site” usu-

ally of length between 4 and 8. For example, the

restriction enzyme SmaI cuts in the middle of

CCCGGG.



Our Basic Algorithm

• Cut the DNA in each sample with one 6 site

restriction enzyme. This gives a set of strand

lengths. The cut is analogous to the hash func-

tion and the length to the hash value. The

result is a set of “pools” of DNA of purity.

• Then do this again (but on the strands in each

pool) with a 4 site restriction enzyme. This

gives a new set of pools. Each pool is labeled

with the size of its strands from the first re-

striction enzyme and the size from the second

e.g. (13065, 432).

• Look for common sequences in similarly labeled

pools.

• Rare sequences are likely to be in smaller pools.

• The method requires minimal DNA sequencing.



Example

Consider E coli.

Cut using the enzyme SmaI (recognising CCCGGG).

Take the pool corresponding to length 264.

Cut that pool with RsaI (GTAC) and take the pool

of length 31.

We get a pool having label (264, 31). It hap-

pens to have a single member with the sequence

CTATCCGCTCAATGAGTCGGTCGCCATTGCC.

By contrast, the pool with label (770, 207) has

three different sequences.



Graphical Illustration of the Algorithm
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Error Considerations

Possible Objection: Separating fragments by length

entails a certain inaccuracy imposed by the labora-

tory technique (e.g. electrophoresis).

A reasonable estimate of this error is plus or minus

10 base pairs.

In fact, this goes up slightly with length, but this

is a conservative bound. So, we’ll use this for con-

venience.

This inaccuracy may lead one to believe that two

pools have the same label when in fact the labels

are different. We will call these “neighbors.”

The first cut may bring two pools together which

will then be cut together into more pools.



Solution: 10 base pair separation

Labels L and L′ are 10 base pair-neighbors if (i)

the first component of L and the first component

of L′ are different but differ by 10 or less (0 <|

L[0] − L′[0] |≤ 10); or (ii) the first component of

L and L′ are the same but the second components

differ by 10 or less (0 <| L[1] − L′[1] |≤ 10).

Note that if the second components are close but

the first ones are very different, we have no problem

because the two pools will be separated by the first

restriction enzyme cut.

For E. coli K12, the labels (188, 59) and (188,

106), for example, have no 10 base pair-neighbors

and of course they won’t be confused with one

another.



Experiment 1: genome detection

Given a tube, T , of unknown DNA (perhaps from

an environmental sample) and a known genome

E Coli, are “reasonably sized” portions of that

genome present in T , even if in small concentra-

tions?

A “reasonably sized” portion is a sequence of length

at least 200,000 base pairs (or roughly 5% of the

length of a bacterial genome such as E Coli which

is 4.6 million base pairs).



Experiment 1: Protocol

Question: Are “reasonably sized” portions of a

known genome present in a sample?

1. Compute the candidate set of E Coli, meaning

pools having no 10 base pair neighbors.

There are 3,567 candidates for E Coli using the

6 site restriction enzyme cutting at CCCGGG

and the 4 site restriction enzyme cutting at

AGCT. This gives us a “signature” of pools

labels

NB. This step is done entirely in silico. It can

be computed just once for any combination of

known genome and restriction enzyme set.

2. Cut the unknown sample T with the same two

restriction enzymes (cut sites: CCCGGG and

AGCT).

3. Label the resulting candidate set of hash pools

from T . Sequence the found E Coli labels.



Protocol 1 in Pictures
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Experiment 1: Results

Question: Are “reasonably sized” portions of a

known genome present in a sample?

Setup: take a 200,000 base pair subsequence of

E Coli and enclose it in a sequence four times the

length of E Coli but with the same GC ratio as E

Coli.

On average (over 20 repeats of this setup and pro-

tocol) there are 70 labels produced that are the

same as the E Coli signature. Virtually all of them

(over 99%) come from that 200,000 base pair sub-

sequence.

So very little sequencing is necessary to confirm a

hypothesis of similarity.



Experiment 1: Issue

Will one have to generate many pools? This could

be labor-intensive.

Fortunately, no. After the first cut with the six

site restriction enzyme, one can filter out pools

that have 10 base pair neighbors. Generally, this

leaves very few (on the order of 5 or 6) to cut with

the four site restriction enzyme.



Experiment 2: Challenge

Given two tubes of DNA, do they contain strands

that are the same or very similar?

Useful when comparing samples of unsequenced

genomes.

Most samples are like this.



Experiment 2: Protocol

Question: Given two tubes of DNA, do they con-

tain strands that are the same or very similar?

1. Cut each sample with the six base pair restric-

tion enzyme, then find all lengths that are the

same (within an accuracy of 10 base pairs).

2. On the upper dectile of those lengths (approx-

imately 94 of them), apply the four base pair

restriction enzyme.

3. Compare sequences for pools having the same

labels.



Protocol 2 in pictures
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Experiment 2: Results

Question: Given two tubes of DNA, do they con-

tain strands that are the same or very similar?

Setup: Take 200,000 base pairs from E Coli. Call

that E.

Create a sample S1 consisting of E embedded in

19 million randomly generated base pairs having

the same GC ratio as E Coli.

Create a second sample S2 consisting of E embed-

ded in 19 million (different) randomly generated

base pairs having the same GC ratio as E Coli.

Net effect of setup: common sequence E is just

1% of each sample.

After applying the protocol, an average of 14% of

the pools having the same labels consist of subse-

quences of E. Roughly 1 in 7 pools sequenced will

locate common strands REGARDLESS OF HOW

INFREQUENT THOSE STRANDS ARE.

(Choosing cuts resulting from the six base pair re-

striction having size near the expected value would

have yielded the common strands only 0.4% of the



Conclusions

1. DNA Hash pooling is a method to simplify many

problems in metagenomics.

2. Gives the experimenter the ability to query for

known sequences and genomes in a sample or

to find common sequences from unknown genomes

in two or more samples even if the identified se-

quences are rare.

3. Basic protocol: given a sample of DNA, apply

a restriction enzymes to it and if the right size

apply a second smaller restriction enzyme.

4. Label the resulting ”pools” with the lengths

from each restriction enzyme cut. Compare

sequences from pools having the same label.


