
I
n the battle between pirates and content providers, the pi-
rates are winning. Movies appear on bootlegged DVDs and
on peer-to-peer networks even before they appear in the-
atres. Expensive software can be obtained at rock-bottom

prices without royalties flowing to the authors. Pricey technical
counter-measures are easily defeated. In 2002, a multimillion
dollar CD-based antipiracy scheme developed by Sony, was de-
feated by writing on the outer rim of protected CDs with a mag-
ic marker. License servers are routinely cracked. Total losses,
while hard to calculate exactly, may amount to tens of billions
of dollars per year.

Content vendor reactions vary from hand-wringing to threats
of lawsuits to hope for yet a better protected medium. Platform
vendors such as Intel, Microsoft, Apple, and Panasonic are more
ambivalent. If one platform prevents piracy, will consumers
choose another? This proposition has not been tested but plat-
form vendors have been cautious so far. Some content vendors
even view piracy as a kind of loss leader. A few years ago, a
scientist from a leading vendor, for example, announced to an
expert panel (in substance): “Piracy doesn’t worry us. The best
thing that can happen to us is that someone buys our software,
next that someone steals it, and the worst that someone buys
our competitors’ software.” More recently, however, a scientist
from the same company said to one of us: “We can no longer
afford to sell just one copy in country X and see the rest stolen.”

Frustrated with platform vendor inactivity, content vendors
have chosen to use law enforcement and the courts to stop pira-
cy—261 lawsuits were filed on just one day in 2003, for exam-
ple. This has met with some success, but only in some countries
and in a few cases. Even then, there is something distasteful about
prosecuting librarians and 12-year-old children.

There must be a better way. Look beyond computer software
and beyond movies to driving behavior. When faced with speed
bumps, you slow down. You don’t need police to tell you to.
Your butt or your passengers’ discomfort will ensure you don’t
speed. The underlying philosophy behind our solution is to im-
plement a software speed bump to combat piracy. Our solution
requires no police and preserves the privacy of everyone, even
pirates.

As a matter of terminology, we use the term “software” (or
simply “content”) to indicate any digital content, such as com-
puter programs, computer games, audio and video, and so on. 

Starting Points
We start with two assumptions, the first moral and the second
technical.

The moral assumption is that stealing is wrong, even if it’s
easy. A screenplay writer friend once said she doesn’t con-
done stealing except of computer software. It weighs noth-
ing. The computer copies it. Some big corporation suffers.
What could be wrong? How would she feel if someone stole
her screenplay? Oh, that’s different. But it isn’t, big corpora-
tion or not. She wouldn’t feel it’s okay to steal a car from an
automobile factory.

On the other hand, the punishment should fit the crime. Ide-
ally, software pirates should get no benefits from pirating but
there should be no jail sentences or onerous fines. The more
successful we are at preventing piracy by technical means, the
less the need for law enforcement and high penalties. (As a mat-
ter of legal principle, if the odds of getting caught are 1 in 1000,
then the penalty should be 1000 times the profit to render pira-
cy unattractive. We avoid high penalties by reducing the profit
from piracy to virtually zero.) Think speed bump again. 

The technical assumption is that User Devices (computers or
other software playing devices) have a secure clock and software
called the “Supervising Program” that cannot be changed and
that is given a periodic time-slice when it can run. “Secure” means
that even the owner of the device cannot alter the progress of

16 Dr. Dobb’s Journal, October 2005 http://www.ddj.com

Preventing Piracy 
While Preserving Privacy

Michael is a professor at Harvard University and a recipient of
the Turing Award. Dennis is a professor at New York University
and is the puzzle columnist for DDJ. They can be contacted at
rabinmichael@aol.com and shasha@cs.nyu.edu, respectively.

MICHAEL O. RABIN AND DENNIS E. SHASHA

A flexible antipiracy solution

“The underlying philosophy
behind our solution is to
implement a software speed bump
to combat piracy”



the clock, alter the Supervising Program, or intervene with its ac-
tions. This assumption lies within the technical state of the art:

• In a paper written in 1992, Lampson, Abadi, Burrows, and Wob-
ber [1] suggested a way to load an operating-system kernel re-
liably using a bootstrapping method based on a single crypto-
graphic key. Continuous checking of the integrity of the kernel
or of our Supervising Program can be achieved by similar means.
In these days of inexpensive hardware, there are other possi-
bilities—IBM, HP, and Dell already ship computers that include
a so-called “Trusted Platform Module,” a coprocessor provid-
ing a feature called “remote attestation” [2]. The Trusted Plat-
form Module can guarantee (and even promise to other de-
vices) that a certain operating system and a certain BIOS are
running. Similar techniques can be used for the Supervising
Program. Only the Supervising Program needs to be secure,
not the Software that is later going to be protected.

• Hardware vendors must provide a clock that advances con-
tinuously and uniformly (for example, one that keeps in step
with Greenwich Mean Time so is unaffected by time zone or
daylight-savings time). The Trusted Platform Module already
provides a counter that is guaranteed to increase over time.

• The operating system must interact with the Supervising Pro-
gram by ensuring that it runs periodically.

The Shield system does the rest, ensuring piracy prevention
while preserving privacy. Before we discuss it, however, we
briefly examine the main existing approaches to prevent piracy.

Current Approaches to Combat Piracy
Many companies offer piracy prevention or, more generally,
digital-rights-management software. The main distinction between
the two is that digital-rights-management software may also in-
clude linguistic constructs to describe usage possibilities, a promi-
nent example being ContentGuard’s XrML language (http://
www.contentguard.com/xrml.asp). In this article, however, we
concentrate on piracy prevention, because that is the fundamen-
tal technology upon which all else rests.

The best current approach is to encapsulate software inside
hardware. Video cameras do this, but in the computer software
world, such software comes on hardware attachments, such as
so-called “dongles,” like those from MicroWorks (http://www
.mw-inc.com/) and SafeNet (http://www.safenet- inc.com/
products/tokens/ikey1000.asp). This solution is feasible if the
dongle can be rendered tamperproof and by running impracti-
cal-to-reconstruct parts of the software program on the dongle.
The dongle approach is vulnerable to a reverse engineering at-
tack of that “impractical-to-reconstruct” software. Even when the
dongle approach works technically, however, the hardware ap-

proach makes it difficult to use several unrelated but protected
software items at once and is, in general, cumbersome.

A part-hardware approach is to ship software out on “copy-
proof” CDs. Again, extremely low-tech attacks (scribbling on CD
rims) have defeated such solutions in the past. But even if the
CD is truly copyproof, what happens if the content ends up on
a web site from which it can be downloaded. This attack, dubbed
“Break-Once, Run Everywhere” (BORE), can render an entire
factory’s work a waste of time and effort.

A software-imitates-hardware approach is to encrypt the con-
tent and ship the key to the client site, which can then execute
the software only if it has the proper keys. This solution suffers
from the BORE problem as well: If the content can ever be con-
structed in the clear through either an attack on the encryption,
an attack on even one User Device where the software has been
running, or an insider leak by an employee of the software au-
thor, it can be used everywhere.

License servers combat piracy by requiring licensed software to
get permission to continue running from time to time. This scheme
can be attacked if a would-be pirate can simulate the license serv-
er’s responses, or change the software not to query the license
server. If either happens, there is a BORE problem. In addition,
this solution requires the software author to modify the software
by introducing the (hopefully nonremovable) calls to the license
server. Even if not, the notion of having to report usage to an
outside license server inherently infringes on privacy.

There are approaches that don’t try to prevent piracy but try to
track and/or punish the pirates. The “watermarking” approach is
to write some unique undetectable digital message on each instance
of the software. If that digital message is found on many instances
of software in the field, then the original purchaser of that water-
marked copy is the source of those copies. The problems with this
scheme range from the theoretical (it doesn’t seem possible to cre-
ate an undetectable watermark) to the practical (how does one
track down copies and test them for watermarks). Further, there is
the problem of legal punishment. Trials are expensive, time-
consuming affairs. Finally, the technique depends fundamentally
on violating privacy, because it requires identifying the “criminal.”

A second form of punishment is to put “poisoned apples” in
places where pirates are likely to look. The idea is to punish pi-
rates by giving them something that looks good but isn’t— con-
ceivably a virus but more commonly a broken piece of content.
Two years ago, a pirate downloading a Madonna song from a
site might instead find a furious Madonna piping out expletives.
Since then, poisoning peer-to-peer networks has become a thriv-
ing cottage industry.

For certain kinds of software, notably movies and music, the
aforementioned solutions do not prevent a would-be pirate from
digitally recording the content while watching or listening and
then later redistributing the recording. Copying and redistribut-
ing content in this way is known as the “Analog Hole” attack.

All existing solutions (other than wrapping the software inside
a hardware device) suffer from a BORE attack. Most of these so-
lutions infringe on privacy, sometimes by design. A better solu-
tion should avoid BORE, avoid courts, and preserve privacy.

Towards a New Approach
Our approach to protection is simple: As Figure 1 illustrates, pe-
riodically during the execution of software on the User Device,
our Supervising Program checks whether the software is free-
ware or not. If not, the Supervising Program identifies the soft-
ware and checks whether this User Device has the rights to run
this software. If so, the software continues to run; if not, the soft-
ware is either stopped or markedly slowed down. No informa-
tion leaves the device. The punishment is to hinder use.

To realize this approach, we have to specify how rights are
transported to the User Device, how rights can be transferred

(continued from page 16)

18 Dr. Dobb’s Journal, October 2005 http://www.ddj.com

Figure 1: Piracy prevention flowchart. No information leaves
the User Device.

Sotware is
freeware?

User device
has rights to

run software?

No

Hinder use

Yes
It runs

normally

No Yes



between User Devices for purposes of fair use and upgrades,
and how the Supervising Program can determine which soft-
ware is running. At each step, we show how privacy is pre-
served.

The basic data flow of the Shield system is in Figure 2. Briefly,
privacy-preserving purchases are shown on the left side of the
User Device, content-identifying information enters from the Su-
perfingerprint server depicted on the upper right, and privacy-
preserving rights information is exchanged with the Guardian
Center. 

One important point: The indicated interactions with the Soft-
ware Vendor, the Superfingerprint Server, and the Guardian Cen-
ter are infrequent (on the order of once per week) and need lit-
tle bandwidth. People who like to work mostly offline can
continue to do so.

Privacy-Preserving Purchase
Our ability to preserve privacy while preventing piracy is based
on the fact that rights, as embodied in “Tags,” are stored on the
User Device in data structures called “Tag Tables”; see Figure
3. The relationship between the Tag Table Identifier (TTID)
and the Tag is an internal affair of the User Device. At purchase
time, Tag-related information flows between the User Device
and the Vendor/Author, but the Vendor/Author does not know
for which TTID. At rights-management time, TTIDs flow be-
tween the User Device and the Guardian Center but the Guardian
Center does not know for which Tags. So even if the Vendor,
Author, and Guardian Center all collude, they cannot determine
which sets of Tags belong to the same User Device, much less
which particular User Device owns any particular Tag. 

When the owner of a User Device wishes to purchase digital
content (including digital content that has been preloaded on
the User Device or installed from a CD), the Supervising Pro-

gram on that device creates a structure identifying the software
and its associated Tag Table Identifier: 

S = (Name(C), TTID, Hash(C), UsagePolicy, NONCE)

Name(C) is the name of the content. TTID is the identifier of
the Tag Table into which the Tag will eventually go. Hash(C)
is the hash value of the content. UsagePolicy is some kind of
policy such as perpetual use or three-month use. NONCE is a
number that is randomly chosen from a large number space (for
instance, from 128-bit numbers) and that is never used again.
We use the NONCE to hide the value of TTID even should the
Vendor collude with the Guardian Center.

A Purchase Order consists of:

(Hash(S), Name(C), Hash(C), UsagePolicy)

The hash function is a one-way hash function (see the ac-
companying text box entitled “Crypto Technologies”) such as SHA-
1 (or any of its improved versions), so no outsider can compute
the TTID by inverting the function and no outsider can guess-
and-check the TTID because of the NONCE component of S.

The Purchase Order may be sent to Vendor/Author over
an anonymizing network, to make the source unknown to
the sender [3]. The purchase may be in digital cash. Thus, the
Vendor/Author can be prevented from knowing the identity of
the purchaser, but can verify that the purchase amount corre-
sponds to the correct price.

If so, the Author digitally signs the Purchase Order Sign_Au-
thor(PurchaseOrder) and sends it to the User Device via the
Vendor. (By signing, the Author guarantees that it is paid for ev-
ery purchase. If Vendor signatures were sufficient, then a rogue
Vendor could start selling content on its own. As a practical mat-
ter, the Author may devolve signing privileges to select Vendors.)

The Supervising Program then verifies that the Author’s sig-
nature is correct. This is possible because the User Device has
previously downloaded from the Superfingerprint Server au-
thenticated (digitally signed) data including a list of the Authors’
public signature-verification keys. If the signature is verified to
be that of the author of the content C, and S is consistent with
the signed Purchase Order, the Supervising Program installs the
triple (Author name, S, signed Purchase Order) into the Tag Table
having identifier TTID. That triple is the Tag; see Figure 4.

If a user pays with anonymous digital cash (or even a one-use
credit card) and sends orders over an anonymizing network (see,
for example, http://tor.eff.org/), the Vendor/Author will not know
who did the purchase. Further, the Vendor/Author will not know
which TTID is associated with this purchase. 

Superfingerprint Information
The Superfingerprint Server (upper right corner of Figure 1) pe-
riodically sends several kinds of information updates to the User
Device. All User Devices receive the same information and must
be reasonably up-to-date (for instance, this information must
not be more than one week old, so the User Device must re-
ceive the Superfingerprints once a week).

• Content Identifying Information. This data associates with the
name Name(C), of each content C that is protected by the sys-
tem, data enabling the Supervising Program to identify C when
it runs. What running or executing means depends on the type
of digital content. In the case of a computer program, running
means the execution of the program and identification infor-
mation can then be derived from sequences of machine in-
structions executed by the program at runtime and from func-
tionalities of the program. Alternatively, the content could be
music, in which case, the identification information could be
derived from frequency components of the melody. The
Content-Identifying Information for a content C typically fits

(continued from page 18)

20 Dr. Dobb’s Journal, October 2005 http://www.ddj.com

Figure 2: System architecture.

Content
Author

Superfingerprints
(SPFs) Server

Content
Vendor

Guardian
Center

Call-ups(TTIDs)

User Device

SPFs

Continuation
messages

Content

Purchase
Order

Signed
Purchase

Order

Content

Purchase
Order

Content identifying info

Figure 3: User Device.

OS & Supervising Program (SP)

Secure Clock

Superfingerprints

Tag Tables (TTs)

Content

...
TTID1

Tag
Tag
…

TTID2
Tag
Tag
…

TTIDk
Tag
Tag
…



in about 1/1000 of the number of bytes of C (significantly less
for movies).

Each Author wishing to protect a content C runs a program
(or asks a professional organization to run a program) that
generates relevant Content-Identifying Information. That in-
formation is distributed to Superfingerprint Servers. These in
turn send the additional Content-Identifying Information to
User Devices during the next Superfingerprint broadcast. A
Vendor/Author need not change the content C in any way to
enable this protection. As a consequence, the antipiracy pro-
tection can be deployed after distribution of C.

• Content-Identifying Algorithms. The Supervising Program ini-
tially includes a suite of Content-Identifying Algorithms (which
employ the Content-Identifying Information) to identify pro-
tected content. The algorithms are tailored to the type of con-
tent; for example, one class of algorithms for computer pro-
grams, another for music or video, and so on. But the
algorithms apply to all examples of content in each class. 

One attack on the combination of Content-Identifying In-
formation and Content-Identifying Algorithms consists of ob-
fuscating the code or music or other content so it has the same
effect to end users but looks different to our detection sys-
tem. Experimentation has shown that detection algorithms can
be made robust against a wide range of obfuscation attacks.

(Compressing the content does not hinder our detection be-
cause detection occurs primarily at runtime.) The framework
counters further obfuscation attacks by requiring the User De-
vice to obtain periodic updates (weekly, for instance) of
Content-Identifying Information and algorithms from the Su-
perfingerprint Server. As obfuscations improve, so can our de-
tection.

• Lists of pairs: Signature-verification key, Author name. This in-
formation lets the User Device verify whether a given Author’s
signature corresponds to an Author. In addition, there will be
pairs relating the hashes of content to Author names. Together,
these ensure that the signature of an Author as found in a Tag
in fact constitutes sufficient Authority to allow the use of soft-
ware. This combats the attack where author A creates content
X but author B signs Purchase Orders for content X without
having the right to do so.

All communication with the Superfingerprint Server is one-
way— from Superfingerprint Server to User Device, again pos-
sibly through an anonymizing network. Consequently, no in-
formation leaves the User Device.

Transfers Without Promiscuity
Finally, there is the question of managing rights. Fair rights laws
and tradition require the ability to make backups. Our technology

(continued from page 20)

22 Dr. Dobb’s Journal, October 2005 http://www.ddj.com

Whereas our approach never en-
crypts content, it makes substan-
tial use of three cryptographic tech-

nologies— one-way functions to hide
Tag Table Identifiers and User Device
Descriptive Values, digital signatures to
establish the identity of sites on the net-
work, and Secure Sockets Layer (SSL) to
ensure private communication of TTIDs. 

Intuitively, a function f is one-way if,
given x, it is easy to compute f(x) where-
as given y, it is hard to find an x such
that y = f(x). The hash function SHA-1 is
one example (among many) of a one-
way function.

The purpose of a digital signature is
the same as of a written one— to estab-
lish the identity of the signer of a mes-

sage. When you sign a contract, the hold-
er of that contract can go to court and
assert your agreement to the contract.
Ideal written signatures are unforgeable
but recognizable: only X can produce
X’s signature but anyone can recognize
that signature. So, only one person can
sign, but anyone can verify (at any time
or place). Digital signatures work the
same way: An agent (say, the Guardian
Center) in our protocol uses a private
key to sign a document but that agent’s
signature-verification key is well known
(say, is in the Supervising Program of ev-
ery User Device). Therefore, if a message
arrives purporting to be from that agent,
then any User Device can test whether
the message is in fact from that agent.

The Secure Sockets Layer (SSL) pro-
tocol is a client-server protocol offering
asymmetric authentication and private
communication. SSL assures the client (in
our protocols, the User Device) that the
server has a particular identify (in our
Call-Up protocol, that the server really is
the Guardian Center). SSL also enables
the client and server to agree on a pri-
vate key, which can be used in subse-
quent communication. The net effect is
that the client knows the identity of the
server (but not the other way around)
and that the content of the exchange be-
tween client and server remains hidden
from anyone else. 

—M.R. and D.S.

Crypto Technologies

Figure 4: Privacy-preserving purchase. Identity of user hidden by anonymizing network and digital cash. Tag Table Identifier is
embedded into Purchase Order using a one-way function.

User Device

Verify. Install Tag into 
Tag Table.

Prepare Purchase Order.
Digital cash/one-time 
credit-card number.

Vendor

Verify purchase
conditions/money.

Pass signed
Purchase Order

through.

Author

Sign Purchase Order.
(Knows what has been
purchased, but not by

whom.)

Anonymizing
network



allows any number of backups to be made of everything— the
Tags, Tag Tables, and content.

Further, we want to allow transfers of rights, so Tag Tables
may be moved from one User Device to another, provided
the Tag Table is disabled on the first device. On the other
hand, we don’t want the same Tag Table to appear on mil-
lions of devices. We reconcile these two goals through com-
munication between each User Device and the Guardian Cen-
ter. The basic purpose of this communication is to determine
whether a Tag Table having some Tag Table Identifier is on
several devices.

Let us back up for a moment. TTIDs come about by ran-
domly generating an identifier from a large (128-bit numbers)
space perhaps based on time, typing characteristics, or a spe-
cial random process. The chances of collisions in such a case
are, for all practical purposes, negligible until the number of
TTIDs is extremely large (for instance, a billion billion for 128-
bit TTIDs). So when first created, every Tag Table has a glob-
ally unique TTID. 

To ensure that only one User Device contains a particular TTID
at a given time, each User Device performs a “Call-up” between
some minimum and maximum time, say every five to seven days.
As shown in Figure 5, a Call-up from device U consists of a mes-
sage to the Guardian Center where the message contains a list
of all enabled TTIDs of User Device U, a timestamp, and the hash
of a “User Device Descriptive Value” of U appended to a NONCE.
The User Device Descriptive Value contains some slowly chang-
ing property of the device that only a small number of devices
have (for example, a processor ID, if available, or something
about the number of files or structure of directories on the de-
vice). The use of the one-way hash function prevents any knowl-
edge of this value from leaving the device.

The Call-up is sent using a well-known secure protocol such
as SSL (see “Crypto Technologies”), so no third party can see which
TTIDs are being sent. The Guardian Center checks each TTID x
in the list of TTIDs to see whether an overly recent Call-up con-
tained x. If so, the Guardian Center either records the fact for fu-
ture reference or, if this has happened more than some threshold
number of times, the Guardian Center invalidates that TTID. 

After this analysis, the Guardian Center responds to the Call-
up with a signed “Continuation Message” listing valid Tag Table
Identifiers: 

Sign_GuardianCenter(timestamp, Hash(User Device Descriptive 
Value, NONCE), TTID1, TTID3,…)

The timestamp ensures that the device cannot simply replay an
old Continuation Message. The hash together with the NONCE
prevent the Guardian Center from learning the User Device De-
scriptive Value. The User Device Descriptive Value permits the Su-
pervising Program on User Device U to ensure that the Continu-
ation Message was meant for U. This prevents a single Continuation
Message from being used by many shadow User Devices.

The User Device associates the most recent Continuation Mes-
sage and its associated User Device Descriptive Value with each
Tag Table. If the User Device Descriptive Value no longer match-
es the relevant properties of the User Device (perhaps due to a
transfer of a Tag Table to this device), the Supervising Program
on the User Device performs a new Call-up for just that Tag Table.

On the User Device, the Supervising Program disables Tag Ta-
bles whose TTIDs have not been included in the most recent
Continuation Message. There is a grace period policy, however,
allowing devices to use the software associated with Tag Tables
even if out-of-date, provided this doesn’t happen too often. 

A user transfers content by disabling its associated Tag Table x
on the source device and sending it to a destination device. After
doing a Call-up for Tag Table x, the destination device can now
use all the software items whose Tags involve the transferred TTID.

http://www.ddj.com Dr. Dobb’s Journal, October 2005 23



Failure to disable Tag Table x and its TTID on the source device
will soon thereafter lead to overly frequent Call-ups for that TTID
being sent to the Guardian Center. Call-ups must be done over a
secure channel (such as SSL) to prevent malicious users from fak-

ing Call-ups with a given TTID y just to deny the real owner of
the Tag Table having TTID y from using that Tag Table. 

Note also that the Guardian Center need not be a single de-
vice. Guardian Center data may be replicated and any one of
several Guardian Center nodes can handle a given Call-up re-
quest, or data may be partitioned based on TTID. (The Guardian
Center data consists of information about TTIDs: time of last
Call-up and a history of any overly early Call-ups.) In any case,
the Guardian Center workload scales easily.

Putting It All Together
Here is a quick overview of the whole system. Every User De-
vice includes a Supervising Program. When software C is being
used (for example, executed) on the User Device, the Supervis-
ing Program attempts to identify C by use of Content Identifying
Information and Algorithms present on the User Device. If un-
successful, then C is deemed to be freeware and use proceeds.
If identified as software named N, then the Supervising Program
searches for a Tag for N in a Tag Table having a valid TTID. If
found, then the Supervising Program verifies that the current us-
age is in accordance with the UsagePolicy for that instance of C
included in the Tag for C. If everything checks out, then use of
C is allowed, otherwise use is stopped or hindered.

The Supervising Program is run at regular periods, check-
ing the running queue of the User Device. It can be designed
to consume fewer than 2–3 percent of the computing resources.
In our experiments, its impact on the performance of even
compute-intensive workloads, such as computer games, is un-
noticeable.

The Supervising Program performs the protected software in-
stallation task. The actual software purchase can be done outside
of the User Device, for example, by an organization’s purchasing
department.

24 Dr. Dobb’s Journal, October 2005 http://www.ddj.com

Figure 5: Privacy-preserving Call-ups. User knows that it is
talking to the Guardian Center but not vice versa (an option of
SSL). TTIDs do not reveal the associated Tags. The one-way hash
function associated with the NONCE prevents any revelation of
the User Device Descriptive Value, so even processor identifiers
can be used without fear of privacy breach.

User Device

Verify that the Continuation
Message pertains to this

device based on User Device
Descriptive Value and that the 

timestamp > time of 
Call-up.

List of Tag Table IDs (TTIDs),
Hash (User Device Descriptive

Value, NONCE).

Guardian
Center

For each TTID t, if t
hasn’t been included

in a Call-up too frequently
over the recent period, 

then t is valid.

Continuation 
message=

Sign_GuardianCenter
(timestamp,

Hash(User Device 
Descriptive Value,

NONCE), list of valid TTIDs).

Anonymizing
network

Guardian Center sends
Continuation Message.



The Supervising Program periodically downloads authenticated
(that is, timestamped and digitally signed) updates of the Content-
Identifying Information, Content-Identifying Algorithms and lists of
(Author name, content-hash) pairs, and (Author name, signature-
verification key) pairs from the Superfingerprint Server.

To revalidate its Tag Table identifiers, the Supervising Program
periodically calls up a Guardian Center. The Call-ups are infre-
quent and require little bandwidth. 

Transfers entail movements of Tag Tables from one User De-
vice to another. Back-ups are unlimited. Every reasonable model
of fair use is easy to implement. For example, it’s possible to lend
your software to your friend (two transfers), to allow short term
use (Tags having short-term Usage Policies), and family packs (sin-
gle purchase yields the privilege to obtain multiple Tags).

Frequently Asked Questions
When we talk about this framework, we hear several questions:

Q: How can we claim that we preserve privacy when we have
Call-ups?

A: The Call-ups send information that neither identifies the user
nor the software nor the Tags on the User Device, because TTIDs
are sent rather than Tags. The protocol can be verified by third
parties. Alternatively, you could avoid Call-ups by linking Tags to
machines IDs, but then transfers would become more complicat-
ed and purchases as well as transfers might potentially infringe on
privacy.

Q: Why don’t we suffer from BORE? Superfingerprints detect
use of software rather than mere possession. Can’t one subvert
your detection? 

A: Maybe, but it is possible to do a very good job of detecting
functional equivalents of software. Also, Superfingerprints can be
improved with each download to counter new attacks.

Q: What happens when you catch someone stealing?
A: The Supervising Program on the device stops or slows down

the use of that software. No information leaves the User Device.
This is the functional equivalent of a speed bump: Behave, be-
cause you get car-sick if you don’t.

Q: So, if this is so great, why isn’t this adopted?
A: For this architecture to take hold, the hardware and

operating-system Vendors must cooperate. The enabling tech-
nology for the protection system essentially exists, so it is a ques-
tion of willingness. Platform Vendor incentives aren’t so clear. If
one platform Vendor provides piracy prevention and another
doesn’t, consumers may prefer the one that doesn’t. If our solu-
tion is used, the only reason consumers will have to dislike the
piracy-prevention system is that it prevents the ability to steal. It
is possible that legislation will be necessary to ensure that no plat-
form vendor benefits by making a platform that makes stealing
easier. There is precedent for this: When catalytic converters to re-
duce automobile pollution emissions first came on the market,
many consumers resisted their introduction because they made
both acceleration and gas mileage suffer, besides raising the price
of the car. Their introduction has greatly reduced air pollution,
however, so it constituted a societal good. Legislation was neces-
sary to avoid having consumers punish vendors who advanced
that societal good. The same may happen here. Further, whereas
our architecture imposes negligible penalties on performance, it
permits many new usage models such as paying for use only when
needed (pay for tax software only at tax time), the preloading of
software, and digital distribution of software. 

The saved costs from cheaper distribution and vastly reduced
piracy run into tens of billions of dollars, enough to benefit all
players— authors, consumers, and platform vendors. Again, there
is precedent for the situation where taking on a burden ultimate-
ly enhances profit. When credit-card companies cap payments by

consumers due to fraudulent uses of their cards, consumers feel
more confident about using their credit cards. Similarly, when plat-
form vendors support this framework, this will allow many new
creative and inexpensive uses of and distribution of content, en-
hancing the value of platforms everywhere and ultimately reduc-
ing the price of software to all consumers. Indeed, we foresee an
alliance between (enlightened) consumers, platform vendors, and
authors supporting this framework, because it is in everyone’s eco-
nomic and artistic interest.

Conclusion
The Shield Approach is a flexible, privacy-preserving, antipiracy
solution that does not suffer from “Break Once, Run Everywhere.”
It protects privacy in a strong sense: It can be configured so that
no one knows what you buy, what you use, or even whether
you cheat. Because the content is obtainable separately from the
Tag, preloading the content is possible. Transfers and fair use are
straightforward. Finally, the solution is technology friendly. We
embrace peer-to-peer networks, video-on-demand, superdistri-
bution, and free software. Content Vendors will feel free to dis-
tribute content over the Internet, reducing distribution costs and
material waste. Lawsuits will be reduced. Isn’t it time for tech-
nology to solve this problem?

Acknowledgments
Warm thanks to our principal coworkers in this effort: Yossi Beinart,
Carl Bosley, Ramon Caceres, Aaron Ingram, Timir Karia, David
Molnar, and Sean Rollinson.

References
[1] “Authentication in Distributed Systems: Theory and Practice.”

Butler Lampson, Martmn Abadi, Michael Burrows, and Edward
Wobber. ACM Transactions on Computer Systems Volume 10,
Number 4, (November 1992), pp. 265–310. 

[2] For information about trusted coprocessors, see https://
www.trustedcomputinggroup.org/home/.

[3] For information about anonymizing networks, see http://
tor.eff.org/.

DDJ

(continued from page 24)

26 Dr. Dobb’s Journal, October 2005 http://www.ddj.com

Tip #2 is the logical follow-on from Tip #1, “If In Doubt,
Throw It Out,” (DDJ, September 2005). In deciding if a
local exception should be caught or pitched out, well-
factored and highly focused code is ideal. Refactoring
is fundamental to good programming practice in so
many ways, an important one being that it helps you
understand the finer points of the method contract. This
removes doubt and leads to better decisions regarding
exceptions.

The smaller your functions, the easier it is to tell whether
what just happened was normal. Because each function
can clearly specify exactly what should be expected, know-
ing whether to throw an exception becomes obvious. Large
functions obscure or even obliviate the contract they’re
supposed to fulfill.

— Benjamin Booth
benjamin.booth@gmail.com

Tip #2: Refactor for 
Exceptional Clarity

Pr
ag

m
at

ic
 E

xc
ep

ti
on

s 
. 

. 
. 

.


