
Umedicine: A System for Clinical Practice
Support and Data Analysis

Nuno F. Lages1, Bernardo Caetano1, Manuel J. Fonseca2, João D. Pereira1,
Helena Galhardas1, and Rui Farinha3

1 INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Portugal
2 LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

3 Hospital de São José, Portugal

Abstract. Recording patient’s clinical information in a comprehensive
and easy way is very important for health care providers. However, and
although there are information systems to facilitate the storage and ac-
cess to patient’s data, many records are still in paper. This happens
because systems often are complex to use and do not provide means
to gather statistical information about a population of patients, thus
limiting the usefulness of the data. Physicians often give up searching
for relevant information to support their medical decisions because the
task is too time-consuming. This paper proposes Umedicine, a web-based
software application in Portuguese that addresses current limitations of
clinical information systems. Umedicine is an application for physicians,
patients and administrative staff that keeps, in a structured way, medical
information (e.g., symptoms, clinical examination results, and treatments
prescribed) up to date on a platform that provides easy and quick ac-
cess to a large amount of clinical data. Furthermore, the paper presents
the application of a particular clustering algorithm and a visualization
module for analyzing patient time series data, to identify evolution pat-
terns. Preliminary user tests revealed promising results, showing that
users were able to identify the evolution of groups of patients over time
and their common characteristics.

Keywords: clinical information system, data analysis, clustering, data
visualization

1 Introduction

For health care providers, recording every patient’s clinical information compre-
hensively is of paramount importance. However, for many years, this information
has been recorded in paper, and kept in large dedicated archives, making it dif-
ficult to retrieve relevant past clinical information quickly and effectively when
required for patient care or for scientific research purposes.

With the widespread use of computers, new software tools were developed for
clinical staff to record information about patients. This easy access to the clinical
data promises a significant impact in clinical practice. In particular, continuous
patient monitoring can be ubiquitous, enabling fast response by clinical staff

and quick situation assessment by physicians; clinical research can benefit from
much larger, easier-to-access data sources, that will accelerate the discovery of
new medical knowledge; and health care managers can be able to make more
informed decisions regarding institutional policies.

Currently, existing medical information systems are often too complex to use
and provide free-form fields for collecting patient’s medical information, which
therefore is not stored as structured data. For this reason, many patient records
are still in paper and, in the cases where the information is in the system, it
is not possible to gather statistical information about a population of patients,
thus limiting the usefulness of the data. As a consequence, physicians often give
up searching for relevant information to support medical decisions because the
task is too time-consuming [2, 10].

Hence, there still is a need of tools to enable integration and analysis of
clinical data in an effective manner [10, 11] and to make it useful in everyday
practice. Physicians should have means to explore existing patient data quickly
to support their diagnosis, treatment decisions and research.

In this paper, we propose Umedicine, a new medical information system that
addresses the current limitations of clinical information systems. Umedicine is
a web-based application for physicians, patients and administrative staff with
an appealing and easy-to-use user interface. Through it, physicians and patients
keep medical information up to date on a platform that provides easy, quick and
always-on access to a large amount of clinical data. The medical information is
persistently kept in an electronic and structured format, thus enabling the visu-
alization of medical data per patient as well as the application of data analysis
techniques to extract interesting knowledge from the collected medical data for
a given population of patients. To the best of our knowledge, our application is
the only one that supports: (i) filling in standard international diagnosis-support
questionnaires, (ii) collecting and storing patient data (personal data, and clin-
ical data such as symptoms, clinical examination results, identified pathologies,
and treatments prescribed) in a structured way, appropriate to each medical spe-
cialty, and (iii) applying data analysis algorithms, all integrated in one software
platform. In particular, we demonstrate the use of a clustering algorithm and a
visualization mechanism for analysis of patient time series data.

We performed a preliminary evaluation of the Umedicine user interface with
users, asking them to perform several task scenarios. Users also filled in a sat-
isfaction questionnaire to qualitatively assess Umedicine. Achieved results are
promising, as users were able to complete with success all the tasks and were
mostly satisfied with the user interface provided.

2 Architecture and Implementation

Umedicine has a client-server style architecture with three main components
(see Fig. 1): (i) a front-end available to the user through a web browser client,
(ii) a back-end server, and (iii) a relational database. Users interact with the
system through a web browser, which submits HTTP requests to the server. The

Fig. 1. Architecture of the Umedicine system.

server returns an HTML page. Data may be asynchronously requested from the
server through Asynchronous JavaScript and XML (Ajax) requests made by the
browser. To respond to Ajax requests, the server queries a relational database
and returns the data to the client in the form of JSON objects. The use of
Ajax allows to exchange only new necessary data to fill the page, minimizing
data transfers from the server and improving user waiting time. The server is
developed in Java with extensive use of Spring Framework4. Web pages are
generated with the JavaServer Pages (JSP) and Apache Tiles5 technologies.

Umedicine supports four types of users: non-administrator physicians, ad-
ministrator physicians, clerks and patients. Non-administrator physicians can
add new patients to the system and search, read and modify patient personal
and medical information. In addition to having access to all the functionalities
available to non-administrator physicians, administrator physicians can add new
clerks and physicians (both administrator and non-administrator) to the system.
Patients can view and modify their own personal information, view their own
examination results and history and fill medical questionnaires for diagnosis
support. Clerks can add new patients to the system and add limited patient per-
sonal information (name, birth date, contact and profession). The application
is implemented in a way that ensures that each type of user can only use the
functionalities and have access to information as described above. Data confi-
dentiality is guaranteed in communications between clients and server by use of
Transport Layer Security (TLS) encryption.

2.1 Front-end

Umedicine is implemented as a web application, providing responsive user inter-
faces for the different types of user. This way, Umedicine can be used both on
mobile and desktop environments. In this section, we focus on the user interfaces
offered for physicians and patients.

When the physician selects a patient to visualize, his/her information page
is shown, as illustrated in Fig. 2. It is organized in six parts:

– Personal information (Informação Pessoal): area where physicians can
view and modify information such as name, birth date, contact and habits
of the patient;

4 https://spring.io/
5 https://tiles.apache.org/

Fig. 2. A patient’s information page as viewed by a physician using Umedicine.

– Disease (Doença): area where physicians can select the medical condition
that applies to the selected patient and view or modify information about
symptoms; following the development team’s physician advice, this area also
includes the rectal examination information; users can view symptom and
rectal examination histories and add new symptoms and examination results;

– Treatment (Tratamento): this area displays information about ongoing
treatments and provides means to view treatment history and add new treat-
ments;

– Questionnaires (Questionários): this area provides access to three diagno-
sis support and internationally accepted questionnaires that a patient can
answer at home or during a medical appointment; these questionnaires are
used to compute scores that represent the severity of a patient’s condition;
Umedicine currently supports three relevant standard questionnaire-based
scores: State Self Esteem Scale (IIEF), International Prostate Symptom
Score (IPSS) and State Self Esteem Scale (SSES);

– Diagnosis support examinations (Exames Auxiliares de Diagnóstico):
this area shows the most recent results for several kinds of medical exam-
inations and laboratory tests; the user can add new results and access the
patient’s examination and test histories;

– Notes (Observações): physicians can write a textual note about the pa-
tient’s condition in the day of the medical appointment and view notes from
previous appointments.

The user interface available to patients is more limited (Fig. 3) containing
an area on the left where they can view their current photo and alerts requiring
attention. The middle area shows their current personal information. On the
right, the patient can view information about examinations, current medication
and past surgeries. At the bottom, patients can choose to edit their personal

Fig. 3. A patient’s information page as viewed by the patient using Umedicine.

information or to answer a diagnosis support questionnaire. Note that this can
be performed away from the clinic, which saves time during the medical appoint-
ment and give more privacy to the patient.

2.2 Back-end Server

The back-end server replies to the requests sent by the browsers, performs oper-
ations on the data and stores or retrieves data as necessary from the database.
It is responsible for ensuring that each user has access to, and only to, the data
he/she needs, and for loading the data or web pages requested by the users. The
server is implemented as a Java application with extensive use of the Spring
Framework ecosystem6. It follows the Model-View-Controler (MVC) design pat-
tern and is composed of three main layers — from top to bottom: controllers,
services and Data Access Objects (DAOs) (Fig. 4).

Controllers are the components responsible for the interaction with the clients.
They receive client requests, invoke the appropriate business logic methods and
send a response if required. Controller code (as well as service and Data Access
Object (DAO) code) is, as much as possible, organized to maximize separation
of concerns. In other words, a controller is written to support a specific set of
coherent functionalities. For example, the code responsible for handling requests
related to user account creation is supplied by methods of the class UserCon-
troller; requests from pages where users fill questionnaires are handled by the
QuestionnaireController class; and so on.

Any business logic-related processing of the data retrieved from the database
or sent by the clients takes place in the Services layer. Service methods are in-
voked by controllers (or other services) and return data that controllers use to

6 https://spring.io

Fig. 4. Umedicine’s server component architecture.

respond to the requests issued by the client. Service code is also organized accord-
ing to functionalities. UserService, for instance, contains the code responsible for
user account creation, performing duties such as invoking the DAO methods that
store user data in the database (after performing any required data processing)
or sending emails with new passwords to new users. In a similar fashion, there is
a QuestionnaireService class that handles questionnaire data, and so on. Services
also organize data retrieved from the database via DAOs into objects suitable
to be used by the controllers, which may return data to the browser.

The bottom layer, DAOs, contains the code that enables the interaction be-
tween the server and the database. This code includes the SQL queries that
insert new rows, update existing rows and retrieve data from the database ta-
bles. Information retrieved from the database is converted into Java objects and
passed on to the upper service layer for further processing.

2.3 Relational Database

The Umedicine architecture encloses a relational database to persistently store
three kinds of data: (i) clinical data inserted by patients or physicians; (ii) user
authentication data; and (iii) metadata concerning a specific medical field. The
current version of the application has a database that is set up for Urology but
its schema is designed to be adaptable to other medical specialties. For this
end, the metadata that corresponds to domain knowledge – drug names, disease
names, symptoms, medical examinations and diagnosis support questionnaires

– is stored in the database rather than in the back-end server and is accessed
when the application loads. With this approach, different domain knowledge
from other medical specialties can be replaced into the database and plugged
into the server with minimal modification of server and client code (ideally no
modification will be needed whatsoever). This approach also enables switching
easily from metadata in Portuguese to metadata in another language.

To illustrate the Umedicine database model, we present the subset of the
database relational schema that models medical examinations. Primary keys of
relations are underlined and foreign keys are specified by FK:

Clinical metadata:

ExaminationType (typeName, subTypeName)
Parameter (paramName, paramUnit, paramType)
ExaminationParameter (typeName, subTypeName, paramName)

typeName, subTypeName: FK (ExaminationType)
paramName: FK (Parameter)

Clinical data:

Patient (pNumber)
PerformedExamination (pExamID, pNumber, typeName, subTypeName, date)

pNumber: FK (Patient)
typeName, subTypeName: FK (ExaminationType)

PerformedExaminationValue (pExamID, paramName, value)
pExamID: FK (PerformedExamination)
paramName: FK (Parameter)

There are two types of data modeled in this relational schema: (i) clinical
metadata and (ii) clinical data. ExaminationType, Parameter and Examination-
Parameter are relations that model metadata. This metadata is accessed when
the application starts and is used to determine the information that is shown in
the user interface. The ExaminationType table stores all the possible types and
subtypes of medical examinations. The tuples: <Urofluxometry, - > and <Blood
Tests, Liver function> are examples of records stored in this table. Urofloxome-
try is a medical examination by itself while there are several kinds of blood tests
so the subtype field is required. The Parameter table stores the existing param-
eters, their measurement units and expected types, i.e., String, Integer, Float
or enumerated (in the case the type is ENUM, there is another table not rep-
resented here that stores the possible values). The tuples: <Creatinine, mg/dl,
float> and <Volume, ml, float> are examples of records of the Parameter table.
The table ExaminationParameter stores the correspondence between an exami-
nation and the its parameters. In accordance with the previous examples, the
following tuples: <Urofluxometry, -, Volume> and <Blood Tests, Liver function,
Creatinine> are examples of tuples of the ExaminationParameter table.

Fig. 5. Parameter Volume of type FLOAT and unit milliliter (mL)

The tables Patient, PerformedExamination and PerformedExaminationValue store
clinical data collected through the usage of the application. In particular, Pa-
tient stores data about patients (<P1> and <P2> are examples of tuples); Per-
formedExamination stores the examinations performed by each patient (<PE1,
P1, Blood Tests, Liver function, 27/6/2016> and <PE2, P2, Urofluxometry, -,
28/7/2016> are examples of tuples); and PerformedExaminationValue stores data
about the filled parameters of the examination performed by a patient (examples
of tuples are: <PE1, Creatinine, 1.02> and <PE2, Volume, 157>).

Figure 5 presents the application screen shown for the examination parameter
Volume that is of type float and is measured in milliliters. The metadata stored
in the database table Parameter, in particular, supplies the (meta)data to be
shown in the forms presented in the front-end user interface. The clinical data
that will be filled in by the application users is then stored in the database
tables that store clinical data and is further available for future visualization
and analysis.

3 Clinical Time Series Data Clustering and Visualization

A major advantage of medical information systems is the fact that they are
capable of storing data from a large population of patients, hence providing
a large source of data for discovering trends in disease progression that might
be difficult to uncover by physicians in their daily clinical practice. In order
to make such datasets useful, the medical information system needs to provide
means to find groups of similar patients with basis on their personal and medical
history and enable the exploration of the characteristics of the patients in these
groups. We propose an approach to address this requirement, using an off-the-
shelf state-of-the-art clustering algorithm for time series to find groups of patients
with similar variation of relevant clinical parameters. We complemented the data
analysis performed by the clustering algorithm with a visualization module to
enable physicians to explore the results for each group of patients discovered
by the algorithm. This approach can be applied to any medical parameter that
varies over time.

3.1 Creating Time-Series Data Clusters

Clustering algorithms are widely used in biological research, among many other
fields, for a variety of tasks [9]. The use of classical clustering techniques such as
k -means has important disadvantages when used with biological or clinical data:

1. These algorithms tend to find clusters of similar size, hence they may not
find interesting, relatively small clusters.

2. Each element (patient) is assigned to one and only one cluster, while it may
display behavior similar to more than one (albeit at different intervals in
time), or to none.

3. These algorithms compute clusters using all dimensions (which, in time series
data, translate to time points) at once, hence they may not cluster together
time series that are similar in all but one or two time points.

Biclustering algorithms are a family of clustering algorithms that overcome
these disadvantages. Due to the similar size of genomic and medical datasets, we
expect that biclustering’s benefits apply to medical time series as well. Bicluster-
ing algorithms find groups of patients with basis on a subset of the time points
instead of using all time points at once. In other words, they produce a local
model instead of a global model [5]. The input data of Biclustering algorithms
is represented as a data matrix, where each row represents the evolution of a
given medical parameter for a patient, each column represents a time point and
each matrix element holds a value for a medical parameter. Biclustering algo-
rithms find clusters of rows in the input data matrix that are similar across
a subset of the columns. The complexity of Biclustering algorithm depends
on the applied criteria of similarity between rows, but most formulations are
NP-hard [5, 7]. Hence, most biclustering algorithms resort to heuristics without
guaranteeing optimal solutions, or have prohibitive running times. The problem
becomes tractable, however, in cases where the measured medical parameter is
discrete and the search for similar series is restricted to contiguous time points [5].
The Contiguous Column Coherent Biclustering (CCC-Biclustering) algorithm [5]
overcomes these restrictions to find clusters in time series data in time linear in
the size of the input data matrix. However, many medical parameters of interest
are not discrete. In the original paper, authors are concerned with changes in
gene expression, which are measured in a continuous positive scale with fixed
zero minimum. Hence, the authors apply a discretization strategy to represent
the variation of the gene expression in three levels: significant increase, signifi-
cant decrease and no change of gene expression. This strategy reflects their goal
of finding groups of genes with similar expression variation patterns. For other
problems, care must be taken to choose an appropriate discretization approach
as well.

Due to its performance, we decided to use the CCC-Biclustering algorithm
in Umedicine. We illustrate the application of CCC-Biclustering in Umedicine
with International Prostate Symptom Score (IPSS) time series data. IPSS is a
score calculated from a standardized questionnaire given to certain Urology pa-
tients, such as patients that suffer from Benign Prostatic Hyperplasia (BPH).
Physicians request that BPH patients fill in the questionnaire several times dur-
ing the treatment, obtaining scores that reflect the patients’ evolution over time
time. IPSS has a uniform scale of integer values between 0 (best-case scenario
for the patient) and 35 (worst-case scenario for the patient). It is, thus, discrete
by itself. However, imposing such a fine discrete scale of 36 values would rarely
cluster patients together: only when they had a sequence of exactly equal scores
would the algorithm consider them part of the same cluster. For this reason,

it makes sense to use a coarser discretized scale: for example, a scale with six
discretization levels would enable for a difference of up to 6 points in IPSS while
still being able to capture increasing or decreasing trends, as variations of the
IPSS value would often result in a change to a different level.

The CCC-Biclustering algorithm also computes statistics for each cluster
that it finds. One of the most important of these statistics is a p-value that
reflects how similar the patients in the same group are among themselves. This
p-value is calculated with basis on a hypothesis test in which the null hypothesis
assumes that a cluster, with its size and patient data, was randomly generated.
The lower the value of the p-value, the smaller is the probability of finding this
group of patients under this null hypothesis. Hence, patients in groups with lower
p-values can be expected to be more similar.

3.2 Visualization of Clinical Time-Series Data Clusters

We developed an interactive visualization mechanism, and incorporated into the
Umedicine application, to enable the exploration of time-series data as analyzed
by the CCC-Biclustering algorithm described in Section 3.1. The visualization is
composed of a matrix of line charts (illustrated in Fig. 6), where each chart cor-
responds to a cluster of patients computed by the CCC-Biclustering algorithm.
Each chart also indicates the number of patients in the corresponding group.

Fig. 6. Visualization of time series clustering in Umedicine for the IPSS parameter.

Users can set six different parameters to modify the visualization. Some of
these parameters correspond to parameters of the CCC-Biclustering algorithm
but were renamed for a more intuitive use by users with little knowledge of
statistics. In the same order as in Fig. 6, they are:

1. Allowed similarity between groups (Semelhança permitida entre gru-
pos): this parameter corresponds to the maximum overlap between clusters
computed by the CCC-Biclustering algorithm. In other words, it defines the
maximum percentage of patients in a group that can also be part of another
group. The user can choose five levels of similarity: very small, small, inter-
mediate, large and very large, corresponding to 1%, 5%, 10%, 25% and 50%
maximum overlap.

2. Number of IPSS levels (Número de níveis do IPSS): corresponds to the
number of intervals/symbols chosen to discretize the IPSS scale. The larger
the number of IPSS levels, the narrower they are. Hence, a larger number of
levels leads to clusters where patients are more similar to each other. The
user has five options: very small, small, intermediate, large and very large,
corresponding to 3, 6, 9, 12 and 18 levels of discretization.

3. Minimum group size (Tamanho mínimo dos grupos): the minimum num-
ber of patients in each cluster to be displayed. Charts with a number of
patients inferior to the chosen number are not shown. The user has five op-
tions: very small, small, intermediate, large and very large. The ’very small’
option sets the minimum number of patients per cluster/chart to two. The
other options are computed as a function of the total number of patients in
the dataset and correspond to 10%, 20%, 40% and 60% of the total number
of patients, respectively.

4. Group homogeneity (Homogeneidade dos grupos): the larger this param-
eter, the smaller the maximum p-value of the clusters — as explained in
Section 3.1; clusters whose p-values exceed this value are not shown. The
user chooses among the options ’very small’, ’small’, ’intermediate’, ’large’
and ’very large’, which correspond to p-values 0.25, 0.125, 0.083, 0.0625 and
0.05.

5. Maximum number of clusters/charts to show (Número máximo de gru-
pos a visualizar): it takes into account the chosen presentation order of charts
to filter out exceeding clusters.

6. Presentation order (Ordem de apresentação): users can choose between
displaying charts ordered by decreasing number of patients per cluster, by
decreasing or increasing overall change in IPSS. The overall change in IPSS
here is the simple difference between IPSS at the final time point and the
IPSS at the initial time point.

After setting these parameters as desired, the user generates the visualization
by clicking/tapping the ’Calculate’ (Calcular) button shown in Fig. 6).

Each chart can be selected with a mouse click or finger tap. This action
overlays selected information about the corresponding group of patients, as il-
lustrated in Fig. 7. The information shown includes the three most prevalent

Fig. 7. Example of information displayed over a chart (from figure 6).

medical parameters in the patients belonging to the selected group (Caracterís-
ticas mais comuns) and the treatment given to most patients (Tratamento mais
comum). Pressing the button at the bottom of the chart (Ver mais...) shows
a table with detailed information about the selected group of patients (Fig. 8).
This information includes the percentages of patients that were subject to the
most common treatments for this group, statistical information about weight,
prostate volume and age of these patients and, for each symptom and medical
characteristic, the percentage of patients of the cluster that has this symptom
or characteristic. This last part is sorted from highest to lowest.

Fig. 8. Example of information displayed when a user clicks the button ’Ver mais’
(meaning ’get more information’) on one of the charts shown in Fig. 7.

4 Experimental Validation

To validate our solution, we performed: i) performance tests to analyze the be-
havior of the clustering algorithm according to the number of patients and the
number of data points over time; and ii) usability tests to evaluate the technique
for visualizing and inspecting the clusters of patients produced by the clustering
algorithm.

4.1 Performance Evaluation

To evaluate the performance of the clustering algorithm with medical time series
data, we varied two input parameters: number of patients and number of time

points per patient. We measured the time spent to analyze the data (clustering)
and to display the results of the analysis (visualization). For the analysis (server
side), we measured the time between receiving the request from the client up to
the response from the server. Hence, it includes reading the data, computing the
clusters, computing the related statistics and organizing data for presentation.
Concerning the performance of displaying the results (client side), we measured
the time between receiving the cluster data from the server and displaying the
charts on the screen.

Experimental Setup To perform the evaluation of the clustering algorithm
we had to generate synthetic data, because at this phase of the project we do
not have real data from patients yet. We generated a synthetic dataset to be
representative of a collection of patients that answered the IPSS questionnaire at
several points in time after beginning a treatment. In addition to the IPSS scores
we also generated data for various parameters relevant to the BPH pathology
(e.g. weight, prostate volume).

We performed two experiments to test the CCC-Biclustering. In the first,
we varied the number of patients for a fixed number of time points (5), and in
the second, we varied the number of time points for a fixed number of patients
(1,000). The fixed values for time points and patients were chosen to generate
datasets with data close to reality. The experiment was performed on a 2009
MacBook Pro laptop computer with 8 gigabytes of 1066MHz DDR3 memory, a
2.66 GHz Intel Core 2 Duo processor and a SATA hard disk drive.

Results and Discussion The results obtained for both experiments are shown
in Fig. 9. The left panel shows the behavior of our solution when we vary the
number of patients and the right panel shows the behavior of our solution when
we vary the number of time points per patient.

According to the CCC-Biclustering authors, the algorithm has a worst-case
complexity linear in the size of all input parameters. Our results comply with this
expectation when we vary the number of patients (Fig. 9-left), but not when we
vary the number of time points (Fig. 9-right). We speculate that this deviation
from linearity is caused by data pre- and/or post-processing steps, such as the
computation of statistics. However, further investigation is necessary to explain
this result.

Although the time to compute clusters for a large number of time points is
relatively high, for realistic scenarios (less than 14 time points, corresponding to
14 appointments) the computation on the server side takes less than three min-
utes, making it possible to be used in an appointment scenario, where physicians
can perform the analysis while attending the patient. The results only suffer a
degradation of performance (with waiting times higher than 3 minutes) for more
than 14 time points per patient, an unlikely scenario.

The performance measured for increasing number of patients is also encour-
aging: a matrix with 25,000 patients and the realistic column size of 5 time points

Fig. 9. Performance measurements for the CCC-Biclustering algorithm and the cluster
visualization mechanism. Left panel: results for different numbers of patients for a fixed
number of 5 time points per patient. Right panel: results for different numbers of time
points per patient, for a fixed number of 1,000 patients.

could be analyzed in one minute. Assuming a linear trend, this means that data
from hundreds of thousands of patients could be analyzed in a few minutes.

The processing of the visualization in the front-end, in turn, added a com-
paratively small waiting time, typically under half a second, which does not
represent a performance concern.

4.2 Usability Tests

To complement the performance tests, we performed a usability test with users,
to evaluate the visualization and inspection technique used to present the groups
of patients and their main characteristics.

Experimental Setup We recruited ten volunteers to participate in the tests,
being half of them male. Their ages were between 24 and 34 years old, and all
of them had a university degree. The test consisted of using the application to
perform six tasks (e.g identify the group of patients that improved their condi-
tion, the main characteristics of this group of patients, etc.). After completing
the tasks, we asked users to answer a satisfaction questionnaire, composed of
seven questions to rate the usage of our visualization mechanism and its charac-
teristics (e.g. color scheme, presentation of information), and three open-answer
questions inquiring about the greatest difficulties, best features and suggested
modifications to the visualization.

Results and Discussion Table 1 summarizes information about the users and
how they rated the visualization (from 1 to 5, 5 being the best) on several topics.

Overall, the results shown in Table 1 indicate that the users were pleased
with their experience regarding the issues in questions Q1 to Q7. The lack of

Table 1. Usability test results

User 1 2 3 4 5 6 7 8 9 10 Average Standard Error
Sex F M F M F M M M F F NA NA
Age 26 24 33 33 33 26 33 33 34 31 30.6 3.7
YUC 15 16 16 18 20 27 22 20 24 26 20.4 4.3
Q1 5 4 4 4 5 5 4 4 5 5 4.5 0.5
Q2 4 3 3 4 4 4 4 4 4 4 3.8 0.4
Q3 5 5 4 5 5 5 5 5 3 5 4.7 0.7
Q4 4 5 4 5 5 4 4 5 4 5 4.5 0.5
Q5 5 5 4 4 5 5 4 5 4 5 4.6 0.5
Q6 4 5 4 4 5 3 3 4 4 5 4.1 0.7
Q7 5 5 5 4 5 5 4 4 5 5 4.7 0.5

YUC: How long have you been using computers, in years?
Q1: The color scheme is appropriate to visualization the data
Q2: The options given to control patient group generation are easy to understand
Q3: The user can understand when a patient improves or gets worse
Q4: The user can understand that patients in the same group have similar IPSS
along time
Q5: The user gets a good understanding of the characteristics of patients in the
same group
Q6: It is easy to understand why patients are grouped together
Q7: The data displayed in the visualization table complement well the information
shown in the corresponding chart

clarity of the meaning of the visualization parameters was the main complaint
during the test. However, eight of the ten users recognized that once the meaning
of the options was understood, they could use them and interpret how they
impact the observed results. The experiment showed that the presentation of
the options should be revised but, in general, users were able to complete the
tasks successfully.

In the last part of the test, we asked users to describe what, in their opin-
ion, were their main difficulties, the most positive aspects of the visualization
and what they would like to see changed. Most users complained explicitly about
the unintuitive options provided. Several users suggested to have the button that
closes the table staying visible while the user scrolls up or down to inspect the ta-
ble. Users tended to complimented the look and organization of the visualization
page, with two of them mentioning the ’clean’ look as a very positive aspect. Five
users pointed the identification of common characteristics of the groups (Fig. 7)
and the table with group statistics (Fig. 8) as the most positive aspects of the
visualization. Three users indicated that they liked the interaction experience,
especially its responsiveness. Other positive comments mentioned that it was
easy to understand when patients improve or worsen.

5 Related Work

This section provides an overview of: (i) the most relevant commercial medical
software applications that offer functionalities similar to the ones offered by
Umedicine; and (ii) research works focusing on some of Umedicine’s features.

There is a vast amount of medical software applications available in the mar-
ket, providing support to clinical practice (in particular clinical appointments).
The most important features offered are: (i) health center management aiming
at managing appointment scheduling and payments; (ii) electronic prescription
of medication; (iii) electronic health records to store clinical information about
patients, such as symptoms and treatments; and (iv) population health manage-
ment through graphics that show the evolution of health parameters for a set of
patients. The first two features are out of the scope of the current paper, so we
will not develop any further about them.

The software applications that provide features (iii) and (iv) and that are the
most used in Portugal, are: Glintt HS7, iMed8 and MedicineOne9. Two additional
software application used in Brazil (therefore, also supporting Portuguese) are
IClinic10 and HiDoctor11. Other software applications widely used according
to the Medical Economics web site12 are: CareAware13, and eClinicalWorks14,
among others. We analyzed the functionalities provided by these tools based on
the information available in the corresponding web sites and on the experience
of our team’s physician in his daily activities in Portuguese hospitals.

The result of the analysis performed is described in what follows. First, the
forms and screens of these applications’ user interface show all possible medical
information (e.g., examinations or symptoms) independently of the medical spe-
cialty. This kind of user interface constitutes an overhead for the daily activity of
physicians, because they waste time searching for the most adequate information
field to fill in. Second, most of the applications typically support many free-form
fields to be filled in by physicians. Consequently, unstructured (or textual) data
is stored which prevents the application of data mining algorithms to discover
knowledge from data for assisting physicians in decision taking. Third, none
of the analyzed tools supports an electronic format of internationally accepted
questionnaires for assessing patient’s health status (for example, IPSS in Urol-
ogy) and the corresponding answers given by patients. The electronic support of
these questionnaires is important to allow patients to comfortably answer them
(e.g. at home) and thus enabling the fast computation of a score that assesses

7 http://www.glintt.com/
8 https://www.imed.com.pt/
9 http://www.medicineone.net/

10 https://iclinic.com.br/
11 https://hidoctor.com.br/
12 http://medicaleconomics.modernmedicine.com/medical-economics/content/tags/

top100ehrs/top-100-ehr-companies-part-1-4
13 https://store.cerner.com/items/2
14 https://www.eclinicalworks.com/

their health condition. Finally, very few of these tools (namely, careAware) sup-
ports the visualization of the evolution of a patient’s health status over time.
Moreover, a very small percentage of tools (e.g., eClinicalWorks) offers a func-
tionality for analyzing the evolution of the health status of a set of patients (i.e.,
a population) over time.

In terms of research literature, we present two types of work: (i) those whose
goal is to apply data mining algorithms to large medical datasets to extract useful
information, and (ii) those whose goal is to apply visualization techniques to
facilitate the exploration of data and analysis results by the end users. In the first
group, we highlight the work by Donzé et al [3] that provides an example of how
Logistic Regression can be used to make predictions about a patient outcome.
Che et al [1] show how Bayes networks can be used to detect temporal patterns
in time-series data, which is useful to predict the evolution of a patient over
time. Finally, Najjar et al.’s paper [6] describes a powerful clustering approach
that can be used to find groups of similar patients.

In the second group of research projects, LifeLines [8] was a seminal work
developed for visualization of a patient’s medical history. LifeLines2 [10,12,13] is
a system designed to search and explore event sequences in temporal categorical
data from multiple records of patient data. Gravi++ [4] is an application that
clusters patients according to the similarity of their ordinal categorical attribute
values. Furthermore, Gravi++ supports the visualization of the evolution of
patients through time with an animation controllable by the user.

6 Conclusions

We described Umedicine, a software system to support clinical activity, by keep-
ing medical information up to date and stored in an organized way. It provides
easy, quick and always-on access to a large amount of clinical data. The medical
information is persistently kept in an electronic and structured format. It pro-
vides secure authentication for four types of user, and a specific user interface for
each. Additionally, the system includes a clustering algorithm suited to discover
groups of patients with similar medical histories and a visualization mechanism
to explore the clustering results, showing the main characteristics, treatments
and statistics of the patient clusters.

Experimental evaluation revealed that users were able to understand the
groups of patients created and the reasons (characteristics) why they were in the
same group, and they were also able to identify the situations where patients
improved or worsen their condition. Despite this, our solution still needs some
improvements. One is to redesign the options of the visualization mechanism for
an easier understanding by users. The clustering capabilities also have plenty of
room for expansion: a variety of machine learning algorithms, such as Bayesian
networks or artificial neural networks, among others, can be integrated in the
system to suggest diagnosis, treatments or predict treatment outcomes based on
the patient’s history. Finally, it is important to test the application in a real
clinical environment, with physicians as users and data from real patients. This

experience will certainly guide future decisions regarding new functionalities to
be integrated in the system and eventually determine the development lines that
will be followed.

References

1. Che, Z., Kale, D., Li, W., Bahadori, M.T., Liu, Y.: Deep Computational Pheno-
typing. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. pp. 507–516. KDD ’15, ACM, New York,
NY, USA (2015)

2. Christensen, T., Grimsmo, A.: Instant availability of patient records, but dimin-
ished availability of patient information: A multi-method study of GP’s use of
electronic patient records. BMC Medical Informatics and Decision Making 8, 12
(2008)

3. Donzé, J., Aujesky, D., Williams, D., Schnipper, J.L.: Potentially Avoidable 30-
Day Hospital Readmissions in Medical Patients: Derivation and Validation of a
Prediction Model. JAMA Internal Medicine 173(8), 632 (Apr 2013)

4. Hinum, K., Miksch, S., Aigner, W., Ohmann, S., Popow, C., Pohl, M., Rester,
M.: Gravi++: Interactive Information Visualization to Explore Highly Structured
Temporal Data. J. UCS 11(11), 1792–1805 (2005)

5. Madeira, S.C., Teixeira, M.C., Sa-Correia, I., Oliveira, A.L.: Identification of Reg-
ulatory Modules in Time Series Gene Expression Data Using a Linear Time Biclus-
tering Algorithm. IEEE/ACM Trans. Comput. Biol. Bioinformatics 7(1), 153–165
(Jan 2010)

6. Najjar, A., Gagné, C., Reinharz, D.: Two-Step Heterogeneous Finite Mixture Model
Clustering for Mining Healthcare Databases. In: 2015 IEEE International Confer-
ence on Data Mining (ICDM). pp. 931–936 (Nov 2015)

7. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Applied
Mathematics 131(3), 651–654 (Sep 2003)

8. Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller, D., Shneiderman, B.: Life-
Lines: Using visualization to enhance navigation and analysis of patient records.
Proceedings of the AMIA Symposium pp. 76–80 (1998)

9. Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W.,
Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of
biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129
(May 2006)

10. Rind, A.: Interactive Information Visualization to Explore and Query Electronic
Health Records. Foundations and Trends R© in Human–Computer Interaction 5(3),
207–298 (2013)

11. Smith, R.: What clinical information do doctors need? BMJ 313(7064), 1062–1068
(Oct 1996)

12. Wang, T.D., Plaisant, C., Quinn, A.J., Stanchak, R., Murphy, S., Shneiderman,
B.: Aligning Temporal Data by Sentinel Events: Discovering Patterns in Electronic
Health Records. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. pp. 457–466. CHI ’08, ACM, New York, NY, USA (2008)

13. Wang, T.D., Plaisant, C., Shneiderman, B., Spring, N., Roseman, D., Marchand,
G., Mukherjee, V., Smith, M.: Temporal summaries: Supporting temporal cate-
gorical searching, aggregation and comparison. IEEE transactions on visualization
and computer graphics 15(6), 1049–1056 (2009 Nov-Dec)

	Umedicine: A System for Clinical Practice Support and Data Analysis

