
Sparse solutions for linear prediction problems
by

Tyler Neylon

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Mathematics

New York University
May 2006

Dennis Shasha—Advisor

Mehryar Mohri—Advisor

for my father

iv

Acknowledgements

(Draft note: This is just a very rough draft of my true acknowledgements
— I still have a bit to add here!)

I would like to thank my first advisor, Dennis Shasha, for his particular
attention and enthusiastic support which has proved essential in my graduate
career.

I would also like to thank Mehryar Mohri, who has become my second
advisor, for his consistent generosity of time and expert advice, as well as an
abundant sense of humor.

v

Sparse solutions for linear prediction problems

Author: Tyler Neylon

Advisors: Dennis Shasha and Mehryar Mohri

Abstract

Simplicity is the ultimate sophistication.
-Leonardo da Vinci

The simplicity of an idea has long been regarded as a sign of elegance and,
when shown to coincide with accuracy, a hallmark of profundity.

In this thesis our ideas are vectors used as predictors, and sparsity is our
measure of simplicity. A vector is sparse when it has few nonzero elements. We
begin by asking the question: given a matrix of n time series (vectors which
evolve in a “sliding” manner over time) as columns, what are the simplest linear
identities among them? Under basic learning assumptions, we justify that such
simple identities are likely to persist in the future. It is easily seen that our
question is akin to finding sparse vectors in the null space of this matrix. Hence
we are confronted with the problem of finding an optimally sparse basis for
any vector space. This is a computationally challenging problem with many
promising applications, such as iterative numerical optimization [15], [7], fast
dimensionality reduction [22], graph algorithms on cycle spaces [24], and of
course the time series work of this thesis.

In part I, we give a brief exposition of the questions to be addressed here:
finding linear identities among time series, and asking how we may bound
the generalization error by using sparse vectors as hypotheses in the machine
learning versions of these problems. In part II, we focus on the theoretical
justification for maximizing sparsity as a means of learning or prediction. We’ll
look at sample compression schemes as a means of correlating sparsity with
the capacity of a hypothesis set, as well as examining learning error bounds
which support sparsity. Finally, in part III, we’ll illustrate an increasingly
sophisticated toolkit of incremental algorithms for discovering sparse patterns
among evolving time series.

vi

Contents

Dedication . iv
Acknowledgements . v
List of Figures . ix

I Introduction 1

1 Linear Prediction Problems 2
1.1 The correlation problem . 3
1.2 Generalizing the correlation problem 5
1.3 Guarantees from learning theory 10

II Sparsity in theory: learning 14

2 Elements of learning theory 16
2.1 The PAC model . 16

3 Learning as sample compression 23
3.1 Labeled sample compression schemes 24

3.1.1 Basic properties of concept classes 24
3.1.2 Sauer’s Lemma . 25
3.1.3 Maximum concept classes 27

3.2 Unlabeled sample compression schemes 32

4 Sparsity for linear predictors 35

vii

III Sparsity in practice: Time series algorithms 40

5 Introduction 42
5.1 The predictive power of the null space 44

6 Theory of sparse matrices 48
6.1 Sparsity inequalities . 48
6.2 Gaussian elimination for sparsity 49
6.3 Most matrices are completely unsparsifiable 50
6.4 Equivalent conditions for sparsifiability 51

7 Exact matrix sparsification 56
7.1 NP-hardness and other reductions 56

7.1.1 Sparsest Independent Vector ∈ NP 60
7.1.2 Sparsest Vector is NP-hard 61

7.2 Algorithms . 61
7.2.1 Previous algorithms . 61
7.2.2 New incremental algorithms 68

8 Probabilistic and approximate sparsification 79
8.1 Hardness of approximation . 79

8.1.1 Equivalence and APX-hardness of Min-Unsatisfy 79
8.1.2 APX-hardness of Matrix Sparsification 82
8.1.3 An approximation algorithm in RP 85
8.1.4 L1 minimization approximates L0 minimization 89

8.2 Algorithms . 90
8.2.1 Heuristics for solving Matrix Sparsification 91
8.2.2 Fast incremental algorithms with high sparsity 92
8.2.3 Idea of the ε−space . 94
8.2.4 The block power iteration 97
8.2.5 Time complexity . 99

9 Conclusion 101
9.1 Summary . 101
9.2 Future Work . 103
9.3 Conclusion . 104

Notation 105

viii

Linear Algebra Glossary 108

ix

List of Figures

7.1 One iteration of the partial history null track algorithm 73
7.2 Density of null space comparison on simulated data. Back sub-

stitution remains between 3–6% while our periodically recali-
brated algorithm achieves between 3–7%. 76

7.3 Average number of nonzeros per column in stock price data.
A full column could have contained up to 500 nonzeros. Back
substitution alternated between 38–41 while our algorithm ac-
complished between 41–49. 77

7.4 Relative speedup factor between our algorithm and back substi-
tution over partial history sliding windows of increasing width.
Tests were run on 1000 streams of simulated data. The factor
represents the time efficiency gained over one iteration. 78

x

Part I

Introduction

1

Chapter 1

Linear Prediction Problems

In this chapter we’ll survey the core algorithmic problem addressed in this
thesis: finding simple linear identities among time series. We’ll motivate this
problem by treating it as a natural generalization of correlated pairs of time
series, and in later chapters we will argue that such identities tend to be good
predictors of future behavior in a certain model of learning.

A time series is a stream of data which we think of as evolving over time.
The data could represent live stock prices or returns, the blood pressure of
a patient being monitored, or sound data from a song being played. In our
case, we are interested in large sets of time series from which we will derive
patterns, such as temperature readings from multiple locations at once, or live
stock prices of many symbols (e.g. AAPL, GM, IBM,. . .). We will also focus on
discrete time series, whose entries may be indexed by integers corresponding
to atomic time units (such as seconds) — this is in contrast with a continuous
time series, whose entries may be considered as indexed by an arbitrary real
value t ∈ R.

Mathematically, a set of (discrete) time series may be considered as a
matrix. At any time t ∈ N, we have the t×n matrix At = (aij), in which each
column contains all the data collected thus far from a single source. In this
model, we assume that the time series have been synchronized so that each
row corresponds to a single time step. We have n data sources, one for each
column — entry aij is the data collected from stream/column j at time/row
i. Algorithms which operate on a set of time series would be wise to function
in an incremental fashion, taking advantage of computations on At−1, which
form the first t− 1 rows of the next matrix, At at time t.

In some applications, we are concerned only with data from the last m time

2

steps — here, m is the length of our sliding window. Restricting our attention
to this limitation of past data may be considered as a type of Markovian
assumption on the dependency between past and present; in particular, we
assume that the patterns we are interested in (to be outlined below) will be
equally evident even if we ignore data more than m time units old. In this
case, instead of using the usually larger matrix At, which contains all our data,
we’ll work with matrix St which is restricted to this sliding window of data.
Thus, St is of some fixed size m × n and is composed of the last m rows of
matrix At+m. (We use At+m instead of At since otherwise there would not be
enough rows in At for small t to complete an entire sliding window of size m.)

1.1 The correlation problem

In this section, we consider the problem of finding all pairs, among a given set
of vectors, which have a high correlation coefficient.

Noticing certain simple patterns which have been consistently true over
the past m time units can often help us form reasonable expectations of future
behavior. For now we consider which patterns may be interesting to discover;
we will discuss future behavior further in §1.3. One of the simplest such
patterns is the idea of a correlated pair.

Given two column vectors si and sj from matrix St, we’d like to measure
how close they are to fitting a linear equation of the form asi +bsj = c~1, where
~1 is the column vector of all ones. The traditional measure of “closeness” here
is the Pearson correlation rij (or just ‘the correlation,’ [35], page 567), which
can be defined in terms of the slopes given by using the least-squares method
to approximate the linear coefficients.

In particular, we may define

rij :=

∑
k (ski − s̄i) (skj − s̄j)√∑

k (ski − s̄i)
2∑

k (skj − s̄j)
2
, (1.1)

where s̄i is the average of the values in si, and ski is the kth value in vector si.
Throughout this thesis, we will consistently use sk to denote a column vector
(such as the kth column of a matrix S), sk for a row, and sij for the ith value
in column j, or equivalently the jth value in row i; this internal consistency
will help to avoid confusion about how our vectors relate to our matrices.

3

By defining the zero-mean vectors z` via zk` := sk`− s̄` for ` = i, j, we can
rewrite (1.1) as

rij =
〈zi, zj〉
||zi|| · ||zj||

= cos θij, (1.2)

where θij ∈ [0, π/2] is the angle between zi and zj. Our ‘default’ norm, denoted
simply by || · ||, is always the Euclidean norm. If these zero-mean vectors fit
a linear least-squares model, it will now be of the form azi + bzj = 0. Hence
measuring the linear correlation of zi and zj corresponds with measuring their
linear dependence. Given two vectors, the angle between the two is a fair
quantification of their linear dependence. Thus, pairs with low correlation
have an angle θij close to π/2 and a coefficient rij close in magnitude to 0;
while those pairs with higher correlation have θij near zero and hence rij close
in magnitude to 1. Notice that by the Cauchy-Schwarz inequality, we always
have |rij| ≤ 1 (many important linear algebra concepts, including the Cauchy-
Schwarz inequality, are breifly reviewed in the Linear Algebra Glossary at the
end of this thesis).

From this point on, we will treat each of si and sj as normalized data
so that s̄i = s̄j = 0 and ||si|| = ||sj|| = 1. Such normalization is relatively
easy to achieve in practice by setting si = zi/||zi||, where the zi are the zero-
mean versions of the raw data. This normalization will not be used in our
incremental algorithms presented later; it is simply a means of conveniently
presenting the motivating material in this introduction. In this simplified case,
(1.2) becomes

rij = 〈si, sj〉.
That is, rij is simply the dot product between si and sj. Thus we have jus-
tified that, when the columns of matrix St are normalized, setting R := ST

t St

truly results in a correlation matrix since the entry rij in R is exactly the
correlation coefficient (of the same name) above. Moreover,

||si − sj||2 = 〈si − sj, si − sj〉 = ||si||2 + ||sj||2 − 2〈si, sj〉 = 2− 2rij,

so that the pairs with highest correlation coefficient rij are exactly those which
minimize the distance ||si − sj||.

Thus we have reduced the problem of finding all pairs with a high correla-
tion coefficient to

Closest Pairs Given m × n matrix S and threshold ε > 0, find all pairs
{i, j} ⊂ [n] with ||si − sj|| < ε.

4

Here, as above, si denotes the ith column of S, and [n] := {1, 2, . . . , n}.

1.2 Generalizing the correlation problem

In this section, we propose the idea of small linear identites, or near-identities,
as a generalization of correlated pairs. We have considered vectors s1 and
s2 to be closely correlated if they nearly fit a linear equation of the form
v0

~1 + v1s1 + v2s2 ≈ 0 for scalar values v0, v1, v2, which we could state more
precisely as

||v0
~1 + v1s1 + v2s2|| < ε

for some given ε > 0.
Hence, given n vectors s1, . . . , sn, it seems natural to ask if there exists a

column vector v of coefficients v0, . . . vn so that

||v0
~1 + v1s1 + v2s2 + . . . + vnsn|| < ε.

If matrix S has an all-ones column ~1 as its first column, followed by s1, . . . , sn,
then we see that Sv = v0

~1 + v1s1 + v2s2 + . . . + vnsn, allowing us to restate
the inequality as

||Sv|| < ε. (1.3)

If only finitely many vectors v satisfy this inequality, then we would like to
discover those.

However, there are infinitely many vectors v which satisfy this equation.
Indeed, if v is any vector whatsoever (of the appropriate dimension), then
we may choose a scalar µ with |µ| < ε/||Sv|| so that vector µv then satisfies
equation (1.3).

As a first step, we will require that v be a unit vector; that is, we require
||v|| = 1 to eliminate the above source of an abundance of solutions v. However,
there will still be many matrices S for which infinitely many vectors v satisfy
(1.3). For instance, if ~u,~v are orthogonal unit vectors so that both ||S~u||
and ||S~v|| are bounded above by ε/

√
2, then, for any pair of scalars x, y with

x2 + y2 = 1, we have

||S(x~u + y~v)|| ≤ |x| · ||S~u||+ |y| · ||S~v|| ≤ ε

since |x|+ |y| ≤
√

2; while

||x~u + y~v||2 = x2 + y2 = 1,

5

since 〈~u,~v〉 = 0. In other words, based on the two vectors ~u and ~v, we have
created an infinite set of vectors {x~u + y~v : x2 + y2 = 1} which all satisfy
equation (1.3).

Thus, we must further specify which coefficient vectors v are of interest
to us. Again drawing our motivation as a generalization of the Closest Pairs
problem, we will focus on those solutions to (1.3) which involve the smallest
number of columns of S. We will restate this idea in terms of sparsity: if
a particular coefficient vi = 0, then column si essentially plays no role in
equation (1.3). Thus those coefficient vectors v with the most zeros — the
sparsest v’s — are exactly those which involve the smallest number of data
streams (columns).

In order to formally define our problem, we will now define the support
of a vector v as the set of coordinates which are nonzero; specifically

supp(v) := {i : vi 6= 0}.

Within a set of vectors V ⊂ Rn, a particular vector v ∈ V has minimal
support when there is no y ∈ V such that supp(y) (supp(v). A vector with
minimal support is sparse in the sense that its support cannot be reduced
within V .

We may now pose the problem

Minimal Linear Near-Identities Given matrix S, find all unit vectors v
satisfying ||Sv|| < ε with minimal support.

Rather than rigorously defining the term sparsity in this thesis, we will
restrict this idea to the partial ordering of vectors based on their number
of nonzeros. In particular, we will say that vector x is sparser than y iff
#supp(x) < #supp(y). Thus the solutions to Minimal Linear Near-Identities
certainly include what we would like to indicate as “the sparsest” vectors v
satisfying (1.3).

Notice that if we had not specified v to be nonzero, then v = 0 would be
our only (non-informative) solution.

At this point, we will examine some very similar problems which lend
themselves more readily to an algorithmic analysis.

Our first variation will be to examine the non-approximation version of
Minimal Linear Near-Identities, which is quite simply

Minimal Linear Identities Given matrix S, find all nonzero vectors v
satisfying Sv = 0 with minimal support.

6

Here we may omit the condition that v be a unit vector: in the approxima-
tion problem Minimal Linear Near-Identities any vector v could be scaled down
by some factor µ so that ||Sµv|| would be small enough, but in this exact
version, if Sv 6= 0, then no nonzero scalar µ will cause S(µv) = 0.

A circuit among a set of vectors is a nonempty linearly dependent subset
of minimal size. The reader familiar with matroids [26] will recognize that
the Minimal Linear Identities problem is nothing more than discovering all the
circuits among the columns of S.

This last problem formulation brings to focus the null space of matrix S,
which we may denote by null(S): by definition, any vector v ∈ null(S) satisfies
Sv = 0. We may wonder, intuitively, how Minimal Linear Identities relates to
the problem of finding an “optimally sparse” basis to the null space. Let us
define some terms in order to formally pose this new problem.

A null matrix N for A obeys AN = 0. A full null matrix N for A is
a null matrix whose columns form a basis for null(A). Equivalently, the n× c
matrix N is a full null matrix for A iff

• AN = 0, and

• rank(N) = c ≤ n, where

• c = dim(null(A)).

The dimension c of null(A) is also referred to as the corank of A, written
corank(A).

A matrix N is optimally sparse iff, for any invertible matrix T , matrix
NT has at least as many nonzeros as N . When the columns of N are linearly
independent, the following statements are equivalent:

• M = NT for some invertible matrix T ;

• col(M) = col(N) and M is of the same dimensions as N .

This follows from the fact that the columns of M and N are both bases of
the same space col(N) = col(M). Thus any optimally sparse matrix N with
linearly independent columns satisfies, for all M of the same dimensions as N ,

col(M) = col(N) =⇒ M has at least as many nonzeros as N.

We may now pose our new problem, which, in various flavors, will become
the core problem for the rest of this thesis:

7

Sparse Null Space Given matrix A, find an optimally sparse full null
matrix N for A.

Suppose T is an invertible matrix. Notice that NT is a full null matrix for A
iff N is. This follows since rank(NT) = rank(N) and col(NT) = col(N). Hence,
by requiring that N be optimally sparse in this problem, we are simultaneously
requiring that the columns of N have the least number of nonzeros among all
full null matrices for A.

At this point it may be helpful to give an example:

Example 1 Suppose our data is represented by the 3× 6 matrix

A =

 2 5 4 4 1 5
1 1 1 1 1 3
0 5 4 4 1 1

 .

Then the set M of minimal linear identities is given by

M =

2
0
0
0
1
−1

 ,

0
3
−4
0
1
0

 ,

0
0
−1
1
0
0

 ,

0
3
0
−4
1
0

 ,

−2
3
−4
0
0
1

 ,

−2
3
0
−4
0
1

.

On the other hand, here is an optimally sparse full null matrix:

N =

2 0 0
0 3 0
0 −4 −1
0 0 1
1 1 0
−1 0 0

 .

Notice that the three columns of N are exactly the first three linear identities
in M. The last three identities in M are various linear combinations of the
first three (and therefore of columns of N).

We could have formed other full null matrices out of the vectors inM; but
notice that our optimally sparse N will necessarily avoid the last two vectors
in M, which, although having minimal support, are less sparse than the rest.
We’ll look more closely at the relationship between columns of N and vectors
in M in property 1 below.

8

This example highlights the question: How is the problem sparse null ma-
trix related to minimal linear identities? We will see that every column of N
represents a circuit of A. In fact, we will see even more than this:

Property 1 Suppose N is an optimally sparse full null matrix for A. Let Ci
denote the set of circuits containing column ai of A. If Ci is nonempty, then
there is a column nj in N so that

1. supp(nj) ∈ Ci, and

2. supp(nj) is of minimal size within Ci.

In other words, the sets given by supp(nj) for each column of N represent
a circuit of minimal size. What’s more, we don’t need to worry about some
column of A missing from the supports of columns in N ; this can happen only
when that column is in no circuits at all.

For the proof it will be useful to introduce the so-called “zero-norm” on
vectors, defined on x ∈ Rn by

||x||0 := |supp(x)| = #{i : xi 6= 0}.

Technically, this is not actually a norm since it fails to scale — that is, ||λx||0 6=
|λ|·||x||0 for any scalar λ 6∈ {0, 1}. Unlike true norms on Rn, it is neither convex
nor even continuous. However, it is the case that ||x||0 ≥ 0 with equality
exactly when x = 0. And the triangle inequality holds: for the zero-norm,

||α + β||0 ≤ ||α||0 + ||β||0

means exactly that
|A ∪B| ≤ |A|+ |B|

for A = supp(α), B = supp(β); and this inequality is clearly true for any two
sets A and B.

We are now ready to give the

Proof of Property 1.
As above, Ci denotes the set of circuits among columns of A which include

the ith column ai.
Suppose the set of circuits Ci is nonempty. Technically, circuits are just

sets, so we’ll identify each c ∈ Ci with a vector ~c so that supp(~c) = c and
A~c = 0.

9

Choose a minimally-sized s ∈ Ci (s is small). Since N is a full null matrix,
~s ∈ col(N) = null(A), so that we may find coefficients x satisfying Nx = ~s.

If the ith row of N were all zero, then we would also have ~si = 0, which
is not the case. Hence there must be some column nj with j ∈ supp(x) and
nij 6= 0; we claim that supp(nj) ∈ Ci and ||nj||0 = ||~s||0, so that nj meets both
conditions (1) and (2) of the property.

Indeed, suppose ||nj||0 > ||~s||0, and let matrix M be identical to N except
that column nj is replaced by ~s. Notice that nj ∈ col(M) since j ∈ supp(x)
and ~s = Nx gives us a linear equation with nonzero coefficients between ~s and
nj, which may be solved for nj — that is, we may turn the equation ~s = Nx
into nj = Mz for some z.

Thus we would have col(M) = col(N), but M is strictly sparser than N ,
since ||~s||0 < ||nj||0. By our choice of N , this is impossible; so it must be the
case that ||nj||0 = ||~s||0, confirming part (2).

If supp(nj) 6∈ Ci, then, since supp(nj) indexes a linearly dependent subset
of the columns of A including ai, there must be some subset τ (supp(nj)
which is in Ci. But then |τ | < ||nj||0 = |s|, contradicting our choice of s.
Hence supp(nj) ∈ Ci, confirming part (1) of the property.

This completes the proof. 2

In this section, we have been introduced to the core problem Sparse Null
Space; the majority of this thesis is devoted to how and why to solve different
versions of this problem. Property 1 shows us that any solution to Sparse
Null Space is a useful subset of those solutions to Minimal Linear Identities,
which, along with Minimal Linear Near-Identities, we have posed as a natural
generalization of finding highly correlated pairs among a set of time series.

1.3 Guarantees from learning theory

The previous section posed the Sparse Null Space problem as a potential answer
to which patterns among time series may be interesting to us. In this chapter
we will mathematically formulate the question: why should the vectors in
Sparse Null Space be useful to us? In particular, we recognize that our ultimate
goal is not always retrospective subset selection, but often to discover some
information about the time series which will persist in the future. Thus, we
should ask: Is sparsity really a useful heuristic for predictive power?

In order to pose our answer to this question, as we will do in §4 below,
we must first describe the idea of structural risk minimization outlined by

10

Vladimir Vapnik in [34].
When attempting to learn a pattern based on a set of training data, one

often arrives at the problem of overfitting. Intuitively, overfitting occurs when
the pattern learned is given too many degrees of freedom. A natural example
is that of choosing a polynomial to approximate a set of points in the plane. It
may be the case that these points were in fact generated by a very low-degree
polynomial but our data is noisy. Given 20 noisy points approximately on a
parabola, we may unwisely find a degree 19 polynomial which perfectly fits
each point. However, it is well-known that such an exactly fitting polynomial
is very likely to exhibit erratic behavior outside the range of the training data
(see, for example, lecture 11 in [31]).

Thus arises the question: when learning a pattern based on training data,
how can we avoid overfitting? The answer given by structural risk minimiza-
tion is to restrict our learned pattern to a set with only a limited degree of
freedom. In the example of polynomials, this would correspond with choosing
a curve of limited degree — we could, say, choose the parabola which best
fits the noisy data, which would then give better predictions of extrapolated
values on the curve.

We will postpone rigorous definitions until chapter 2, but for now let us
roughly state the objective of our approach to learning patterns: given sets of
patterns P1, P2, . . . such that set Pi has, in some sense, i degrees of freedom, and
a set of training data T , we would like to choose a set Pi a pattern p ∈ Pi which
will minimize some balance between the error on the training data error(p, T)
and the degree of freedom i allowed within set Pi. Thus we are attempting
to avoid overfitting by reducing the degrees of freedom allowed to our learned
pattern p — this is the intuitive idea behind structural risk minimization.
(The machine learning reader may anticipate that we will eventually formalize
the idea of “degrees of freedom” as the VC dimension.)

How can we apply these ideas to our problem Sparse Null Space? We will
pose the learning problem in terms of a single-vector version of Sparse Null
Space:

Approx P0 Given a matrix A, column vector b, and an error tolerance ε,
find x which solves {

min ||x||0
s.t. ||Ax− b|| < ε.

11

If x is a solution to Approx P0, then we may define matrix C = (A b), and
vector y =

(
x
−1

)
to see that

||Cy|| = ||Ax− b|| < ε,

so that y is an approximating vector to the null space of C. Moreover, this
problem is attempting to sparsify this vector by minimizing its number of
nonzeros. Thus Approx P0 may be considered an approximation version of
Sparse Null Space which focuses on a particular column or time series b of our
data.

At the same time, we may think of Approx P0 as attempting to learn a
pattern x which gives a relationship between the columns of A and column
b. Since we consider these columns as time series, there will be a new row α
added to A and a new coordinate β to b. Our goal in learning x is to hope
that

〈α, x〉 ≈ β,

which corresponds to our approximation Ax ≈ b remaining (approximately)
true at the next time step.

In this formulation, we specify the error tolerance ε as an input to the
problem. Thus, in terms of structural risk minimization, our theoretical goal
is to show that a set of sparse vectors x has a low “degree of freedom.” If
we can show this, then solving Approx P0 as a learning problem does indeed
help minimize a balance between the error of the pattern and the “degrees of
freedom” of our set of patterns.

We state this as

Question 2 Is it the case that, by restricting our choice to sparse vectors x
among those for which Ax ≈ b, we effectively reduce our “degrees of freedom”
for the sake of structural risk minimization?

Why should we expect this to be true? Intuitively, one could argue that
a sparse vector is a pattern based on only a small subset of our data. So it
becomes natural to ask: how does sparsity in learning, in general, relate to
effective learning algorithms? If linear sparse patterns are a useful goal because
of their sparsity, then perhaps any pattern based on only a small subset of the
data is also helpful. Thus we will generalize question 2 as

Question 3 Suppose a learning algorithm operates on a set of training data
T by first finding a small subset S ⊂ T to focus on, and then, “forgetting” the

12

rest of T , learns a pattern based entirely on subset S. Can this technique be
an effective approach to learning?

An affirmative answer here would provide even more justification to the
idea of seeking sparse solutions to linear prediction problems, as those are an
interesting specific case of the above idea. This last question is examined more
carefully in §3 below.

The questions presented here give our primary motivations for the ideas to
be discussed in part II below.

In this chapter, we have become acquainted with the key ideas behind
this thesis: the problem Sparse Null Space and variations thereof (such as Ap-
prox P0) serve as interesting generalizations to correlated pairs. In the work
to follow, we explore first why solving these problems is likely to help in pre-
dicting future behavior among time series, and then how we may go about
efficiently discovering solutions on real data.

13

Part II

Sparsity in theory: learning

14

In this part, we’ll focus on justifying why we expect sparsity-based predic-
tions to be accurate. In particular, we will use the Probably Approximately
Correct model (the PAC model) of learning formulated by Leslie Valiant [32]
and built upon the work of Vladimir Vapnik and Alexey Chervonenkis [33].

The PAC model is named for providing a prediction guarantee of the form

P (error > ε) < δ,

where δ, ε > 0 are (small) inputs which determine how hard the algorithm must
work to achieve this guarantee. We can think of this inequality as assuring us
that, with high confidence (1− δ), the general prediction of the algorithm will
be very accurate (within ε) — it is probably approximately correct.

The fundamental assumption of this model is that the data points used for
training are drawn in an i.i.d. fashion according to the same distribution by
which future points (or test sample points) are received. The model has the
advantage of assuming nothing at all about this distribution, and is flexible
enough to accommodate a vast range of anticipated patterns in the data. How-
ever, only certain types of patterns, or concept classes, are provably learnable
in this model.

First (in chapter 2), we will briefly review the elements of learning theory
surrounding the PAC model. Next (in chapter 3), we will consider compression
schemes in learning as an abstract application of sparsity in learning. Finally
(in chapter 4), we will concentrate on demonstrating the utility of sparsity in
discovering predictors of linear patterns.

15

Chapter 2

Elements of learning theory

In this chapter, we will present a brief overview of the PAC model as framework
for learning. We will see how a particular learning problem can be stated
mathematically in this setting. We will then formally introduce the crucial
idea of the VC dimension and proceed to show (via theorem 4) why we might
expect this model to be a useful approach for handling prediction problems.

2.1 The PAC model

The PAC model of learning is built around the idea that each piece of data
consists of an “unlabeled” element x of some set X, and a label y from a label
set L. In this thesis, we will assume there is a function c : X → L which
dictates how label y = c(x) is assigned to element x ∈ X. We will also assume
there is a probability distribution P on X, according to which we may draw
a random set of labeled sample points; our goal will be to approximate the
function c based on these few labeled points.

As a simple example, suppose we have a fixed deterministic computer pro-
gram z which plays chess. Then x could be another deterministic chess pro-
gram, and y ∈ L = {yes, no} could be whether or not this player x will beat
player z in a game of chess. We may try to learn the relationship between
x and y by studying past games and their outcomes, and use this to try to
predict whether or not a newcomer will win (and perhaps indirectly compute
the rating of player z!).

In more detail, we assume that the relationship we are trying to learn is a
function, or concept, c : X → L which is a member of a set C. Whichever set

16

C ⊂ LX we choose is referred to as our concept class. We may also choose
another set H ⊂ LX , whose members we refer to as hypotheses; the output
of our algorithm will be a member of this set. A PAC algorithm is built around
a specific concept class C; it assumes the data complies with some c ∈ C and
chooses a particular hypothesis h ∈ H based on labeled training data (x, y)
randomly chosen from X×L according to probability distribution P . Between
each pair c ∈ C and h ∈ H, we define a penalty function error(c, h), which is
usually a distance function based on probability distribution P . We will use

error(c, h) := Px

(
c(x) 6= h(x)

)
,

which is the probability of choosing a point x on which hypothesis h(x) supplies
the wrong label. This particular error function makes the most sense when
L is a small set of labels. When |L| = 2, we say that we are considering a
classification learning problem. When L = R or is otherwise infinite, we
are considering a regression learning problem. In the latter case, when
L = R, a common choice of error function is

error(c, h) :=

(∫
|c(x)− h(x)|2dP (x)

)1/2

,

although we will be dealing primarily with the classification case.
An algorithm is built to learn a target concept c ∈ C, and operates on input

δ and ε by extracting as many pieces of labeled data as it needs until it can
return a hypothesis h ∈ H such that

P (error > ε) < δ, (2.1)

where error = error(c, h) indicates how badly h is as an estimator of target c.
Note that the learned hypothesis h is not necessarily a member of C. If concept
class C allows such an algorithm, then we say that C is PAC learnable.

In many cases, such an algorithm may exist but run very slowly. We are
interested in those concept classes which allow for reasonably fast learning. We
say that concept class C is poly-time PAC learnable (as a single concept
class) when it is eventually PAC learnable in time polynomial in 1/ε and 1/δ.

To be more abstract, we would like to allow for a dimension-increasing
sequence of classes C1, C2, . . . so that a general algorithm may also operate on
inputs of different sizes. It is important that our dependence on this new size
parameter is also polynomial. Traditionally, this parameter is always the VC

17

dimension d of class Cd, which has many natural properties as a measure of the
capacity or size of a concept class; we will define and discuss this dimension
momentarily. But first, we are ready to define a sequence of concept classes
C1, C2, . . . with V Cdim(Cd) = d as being poly-time PAC learnable (as a
sequence of concept classes) when each class Cd is eventually PAC learnable in
time polynomial in 1/ε, 1/δ, d, and rep(c), the size of a minimal representation
of concept c ∈ C.

VC dimension

The Vapnik-Chervonenkis dimension, or simply VC dimension of a concept
class is an integer measuring the capacity of the class. Intuitively, the VC
dimension attempts to capture the number of “degrees of freedom” we have in
choosing a concept from the class. In order to formally define the VC dimen-
sion, we will first introduce some specific notation for classification problems.

Many learning algorithms focus on the case when we have but two labels:
|L| = 2. We may choose L = {0, 1}, {yes, no}, {+,−} or {−1, +1}, all of which
are essentially the same for the purpose of learning — we will use {+,−} in
this thesis for its intuitive appeal. In this case, every concept c may also be
considered a subset of X; i.e., csubset = {x ∈ X| c(x) = +}. Accordingly,
we may think of a concept class as a subset C ⊂ 2X , where 2X denotes the
power set 2X := {Y ⊂ X}. As mentioned above, a classification problem is
the challenge of learning a target concept from concept class C when |L| = 2.

Given a subset Y ⊂ X and a concept class C ⊂ 2X , we use C|Y :=
{c∩Y |c ∈ C} to denote the restriction of C to Y . Notice that C|Y ⊂ 2Y , and
hence could be considered as a concept class on Y . We say that C shatters
Y when C|Y = 2Y . A set of unlabeled data Y is thus shattered exactly when
any choice of labels on the data is consistent with some concept in C.

Example of shattering Suppose we are working with ground set X =
{x1, x2, x3, x4} and concept class C = {c1, c2, c3, c4}, where c1 = {x3}, c2 =
{x2, x4}, c3 = {x2, x3, x4}, and c4 = {x1}. We can illustrate these sets with
the following diagram of indicator functions:

18

X = x1 x2 x3 x4

c1 = {0 0 1 0}
c2 = {0 1 0 1}
c3 = {0 1 1 1}
c4 = {1 0 0 0}

In this setup, the set Y = {x2, x3} ⊂ X is shattered since C|Y = 2Y . More
specifically,

C|Y = {c1 ∩ Y, c2 ∩ Y, c3 ∩ Y, c4 ∩ Y } = {01, 10, 11, 00} = 2Y ,

again using an indicator-function notation for the sets. Looking at the table,
we can quickly see that this set Y = {x2, x3} is shattered since the middle two
columns, corresponding to Y , contain all possible combinations 00, 01, 10, and
11 among its rows. Similarly, we can also see that {x3, x4} is also shattered
by C.

On the other hand, the set Y ′ = {x1, x2} is not shattered, since, from the
two left columns, we can see that C|Y ′ = {00, 01, 10}, so that {11} is missing;
that is, Y ′ 6∈ C|Y ′.

Also notice that it is impossible here for any set Y with |Y | > 2 to be
shattered since there are simply not enough elements in C. If |Y | = m is
shattered, then it must be the case that

size(C) ≥ size(C|Y) = 2m.

2

The VC dimension d = V Cdim(C) of concept class C is defined as
the size d = |Y | of any largest subset Y ⊂ X which is shattered by C. It
follows that one must take the following two steps in order to prove that
V Cdim(C) = d for any particular concept class C:

1. show the existence of a subset Y ⊂ X of size d which is shattered by C,
and

2. show that any Y of size d + 1 is not shattered by C.

Example of learning with VC dimension = 1 To illustrate some of
these ideas, we present a simple example. Suppose we are passively observing

19

a monkey playing with a straight branch of nonuniform density. The monkey
repeatedly places the branch on a narrow point, attempting to balance the
branch. Each time he does so, the branch falls down. We observe whether it
falls to the right or the left, and we would like to predict in the future which
way the branch will fall.

To model this situation, let X = [0, 1], so that any unlabeled data point
x ∈ X represents a point on the branch at which the monkey will attempt to
balance it; if the branch is 1 meter long, then x indicates how far from the
left end the point is (so 0 is the left end of the branch and 1 is the right).
Our concept class will be given by C = {c|c = [0, θ]for some θ ∈ X}. Any
particular concept c = [0, θ] represents the prediction that the branch will fall
to the right if x ∈ c — that is, concept c predicts that the branch falls to the
right iff x ≤ θ.

What is the VC dimension of C? Well, the singleton {1/2} is shattered
since c1 = [0, 1] contains it while c2 = [0, 1/3] does not. However, for any
doubleton {x, y} with x < y, we see that it’s impossible for y ∈ c while
x 6∈ c by the nature of our concept class. Hence V Cdim(C) = 1. This makes
intuitive sense since we are learning a single parameter, which we may think
of as the center of gravity of the branch.

Is this concept class poly-time PAC learnable? We claim that it is. We
will use the following algorithm: after watching the monkey perform m trials
(m for monkey trials), we assume that θ is exactly the rightmost point from
any trial in which the branch fell to the right.

Let θt represent the true value; and θg is our guess. By our algorithm, it
must be the case that θg ≤ θt. This is an i.i.d. monkey which always chooses
x ∈ X independently according to probability distribution P on X. Choose
θ` as the leftmost point for which P ([θ`, θt]) ≤ ε. Notice that

P ([θg, θt]) > ε =⇒ θg < θ` =⇒ ∀i, 1 ≤ i ≤ m, xi 6∈ [θ`, θt],

where xi is the ith point at which the monkey attempted (and failed) to balance
the branch. If this last event occurs, we’ll say that region [θ`, θt] is missed.
Since

P ([θ`, θt] is missed) ≤ (1− ε)m ≤ e−εm,

we can conclude that

P (error > ε) ≤ P ([θ`, θt] is missed) ≤ e−εm, (2.2)

20

where error := P ([θg, θt]) is the probability of guessing incorrectly on a future
trial.

By choosing m > (1/ε) log(1/δ), we can be sure that e−εm < δ, so that
(2.2) becomes

P (error > ε) < δ,

which suffices to show that this problem is eventually PAC learnable. If our
monkey is diligent, and performs trials at a regular pace, then the number of
observations we need, m, determines our time complexity. Since m is certainly
polynomial in 1/ε and 1/δ, we see that our concept class C is also poly-time
PAC learnable.

(In this example, it was important that a monkey be performing the trials
rather than a human being: if we ourselves were performing the experiments,
then we could control which unlabeled elements x we sampled, and hence
perform a more systematic search for θ.)

2

Generalization error bounds

Thus far we have defined the key terms and explained the essential method-
ology behind PAC learning. Now we will connect these ideas with the general
strategy of structural risk minimization — the idea that learning a predictive
hypothesis is a combination of accuracy on the training data along with a limit
on the amount of freedom we have in choosing a hypothesis. In particular, we
will present a fundamental inequality due to Vapnik [34] in the context of
classification problems.

Our data points x ∈ X are drawn according to probability distribution
P , and label y ∈ {+1,−1} is associated with point x according to the target
concept c ⊂ X via

y = 4c(x) :=

{
+1 if x ∈ c

−1 otherwise.

In this setting, our goal is to learn a hypothesis h ∈ H which provides a small
error term in comparison with target concept c. Here we will refer to our error
term, defined above by

error(h) := Px

(
c(x) 6= h(x)

)
,

21

as the test error or generalization error of hypothesis h. So, error(h) is the
probability of receiving a random point x which is misclassified by hypothesis
h.

Recall that a learning algorithm, which is ignorant of the distribution P
and target concept c, is given labeled training data T ⊂ X × {±1} drawn
according to distribution P and labeled according to concept c. We need just
one more definition: define the training error of our learned hypothesis h by

êrror(h) :=
#{(x, y) ∈ T : y 6= 4h(x)}

|T |
.

Thus the training error is simply the fraction of training data which are mis-
classified by our learned hypothesis h. Of course, if the points in T are con-
sistent with some hypothesis h ∈ H, then we may choose h so that êrror(h)
is zero.

We are ready to state:

Theorem 4 (Vapnik) Suppose we have drawn the training data points T ⊂
X × {±1} according to distribution P on X, and chosen a hypothesis h ∈ H.
Let d = V Cdim(H) and m = |T |. Then, with probability at least 1− δ,

error(h) ≤ êrror(h) +

√
1

m

(
d log

(
2em

d

)
+ log

(
4

δ

))
.

This bound gives us a specific relationship between the key terms error(h),
êrror(h), and V Cdim(H) in the mold of structural risk minimization. In
particular, we see that we achieve a better bound from theorem 4 when our
VC dimension can be decreased without sacrificing too much training error.

The next two chapters consider the relationship between sparsity, small
VC dimensions, and better learning guarantees.

22

Chapter 3

Learning as sample compression

In this section we examine some very general evidence supporting the idea
that learning from a very small number of examples, chosen carefully, is often
a good idea.

It is easy to notice that many concept classes intuitively promote learning
from only a sparse subset of the training data. In the monkey example above,
it was only one particular point x which we used to determine our guess θg for
the center of gravity representing our hypothesis. In the case of support vector
machines, only a few pieces of training data are ultimately used to construct
the final hypothesis.

This general idea is referred to as sample compression. In particular, a
sample compression scheme is a pair of functions, say compress and decompress.
Given training data T ⊂ X ×L, compress chooses a subset τ of T so that the
hypothesis that is output by decompress on τ is consistent with all of T . We
add the restriction that the set output by compress may not exceed a fixed
integer k, which we call the size of the compression scheme. We’ll give more
formal definitions of these ideas (in two different flavors) below.

Work demonstrating that the best sample compression size of a concept
class correlates very closely with its VC dimension has been lead by Manfred
Warmuth and co-authors Sally Floyd [17] and Dima Kuzmin [25]. In 1995,
Warmuth and Floyd proved that any class of VC dimension d allowed a labeled
sample compression scheme of size d. In a labeled sample compression scheme,
the compress function is allowed to preserve the labels of the data it keeps.
On the other hand, an unlabeled sample compression scheme may only keep a
subset of X, not of X × L, as the output of its compress function. This more
challenging type of scheme was the subject of Warmuth and Kuzmin’s 2006

23

paper, in which they proved such schemes of size d = V Cdim(C) always exist
when C is a finite class and satisfies the property of being of maximum size
with respect to its VC dimension. Such a class is called maximum, and must
abide by many analytically useful properties.

3.1 Labeled sample compression schemes

In this section, we’ll show that every concept class of finite VC dimension d
has a labeled compression scheme of size at most d. In order to do so, we
first introduce some very useful ideas, and corresponding notation, for finding
particular “subclasses” of a concept class. We next present Warmuth and
Floyd’s general compression scheme.

Third, we’ll explain how any compression scheme corresponds with a learn-
ing algorithm, and mention some generalization error bounds based on sparsity
due to Thore Graepel, Ralf Herbrich, and John Shawe-Taylor [20]. As we’ll
see later, these bounds also support the idea of optimizing a linear separator
based on a direct minimization of the number of support vectors used.

Finally, we’ll notice that labeled compression schemes are a factor of about
4.4 away from achieving optimal compression, although an unlabeled compres-
sion scheme (explored in the next section), would be exactly optimal.

3.1.1 Basic properties of concept classes

Given a base set X, recall that a concept class C is any fixed subset X ⊂ 2X .
Given A ⊂ X, we will define

C − A := {c− A|c ∈ C}, and

C 	 A := {c− A|∀a ⊂ A, c ∪ a ∈ C}.

Thus C − A is exactly C|(X − A); and the concepts c ∈ C 	 A are those
members of C − A which may be extended in any way a on A while keeping
c∪ a in the concept class C. Thus any single member of CA may be extended
to a subset of C which shatters A. Both C −A and C 	A are concept classes
on the slightly smaller set X − A. When A = {x} is a singleton, we’ll write
C 	 x for C 	 {x} and C − x for C − {x}.

The following fact will be useful to know:

24

Property 5 If V Cdim(C) = d then

• |A| ≤ d =⇒ V Cdim(C 	 A) ≤ d− |A|, and

• |A| > d =⇒ C 	 A = ∅.

Proof. If C 	 A is nonempty and shatters B ⊂ X − A, then C must
shatter A ∪B, by definition of C 	 A. Since A, B are disjoint,

d = V Cdim(C) ≥ |A|+ |B| = |A|+ V Cdim(C 	 A) (3.1)

=⇒ V Cdim(C 	 A) ≤ d− |A|.
Thus if |A| > d and C 	 A were nonempty, then (3.1) would dictate that

d ≥ |A|, which is a contradiction here. Hence whenever |A| > d, it must be
that C 	 A is empty.

2

It is relatively trivial to observe that

V Cdim(C|A) ≤ V Cdim(C) (3.2)

for any A ⊂ X, C ⊂ 2X .

3.1.2 Sauer’s Lemma

One might wonder if there are any size restrictions which follow from having
a finite VC dimension. In fact, a sharp upper bound has been discovered
independently by Saharon Shelah [29], Norbert Sauer [28], and Vapnik and
Chervonenkis [33] (Sauer’s name is most regularly associated with the fact).
We’ll present a few key observations leading up to this bound.

First we’ll see a decomposition which is a generally useful way to work
inductively with concept classes. We’ll introduce the notation 1C 	 x :=
{c ∪ {x} : c ∈ C 	 x}. Usually, we think of C 	 x as a subset of X − {x}, so
we’ll use the notation 0C 	 x := C 	 x, and “think of” 0C 	 x ⊂ 2X instead
of just 2X−{x}. Finally, we’ll define

tailx(C) := {c ∈ C : c− x 6∈ C 	 x}.

For any c ∈ C, let c′ = c ∆ x. Here we are using the symmetric difference
operator on sets, which is defined for A, B ⊂ X as

A ∆ B := (A−B) ∪ (B − A).

25

Thus

c ∆ x =

{
c− {x} if x ∈ c

c ∪ {x} otherwise.

If c′ ∈ C, then c− x ∈ C 	 x. Otherwise, c ∈ tailx(C). Thus we arrive at the
following decomposition:

Property 6 For any concept class C ⊂ 2X ,

C = 0C 	 x ·∪ 1C 	 x ·∪ tailx(C).

Here, the “dot union” notation emphasizes that the sets being unioned are
all disjoint.

It is clear that the different versions of C 	 x are all identical in size:

|C 	 x| = |0C 	 x| = |1C 	 x|.

Furthermore, we have C −x = 0C 	x ·∪ tailx(C). Thus we arrive at the useful

Corollary 7 For any concept class C ⊂ 2X ,

|C| = |C 	 x|+ |C − x|.

Now we’re ready to state

Lemma 8 (Sauer’s Lemma) If X is finite and C ⊂ 2X has VC dimension
d, then

|C| ≤
(
|X|
≤ d

)
.

Here we are using the notation
(|X|
≤d

)
=
∑d

i=0

(|X|
i

)
.

Proof.
We’ll use induction on |X|. The bound clearly holds in the base case

|X| = 0.
Property 5 tells us that V Cdim(C 	 x) ≤ d − 1; we also have that

V Cdim(C−x) ≤ d (which matches (3.2)). Thus, by corollary 7 and induction,

|C| = |C 	 x|+ |C − x|

≤
(
|X| − 1

≤ d− 1

)
+

(
|X| − 1

≤ d

)
=

(
|X|
≤ d

)
,

26

the last equality following by simple properties of the binomial coefficients. 2

Is this bound tight? We’ll show that it is indeed. In order to do so, let’s
define, for any set X and integer d ≥ 0,{

X

k

}
:= {i ⊂ X : |i| = k},

and {
X

≤ k

}
:= {i ⊂ X : |i| ≤ k}.

Now let Cd :=
{

X
≤d

}
, the set of all subsets of X of size at most d. Choose

any ik ∈
{

X
k

}
. Then clearly any id is shattered in Cd, while no id+1 can

be shattered since the set id+1 6∈ Cd. Thus V Cdim(Cd) = d, and clearly
|Cd| =

(|X|
≤d

)
, exactly the upper bound given by Sauer’s lemma.

3.1.3 Maximum concept classes

It turns out that those classes which render Sauer’s lemma an equality have
many useful properties conducive to analysis. We call a set C ⊂ 2X a maxi-
mum concept class of VC dimension d if V Cdim(C) = d and, for any finite
Y ⊂ X, we have size(C|Y) =

(|Y |
≤d

)
. Thus a maximum concept class is one

which has as many concepts as possible without exceeding VC dimension d.
There are two immediate questions any good mathematician should ask

when first encountering this idea:

Question 9 Is it the case that any C ⊂ 2X of finite VC dimension is a subset
of some maximum class of the same VC dimension?

Question 10 Are maximum concept classes interesting? That is, do there
exist many maximum concept classes besides the trivial example

{
X
≤d

}
?

We will see that the answers are “no” and “yes,” respectively.
In the first question, an affirmative answer would allow us to restrict our

attention to maximum concept classes and still derive generally-applicable re-
sults when the property in question can be extended to subsets. Unfortunately,
there do in fact exist many concept classes which are not a subset of a max-
imum class of the same VC dimension. We’ll see an example in a moment,
and later on give some insight into these other classes which avoid a maximum
extension.

27

The second question also results in the “interesting” answer — that is, there
are indeed many nontrivial maximum concept classes. In fact, even when we
allow for a certain natural type of isomorphism between concept classes, we’ll
see that there is still variety of structure.

There are many nice characterizations of finite maximum concept classes.
Let’s use the notation C ∈ Mm(X, d) to denote that C ⊂ 2X is a maximum
concept class of VC dimension d.

We’ll begin with perhaps the most surprising characterization, which War-
muth credits to Emo Welzl (unpublished, mentioned in [17] and [25]).

Property 11 For finite X,

C ∈ Mm(X, d) ⇔ V Cdim(C) = d and size(C) =

(
|X|
≤ d

)
.

We will prove this last property and the next one together.

Property 12 Suppose C ∈ Mm(X, d) for some finite X, and A ⊂ X.

1. If |A| ≤ d, then C 	 A ∈ Mm(X − A, d− |A|).

2. If |A| ≥ d, then C|A = C − Ā ∈ Mm(A, d).

Here, Ā denotes X − A.

Thus C 	 A is a singleton whenever |A| = d.

Proof. We will prove both of these last two properties simultaneously
using induction on |X|. If |X| = 1, all the properties are trivial (note that, by
convention, V Cdim(∅) = −1, which keeps things consistent here).

Suppose we have shown all of the above statements for any base set Y with
|Y | < |X|, and now we are examining C ∈ Mm(X, d). To show property 12,
it will suffice to demonstrate it when A = {x} is a singleton (larger A are
covered by the inductive assumption).

It is clear that V Cdim(C − x) ≤ d, and by property 5, V Cdim(C 	 x) ≤
d− 1. Now we can use corollary 7 along with Sauer’s lemma to see that

|C| = |C 	 x|+ |C − x| ≤
(
|X| − 1

≤ d− 1

)
+

(
|X| − 1

≤ d

)
=

(
|X|
≤ d

)
.

28

Yet by definition of maximum, we know that |C| =
(|X|
≤d

)
, so that either |C 	

x| <
(|X|−1
≤d−1

)
or |C − x| <

(|X|−1
≤d

)
would lead to a contradiction. Thus by

our inductive assumption on property 11, we know that C 	 x and C − x are
maximum, confirming property 12.

We must also confirm property 11 on X. Let us suppose only that C ⊂ 2X

has V Cdim(C) = d and size(C) =
(|X|
≤d

)
. Then by property 12, for any Y ⊂ X

with |Y | ≥ d, we see that size(C|Y) =
(|Y |
≤d

)
, as required for C to be maximum.

If Y ⊂ Z with |Z| = d, then
(|Z|
≤d

)
= 2|Z|, so that C|Z is exactly 2Z , and then

clearly C|Y = (C|Z)|Y must also be shattered, and the equality C|Y =
(|Y |
≤d

)
is still satisfied. Thus C meets the definition of being maximum, confirming
property 11. 2

Property 12 can also be extended to infinite X.

Property 13 Suppose C ∈ Mm(X, d) and A ⊂ X.

1. If |A| ≤ d, then C 	 A ∈ Mm(X − A, d− |A|).

2. If |A| ≥ d, then C|A = C − Ā ∈ Mm(A, d).

Proof. We begin by verifying part 2 . If |A| ≥ d, and we have some finite
set Y ⊂ A, then clearly

size((C|A)|Y) = size(C|Y) =

(
|Y |
≤ d

)
,

since C is itself maximum. Thus C|A also meets the definition of being in
Mm(A, d).

Part 1 . involves just a little more work. We make two observations. First,
that (

n− 1

≤ k − 1

)
+

(
n− 1

≤ k

)
=

(
n

≤ k

)
=⇒ 2

(
n− 1

≤ k − 1

)
≤

(
n

≤ k

)
=⇒ 2m

(
n−m

≤ k −m

)
≤

(
n

≤ k

)
. (3.3)

The last implication can be shown using induction on m.

29

Now suppose |A| ≤ d and Y ⊂ X − A is finite. Our second observation is
that

size(C|(Y ·∪ A)) ≥ size(C 	 A|Y) · 2|A|, (3.4)

which follows since each c ∈ (C	A)|Y corresponds to 2|A| concepts in C|(Y ·∪
A).

So if there exists a finite set Y ⊂ X −A with size((C 	A)|Y) <
(|Y |
≤d−|A|

)
,

then by these observations it follows that

size(C|(Y ·∪ A)) < 2|A|
(

|Y |
≤ d− |A|

)
≤
(
|Y |+ |A|
≤ d

)
,

which contradicts that C ∈ Mm(X, d). Hence it must be that C 	 A is also
maximum of VC dimension d− |A|, as claimed. 2

Another very simple characterization of maximum concept classes can be
derived using the following general result proven independently by Noga Alon
and Peter Frankl. We will use the idea of a hereditary set B ⊂ 2X which by
definition satisfies

a ⊂ b ∧ b ∈ B =⇒ a ∈ B.

Theorem 14 (Alon-Frankl) If C ⊂ 2X for some finite set X, then there
exists a hereditary set B ⊂ 2X such that |A| = |B| and, for any Y ⊂ X,
size(B|Y) ≤ size(C|Y).

In particular, notice that V Cdim(B) ≤ V Cdim(C).
We are now ready to prove

Theorem 15 For finite X,

C ∈ Mm(X, d) ⇔ V Cdim(C) = d & ∀i ∈
{

X

d

}
, i is shattered in C.

Proof. One direction is easy: if C is maximum, then certainly everything
in
{

X
d

}
must be shattered.

For the other direction, suppose that V Cdim(C) = d and that everything
in
{

X
d

}
is shattered. By theorem 14, we can find a hereditary B with |B| = |C|

and which does not increase the VC dimension. Since B is hereditary, it must
be the case that B ⊃

{
X
≤d

}
. If there is some b ∈ B with |b| > d, then

that set would be shattered and V Cdim(B) > d. Hence B =
{

X
≤d

}
, so that

|C| = |B| =
(|X|
≤d

)
, and by property 11, it must be that C ∈ Mm(X, d). 2

30

A curious result follows easily from this last, as was first noticed by Sally
Floyd in her thesis [16].

Theorem 16 For finite X,

C ∈ Mm(X, d) ⇔ C̄ ∈ Mm(X, |X| − d− 1).

Here C̄ := 2X − C, not to be confused with the set of complements of the
individual elements of C.

The essential idea behind this fact is the idea of a forbidden label of class
C, which is a pair (L, S) with L ⊂ S ⊂ X such that L 6∈ C|S. Set L is the
label itself, while S is the set on which this label resides.

The proof of theorem 16 will be much easier if we first prove

Lemma 17 For any C ⊂ 2X and `J ⊂ J ⊂ X,

(`J , J) is a forbidden label of C ⇔ `J ∈ C̄ 	 J̄ .

Proof of Lemma 17.

(`J , J) is a forbidden label of C

⇔ `J 6∈ C|J
⇔ ∀K ⊂ J̄ , `J ·∪K 6∈ C

⇔ ∀K ⊂ J̄ , `J ·∪K ∈ C̄

⇔ `J ∈ C̄ 	 J̄ .

2

From here it is easy to see that

Corollary 18 If C ∈ Mm(X, d) and J ∈
{

X
d+1

}
, then the forbidden label

(`J , J) is unique and C̄ 	 J̄ is a singleton.

The uniqueness follows directly from a cardinality argument:

size(C|J) =

(
d + 1

≤ d

)
= 2d − 1,

and there is exactly one subset of J , specifically `J , missing from C|J .

31

Proof of Theorem 16. It will suffice to prove the =⇒ direction; the
other follows by symmetry. We will use theorem 15.

First let’s see that V Cdim(C̄) < |X| − d. Consider an arbitrary set I ∈{
X

|X|−d

}
. Since C 	 Ī is nonempty, there is (by the lemma) a forbidden label

on I for C̄. Thus no set of size |X| − d is shattered by C̄.
Next we’ll check that every set of size |X| − d − 1 is shattered by C̄. By

the corollary, every J ∈
{

X
d+1

}
has a unique forbidden label `J . Then C̄ 	 J̄ is

nonempty, so that J̄ is shattered by C̄. Applying theorem 15, this completes
the proof. 2

3.2 Unlabeled sample compression schemes

Above, we have studied the idea of a labeled sample compression scheme, in
which the compressed training data was allowed to retain their labels. At the
same time, we noticed that the size of a maximum concept class was exactly
the same as the number of possible “compressions” of size at most d — this
curious size equivalence prompts the question: what if, in the compression
phase of our sample compression, we were to discard the labels of our data?

Hence we arrive at the idea of an unlabeled sample compression scheme. As
above, we must find a pair (f, g) of functions — one (f) for compressing an
arbitrary training set, and the other (g) for decompressing this small subset
into a hypothesis for our original training data. The difference is that f :
P(X ×L)→ P(X) now has a range of subsets of unlabeled data, i.e., subsets
of X, rather than a labeled subset of X × L (here, as above, L is our set of
labels).

In [25], Dima Kuzmin and Manfred Warmuth conjecture that any concept
class of VC dimension d allows an unlabeled sample compression scheme of size
d. They support this claim by proving it for finite maximum concept classes.

However, in their definition of an unlabeled sample compression scheme,
they do not require the reconstructed hypothesis, h = g(compressed data), to
be a member of the original concept class. The curious reader may wonder
if this is not a spurious exclusion from the definition. Doesn’t it seem most
natural to always learn a concept within our given concept class? We will
defend their original “unfaithful” compression scheme definition by showing
that a more restrictive definition would certainly disallow the existence of a
compression scheme for some concept classes.

32

In particular, we will define a faithful unlabeled sample compression
scheme for concept class C as a pair of functions (f, g) such that (f, g) is an
unlabeled sample compression scheme for C, and the range of the reconstruc-
tion function g is restricted to concept class C.

We will present an infinite concept class of VC dimension 2 which does not
allow a faithful unlabeled sample compression scheme.

Our concept class is the set C of positive halfspaces in the plane. Concept
c ⊂ R2 is a positive halfspace iff c = {(x1, x2) : x2 ≥ mx1 + b} for some pair
(m, b) ∈ R2. It is clear that any pair in R2 can be shattered by C. We also
claim that no triple is shattered, so that the VC dimension of C is in fact 2.
Given any point x we will denote its separate coordinates by (x1, x2). Suppose
we have any three points {x, y, z} with x1 ≤ y1 ≤ z1. If y is on or above the
line between x and z, then no positive halfspace h will have x, z ∈ h but not
y ∈ h. On the other hand, if y is below the line between x and z, then no h
will exclude both x and z while including y. That is, no triple in the plane is
shattered by C, and its VC dimension is exactly 2.

Theorem 19 The set of positive halfspaces in the plane does not allow a faith-
ful unlabeled sample compression scheme of size 2.

Proof. We present a proof by contradiction. Begin by assuming that
there is a faithful unlabeled sample compression scheme for C on R2. Then
we have a map g : P(R2)→ C which associates a positive halfspace with each
subset of R2 of size at most 2; this is the “decompression” map from the com-
pression scheme. For any A ⊂ R2, |A| ≤ 2, we may define ` : P(A)→ {+,−}A
as the labeling on A induced via g by a particular compression (=subset) of
A. That is, for any α ⊂ A, `(α) assigns label + to point a ∈ A if a ∈ g(α); or
− otherwise.

Given any set A ⊂ R2 of at most two points, notice that f must be injective
on P(A); otherwise it cannot be onto, and not all labelings of this sample will
be reconstructable. We will show that there must exist a pair A such that `
is not injective on P(A) — this will be our contradiction.

Given a hypothesis h ∈ C, we will write h(x) = + and h(x) = − to indicate
that x ∈ h and x 6∈ h, respectively. Given any x ∈ R2, let hx denote g({x}),
the hypothesis represented by the singleton {x} in the compression scheme.

Let h0 = g(∅). Then
∀x, hx(x) 6= h0(x). (3.5)

This must be the case by the injectivity of ` on the power set of {x}.

33

Choose point u above the boundary of h0 so that there exists ε1 > 0 :

||u− x|| < ε1 =⇒ h0(x) = +. (3.6)

Since hu(u) = − and we’re dealing with positive halfspaces, there must be
some ε2 > 0 so that

||u− x|| < ε2 =⇒ hu(x) = −. (3.7)

Let ε3 = min(ε1, ε2). If there is a point v with ||u−v|| < ε3 and hv(u) = −,
then both hu and hv give all-negative labelings to the set {u, v}, contradicting
the injectivity of ` on P{u, v}.

Hence it must be that

||u− x|| < ε3 =⇒ hx(u) = +. (3.8)

It is a property of any halfspace h that if a1 < b1 < c1, a2 = b2 = c2, h(a) = +
and h(b) = −, then h(c) = − as well. We can apply this general fact in our
setting to notice that

(u1 < v1 < w1) & (u2 = v2 = w2) & (||u− v|| < ε3) =⇒ hv(w) = −
(3.9)

since (3.8) gives hv(u) = + and (3.5) and (3.6) give hv(v) = −.
Thus we may choose t with u1 < t1 < u1 + ε3 and u2 = t2. Again using

(3.5) and (3.6), we can see that ht(t) = −, so there must be a neighborhood
around t in which ht is always −. From this neighborhood choose ε4 such that

||t− x|| < ε4 =⇒ ht(x) = −. (3.10)

And from here we may choose s with u1 < s1 < t1, ||t − s|| < ε4, and u2 =
s2 = t2. Then (3.9) tells us that hs(t) = − = hs(s) while (3.10) tells us that
ht(s) = − = ht(t). That is, we have a set {s, t} of size two on whose power
set ` is not injective, which is the aforementioned contradiction. 2

In this chapter, we have explored the question of how much sparsity in
learning may be possible in a very general setting. We reviewed the properties
of maximum concept classes, whose surprisingly stringent structure reveals to
us a method of sparse learning via sample compression schemes. We have
also seen that unlabeled sample compression schemes, although possible for
any finite maximum concept class, are not always possible in the infinite case
when required to be faithful.

We are now ready to look more specifically at the role of sparsity in the
more concrete setting of linear classifiers.

34

Chapter 4

Sparsity for linear predictors

In this chapter we will provide strong evidence that sparsity is a good indicator
of prediction quality. Specifically, we will give an upper bound on the VC
dimension of Ck, the concept class of linear classifiers with at most k nonzeros
(we define this class Ck formally in a moment). As reviewed after the proof,
this bound will allow us to achieve better bounds on the generalization error
of a linear hypothesis.

The main result of this chapter, and indeed one of the primary results of
this thesis, is

Theorem 20 If 3 ≤ k < 9
20

√
n, then

V Cdim(Ck) < 2k lg(n).

Here, Ck = {cu : ||u||0 ≤ k, u ∈ Rn} where cu = {x ∈ Rn : x · u ≥ 0}. Also,
lg(x) is defined as log2(x), the base 2 logarithm.

The heart of the proof is captured by the following

Lemma 21 If d = V Cdim(Ck) and k ≥ 3, then

d− k lg(d) < k lg(n).

In order to prove this lemma, we will use a clever application of Sauer’s
lemma. Define

δ≥0(x) =

{
1 if x ≥ 0,

0 otherwise

on scalars x, which may be extended coordinate-wise to the mapping δ≥0 :
Rn → {0, 1}n on vectors as well. Now we’ll introduce the notation SP (X) =

35

{δ≥0(x)|x ∈ X} for any subset X ⊂ Rn; these are the sign patterns taken on
by set X.

Lemma 22 If A is an m× k matrix, then

#SP (col(A)) ≤
(

m

≤ k

)
≤
(em

k

)k

.

Here, #SP (X) denotes the size of the set SP (X).

Proof of lemma 22.
Let concept class C be the set of concepts cu, where cu = {x ∈ Rk : x · u ≥

0} (as before), except that we allow u to be any vector in Rk now. It is well-
known that V Cdim(C) = k. (Those readers used to linear classifiers with
an added constant — of the form {x : x · u + b ≥ 0} — might expect that
V Cdim(C) = k + 1, but since we are excluding the ‘+b’ from our concepts,
we effectively achieve this slightly smaller VC dimension.)

Now let R ⊂ Rk denote the set of rows of A, and let

D = C|R = {cu ∩R|r ∈ Rk}.

Then by Sauer’s lemma (stated as lemma 8 above),

|D| ≤
(

|R|
≤ V Cdim(D)

)
≤
(

m

≤ k

)
.

Finally, we note that there is a bijection between the set D and SP (col(A))
since each element δ≥0(Au) of SP (col(A)) is the indicator function for cu∩R ∈
D, and vice versa. Id est, #SP (col(A)) = |D| ≤

(
m
≤k

)
, as claimed.

To conclude, we notice that, when k ≤ m,(
k

m

)k (
m

≤ k

)
≤

k∑
i=0

(
k

m

)i(
m

i

)
≤

m∑
i=0

(
k

m

)i(
m

i

)

=

(
1 +

k

m

)m

≤ em(k/m) = ek.

This gives us our final inequality: that(
m

≤ k

)
≤
(em

k

)k

.

36

This completes lemma 22. 2

Note that we may interpret this last lemma in the following interesting
geometric way: any k−dimensional subspace of Rm may pass through at most(

m
≤k

)
quadrants, where “passing through a quadrant” is defined to correspond

with our particular type of sign patterns. This result actually provides a special
case of the Milnor-Thom or Warren’s theorem for linear functions which is
stronger than any version the author is aware of. For example, this bound is
a factor of 4k times better than the version of Warren’s theorem stated in the
very well-written paper [27].

We are now ready for the

Proof of lemma 21.
Consider k as fixed. Suppose we are given m points in Rn, which we will

label by concepts in Ck. We can compile these points as rows in the m × n
matrix A.

For each i ∈
{

n
k

}
, let Ui = {u ∈ Rn : supp(u) ⊂ i}. Notice that if u ∈ Ui,

then δ≥0(Au) is the vector of labels assigned to these points by classifier cu

— equivalently, δ≥0(Au) is the indicator function of concept cu on the rows of
A. Also notice that when u ∈ Ui, we have Au = Aiui, where Ai is the m× k
submatrix of A keeping only the i−columns (we could write Ai = A(:, i)), and
ui ∈ Rk are the i−coordinates of u.

Then, for any fixed i,

#SP (Au : u ∈ Ui) = #SP (Aiui : u ∈ Ui) ≤
(em

k

)k

.

Thus, since {u : ||u||0 ≤ k} = ∪i∈{n
k}Ui, we have

#labelings of the rows of A by Ck = #SP (Au : ||u||0 ≤ k)

≤
∑

i∈{n
k}

(em

k

)k

=

(
n

k

)(em

k

)k

≤
(emn

k

)k

.

So if 2m > (emn/k)k, then no set of size m can be shattered by Ck since
there cannot possibly be enough labelings / sign patterns on these points.
Hence, if d = V Cdim(Ck), then

2d ≤
(

edn

k

)k

=⇒ d ≤ k lg

(
edn

k

)
=⇒

37

d− k lg(d) ≤ k lg(en/k) < k lg(n)

when k > e. This confirms the lemma. 2

At last we may now give the Proof of theorem 20.

This proof is essentially a series of balanced inequalities which connect from
lemma 21 to the statement of the theorem.

Let us begin by noting that, for any b > 0,

b

2
+

1

11
> lg(b),

which we will use in the form b− lg(b) > b/2− 1/11.
Now

2k <
9

10

√
n =⇒ lg(2k) < lg(9/10) +

1

2
lg(n).

Let b = lg(n), and observe that lg(9/10) < −1/11 so that

lg(2k) <
b

2
− 1

11
< b− lg(b)

=⇒ lg(2bk) < b =⇒

k <
bk

lg(2bk)
. (4.1)

Let z = d− kb. Lemma 21 tells that z ≤ k lg(d) = k lg(z + kb), which we
can rewrite as

k ≥ z

lg(kb + z)
.

It is easy to check that f(z) = z/ lg(kb + z) is increasing for z > 0 whenever
kb > 1. Thus, if z ≥ kb, then

k ≥ z

lg(kb + z)
≥ kb

lg(2kb)
,

which would directly contradict (4.1). So it must be the case that z < kb,
which means that d = kb + z < 2kb = 2k lg(n), as claimed. 2

Now that we have formally shown our bound on the VC dimension of sparse
linear classifiers, we would like to remind the reader of the connection with
the probability of misclassification on future data points.

38

In particular, let us recall the inequality given in theorem 4 above:

error(c) ≤ êrror(c) +

√
1

m

(
d log

(
2em

d

)
+ log

(
4

δ

))
,

which holds with probability at least 1− δ, where m is the number of training
points used, c is our learned concept in class C and d = V Cdim(C).

If we let Cn denote the concept class of all linear classifiers of the form cu =
{x ∈ Rn : x ·u ≥ 0} in Rn, then it is not too hard to see that V Cdim(Cn) = n.
Thus we have achieved a significant asymptotic improvement in showing that
V Cdim(Ck) ≤ 2k lg(n). We therefore can best utilize the generalization error
bound of theorem 4 precisely when we can find a concept c` in a class of
maximal sparsity which does not incur too high a cost of training error.

In this chapter we have demonstrated a new upper bound on the VC di-
mension of sparse linear classifiers. We have also reviewed the connection
between lower VC dimensions and better generalization error bounds; this
motivates the efforts of the following chapters, in which we explore algorith-
mic techniques of discovering and tracking sparse linear patterns among a set
of evolving time series.

39

Part III

Sparsity in practice: Time series
algorithms

40

In this part, we’ll see how sparsity can be used to find patterns in time
series which are likely to act as accurate predictors.

In his paper ”Just Relax,” Joel Tropp offers three fundamental motivations
of the search for sparsity:

1. It is known or assumed that the underlying data has a sparse linear
representation.

2. Many representations are viable, but density is expensive — this includes
such cases as compression or building a system whose time complexity
is a function of density.

3. As we have seen in the previous chapter, sparsity can help us prove
better bounds on the predictive power of our discovered patterns. We
could state this as the principle of Occam’s razor (compare [5] and [12]).

If the last chapter explored why we might want to search for sparse linear
patterns, this chapter then focuses on how we may discover these patterns.

In §6, we examine questions about when and to what degree we might
expect a matrix to be sparsifiable. The main result of this section states
that almost every matrix is completely unsparsifiable — that is, it cannot
be sparsified at all beyond what is achieved by simple Gaussian elimination.
To counter this negative result, we continue to show that poorly-conditioned
matrices can be easily sparsified to a relatively high degree if we allow some
bounded error in the process.

In §7 we explore the problem of combinatorially sparsifying an arbitrary
matrix, whereas in §8, we consider probabilistic and approximate attacks.
We’ll see that even approximating the optimal solution is NP-hard. At the
same time, we’ll present a series of algorithms which take advantage of the in-
cremental nature of time series to efficiently update a sparse null space struc-
ture. These algorithms take advantage of the fact that L1− minimization
problems are very likely to result in sparse solutions.

41

Chapter 5

Introduction

As in previous sections of this paper, we will consider m values of a time series
as a column vector ai in Rm, and we’ll identify a set of n time series with the
columns of an m×n matrix A. Some columns in A allow a linear dependence
relation iff there is a nontrivial identity of the form

λ1a1 + λ2a2 + . . . + λnan = 0

between them, for some coefficient column vector λ 6= 0. We may write this
succinctly as

Aλ = 0.

Clearly, we are interested in exactly those vectors λ in the null space of A.
Suppose we have a basis for N(A), the null space of A. Here are two natural
questions we may ask at this point:

1. What information is still left “unknown” to us?

2. What predictive power have we gained by our null space basis?

Let’s briefly give one answer to (1), after which most of this chapter is devoted
to exploring question (2). The following elementary fact gives us a concise
view of what is “left out” when we extract the null space:

Property 23 If m×n matrix A has n×c full null matrix N with orthonormal
columns, then we may decompose

A = LV T

42

where L is m× r, full rank, and lower triangular, with r = rank(A); and V is
n× r so that (V N) is unitary. (More specifically, we may ensure that L is in
lower column echelon form.)

A full null matrix, as we originally defined in §1.2, has full rank equal to
c, the corank of A.

We may interpret property 23 in many ways. One may think of the columns
of V as the independent time stamps which are linearly combined to produce
each row of A. From this perspective, each row of L acts as a coefficient
vector indicating how to combine the columns of V into a row of A. Since L is
lower triangular, we may interpret the nth column of V as the nth independent
component of the timestamps.

Another point of view would be to think of the rows (in Rr) of V as a
compressed representation for each time series (column) in A. In this case,
the columns of L may be considered as a basis for all the time series. Further,
since L is lower column echelon, it is straightforward to convert any column
of A into its compressed form as a row of V . It is also interesting to note that
if the rank of A does not increase, then matrix V may persist while only L
evolves over time.

Hence one method of prediction might be to compute L and V , and then
predict future values of the new rows of L, from which we may extract the
future rows of A as well. We’ll take a preliminary look at answering question
(2) first, and then compare these two approaches. As the astute reader may
anticipate, we will argue that using the decomposition in property 23 is less
desirable than simply tracking the null space of A or an approximation thereof.

Before moving on, we pause a moment to give the

Proof of property 23. It is well known that any matrix has a QR
decomposition. In our case, we write

AT = QR,

where Q is n×n and unitary; and R is n×m and upper row echelon (slightly
stronger than being upper triangular). Then A = RT QT . As above, let
r = rank(A) = rank(R). Since RT is in lower column echelon form, we know
that the first r columns are linearly independent, while the remainder must
be zero columns. Thus we can define L as the first r columns of RT , and,
correspondingly, V as the first r columns of Q. The result is that

A = LV T ,

43

as desired. In addition it must be the case that col(N) = null(A), where N are
the last n− r columns of Q. 2

5.1 The predictive power of the null space

We now begin to build some motivation for the predictive power of the null
space of matrix A as a set of columns of time series. Thus we are addressing
question (2) above.

Let us rephrase the questions as:

Question 24 What is the minimal amount of information we need about the
future to reconstruct other time series values?

More specifically, suppose we are allowed to “peek” at a subset of the
coordinates of a, a future row of matrix A. Thus, we are given measurements
from a subset of the time series, and we would like to predict the rest of the
values based on this.

We will propose two answers. To give the first, we’d like to define a gen-
erating set. A set of time series G ⊂ [n] (where [n] = {1, 2, . . . n} as above),
forms a generating set with respect to null matrix N when, knowing the val-
ues of row a on coordinates G, we can reconstruct the full row a using the fact
that aN = 0. Notice that a generating set might contain some redundancy.
For example, setting G = [n] trivially gives a generating set, but this case is
not interesting. We really care about those generating sets which minimize
redundancy. To capture this idea, we’ll say that G ⊂ [n] is a free generating
set when any choice of values for a(G) ∈ R|G| is consistent with exactly one
row a such that aN = 0. Here, we use the notation a(G) to indicate the val-
ues of row a on the coordinates indicated by G. Thus a free generating set is
one which imposes no constraint whatsoever on our choice of a(G), and hence
contains no redundancy, yet still allows us to reconstruct all of the data points
in row a from this subset.

We are now ready to state

Theorem 25 Given n × c null matrix N so that aN = 0, G ⊂ [n] is a
generating set iff rows N(Ḡ, :) are linearly independent, where Ḡ = [n] −
G. Furthermore, G is a free generating set iff rows N(Ḡ, :) form a basis for
row(N), the row space of N .

44

Those familiar with the Matlab software package will immediately under-
stand the N(Ḡ, :) = N([n]−G, :) notation. For the rest of us: suppose N is an
n × c matrix. Then, given rows ⊂ [n] and cols ⊂ [c], we write N(rows, cols)
to denote the submatrix of N from rows rows and columns cols. The colon
shorthand, as in N(rows, :) indicates that cols = [c]; we are including all the
columns.

Proof. These statements follow from elementary facts about solving lin-
ear systems via Gaussian elimination.

As a very brief reminder, we recall for the reader one expression of Gaussian
elimination as a method of solving for vector x in the matrix equation Ax =
b. In particular, we may use the decomposition A = LU , in which L is
invertible, and U is psychologically in reduced row echelon form. This means
that the column space of U is spanned by a subset, the pivot columns, which are
independent columns from an identity matrix. Thus Ax = b ⇔ Ux = L−1b,
and the latter system is straightforward to solve by assigning arbitrary values
to the free coordinates of x (those not corresponding to pivot columns in U),
and then solving for the basic coordinates (of course, those which do correspond
to pivot columns in U).

What we care about in this process is the fact that a subset of columns
in A may be chosen as (a subset of the) pivot columns iff they are linearly
independent. Moreover, these columns will be exactly the set of pivot columns
(and not a strict subset) iff they are a basis for the column space.

Thus solving aN = 0 for row vector a, equivalent to solving NT aT = 0,
can always be done given consistent coordinates a(G) when columns NT (:, Ḡ)
= rows N(Ḡ, :) are linearly independent. Moreover, the coordinates a(G) may
be chosen arbitrarily exactly when rows N(Ḡ, :) form a basis for the row space
of N , as claimed. 2

Theorem 25 tells us exactly which sets are needed to reconstruct all of row
a. Notice that if |G| < n − c then |Ḡ| > c, in which case N(Ḡ, :) cannot
possibly be linearly independent, so that G is not a generating set. In other
words, every generating set must have size at least n − c. If c � n, then we
need to be given most of the information in order to determine the rest.

Is there any way we could utilize an even smaller subset G ⊂ [n] ? This
goal leads us to our second answer to question 24. In order to see this answer,
let’s define a generating set for coordinate i ∈ [n] as any subset G ⊂ [n]
such that, given a(G), there is a unique value for ai such that a(G ∪ {i}) can
be extended to a row a with aN = 0. We do not require uniqueness in the

45

other coordinates of a — just the ith.

Example 2 Suppose we are given matrix

A =

9 −35 9 3 18 0 3
6 −39 12 6 0 3 0
9 −81 15 18 6 3 15
−6 −80 18 18 15 12 9
9 −52 15 6 0 3 18

 .

From this, we can extract the null space (written in transpose here to save
space)

NT =

(
3 3 4 7 1 3 1
4 3 3 7 1 5 1

)
.

Then, G = {1, 2, 3, 4, 5} is a free generating set since N(Ḡ, :) =

(
3 5
1 1

)
is

a basis for row(N); further, there is no smaller generating set (although there
are others of the same size).

However, letting i = 3, we can also see that G = {1, 6} is a generating sub-
set for coordinate i. Indeed, if we let nT = (1, 0,−1, 0, 0, 2, 0), then n ∈ col(N)
so that An = 0 and, in general, any row a must follow an = 0. (Also notice
that, writing ai for the ith column of A, the identity a3 = a1 +2a6 is equivalent
to An = 0.) Thus, if we are given the values of row a on only coordinates 1
and 6, we can uniquely determine the value of the third coordinate. This is
interesting since the size of G here is much smaller than that of any generating
set.

2

This example gives us a hint toward characterizing minimally-sized gener-
ating sets for a particular coordinates: If we choose column vector n which
satisfies {

min ||n||0
s.t. An = 0 & ni 6= 0,

then the set Gi = supp(n) − {i} is a minimally sized generating set for coor-
dinate i.

Example 3 We pause for a moment to note that the set Gi is not necessarily
unique.

46

For example, suppose we are given matrix A = (1 1 1) and we will receive
another row a with the same nullspace. This is equivalent to saying that a is in
the row span of A, so that all the coordinates of a will also be the same. Then
clearly both singletons G = {1} and H = {2} are minimally-sized generating
sets for coordinate 3.

2

47

Chapter 6

Theory of sparse matrices

In this section we’ll examine some theoretical results about matrices and their
sparsity properties. It will be useful for later algorithmic work to justify the
intuition that the product of sparse matrices is likely to also be sparse; this
is quickly mentioned in §6.1. In §6.2, we give a simple lower bound for the
sparsifiability of any matrix. In §6.3, we outline the main result of this section
— the complete unsparsifiability of “most” matrices in a certain probabilistic
sense. Finally, this last theorem is proven rigorously in §6.4.

6.1 Sparsity inequalities

The following series of inequalities captures a variety of levels of sparsity preser-
vation in taking the product of two sparse matrices. We’ll use the notation
||A||0̃ to indicate the number of nonzero entries in matrix A. The tilde, as in
0̃, is used to avoid confusion with the induced matrix almost-norm,

(||A||0̃ 6=) ||A||0 = sup
||x||2=1

(||Ax||0) .

In this thesis, we will consistently work with || · ||0̃ instead.

Theorem 26 For any matrices A and B,

||AB||0̃ ≤ c(A)r(B) ≤ ||c(A)|| · ||r(B)|| ≤ ||A||0̃ · ||B||0̃

where row vector c = c(A) is given by cj = ||aj||0 and column vector r = r(B)
is given by ri = ||bi||0.

48

Proof. We’ll demonstrate the inequalities from left to right.
For the first inequality, start by observing that the rank-one matrix aibi

has exactly ciri nonzeros, since each nonzero entry in aibi corresponds in a
bijective manner to a pair of nonzeros in ai and bi. Now recall the column-row
expansion formula for matrix multiplication:

AB =
∑

i

aibi.

Since || · ||0̃ obeys the triangle inequality, it follows that

||AB||0̃ ≤
∑

i

||aibi||0̃ =
∑

i

ciri = c(A)r(B).

The second inequality is an instance of the Cauchy-Schwartz inequality.
For the last inequality, we will show that in fact ||c(A)|| ≤ ||A||0̃. The

analogous inequality also holds for r(B) of course, and this suffices.
The claimed inequality is equivalent to∑

i

c2
i ≤

(∑
i

ci

)2
,

but this is obvious for any sequence (ci) of nonnegative integers. 2

6.2 Gaussian elimination for sparsity

Gaussian elimination is usually considered as a process to be performed on the
rows of a given matrix. Of course the same procedure may also be performed
on columns; id est, we can perform traditional Gaussian elimination on the
rows of AT . We’ll refer to this as the column reduction of A.

Hence for any m×n matrix A with m ≥ n, we can always guarantee at least
as many zeros as would be given by an n × n identity matrix. This is a sort
of lower bound on the sparsifiability of an arbitrary matrix. The surprising
result of the next section is that this bound is in fact tight!

Let us formally state the minimum sparsifiability guaranteed by column
reduction. We will write A

c∼ B to indicate that the equally-sized matrices A
and B are column equivalent. Specifically, A

c∼ B iff there exists an invertible
matrix C so that A = BC.

49

Property 27 Any m × n matrix A with rank r can be column reduced to a
matrix B

c∼ A with ||B||0̃ ≤ (m− r + 1)r ≤ 1
4
(m + 1)2.

This follows since any rank r matrix B in reduced column echelon form
(achievable by Gaussian elimination on the columns) includes an embedded
r× r identity matrix Ir, which has r(r− 1) zeros. In addition, there are n− r
all-zero columns.

B =

←− n −→
↑
m
↓

(
Ir 0

X 0

)
Hence ||B||0̃ ≤ mn−m(n− r)− r(r− 1) = (m− r + 1)r. For any fixed m,

this function is maximized when r = (m + 1)/2, giving us our second bound
(which is independent of r).

6.3 Most matrices are completely unsparsifi-

able

How tight is property 27? In many cases, it turns out to be completely optimal:
For any positive integers m, n and r ≤ min(m, n), there exist many m × n
matrices A of rank r such that any B

c∼ A has ||B||0̃ ≥ (m− r + 1)r.
In fact, we will actually prove the more specific result. We’ll call a rank r

matrix A completely unsparsifiable iff, for any B
c∼ A, ||B||0̃ ≥ (m−r+1)r.

(We include “completely” since we find it useful to leave the adjective pair
“sparsifiable / unsparsifiable” open to interpretation, as is the word “sparse”
for now.) We state and briefly discuss our result here, and give the proof in
the next section after introduction some useful definitions and lemmas.

Theorem 28 If every subsquare of m × n matrix A is nonsingular, where
m ≥ n, then A has rank n and is completely unsparsifiable. Moreover, the
matrix

(
I
A

)
is optimally sparse, where I is the n× n identity matrix.

A submatrix A(R, C) is a subsquare of A iff |R| = |C|.
We can now support the idea that “many” real matrices are completely

unsparsifiable. Indeed, suppose that P : B → [0, 1] is a probability distribution
on the Borel-measurable subsets B of R such that P ({x}) = 0 for any x ∈ R
(in this case P is sometimes referred as being nonatomic). Then if we choose

50

each element of A in an i.i.d. manner according to P , with probability 1,
matrix A will be full rank, each subsquare will be nonsingular, and A will
be completely unsparsifiable. Thus, almost every (in this probabilistic sense)
matrix is completely unsparsifiable.

Of course, in practice, there may be underlying reasons to expect a priori
that a matrix is sparsifiable; in general, we would need to justify any proba-
bility distribution over our matrices before concluding that they could not be
sparsified. In addition, as we will explore below, we may often achieve further
sparsity by allowing for some small error in the column space.

6.4 Equivalent conditions for sparsifiability

In this section we will begin by giving several useful lemmas and definitions
which help characterize the condition of a matrix being optimally sparse. We
then use this foundation to give a proof of theorem 28.

The ruminative reader will readily recall that a matrix A is called optimally
sparse iff ∀ invertible matrices C, ||AC||0̃ ≥ ||A||0̃. We could equivalently state
this as ∀D c∼ A, ||D||0̃ ≥ ||A||0̃.

Let’s start with

Lemma 29 Matrix A is optimally sparse iff ∀x 6= 0,

||Ax||0 ≥ max
i∈supp(x)

||ai||0,

where ai is the ith column of A.

This lemma essentially states that no linear combination of columns from
A can increase the sparsity of any column used in the combination.

Proof. If there exists an x with ||Ax||0 < ||ai||0 and xi 6= 0, then we may
replace ai with Ax to achieve a sparser column equivalent version of A. This
justifies the ⇒ half of the proof.

If A is not optimally sparse, then there exist matrices B, C so that B = AC,
C is invertible, and ||B||0̃ < ||A||0̃. Let n be the number of columns in A. Then
there must exist a permutation σ : [n] → [n] so that ∀i, entry ciσ(i) 6= 0 in
C; otherwise det(C) = 0 by the permutation definition of the determinant.
Hence we can apply the appropriate permutation matrix Pσ to C to arrive at
C̃ = CP and B̃ = AC̃ where all the diagonal entries of C̃ are nonzero.

51

Since ||B̃||0̃ = ||B||0̃ < ||A||0̃, there must exist a column bi of B̃ which is
sparser than its counterpart ai of A. Let x be the ith column of C̃ so that
||bi||0 = ||Ax||0 < ||ai||0, and xi 6= 0 since it is the ith diagonal entry of C̃.
This justifies the ⇐ half of the proof. 2

We are ready to define a particular type of submatrix which is useful in
considering the sparsifiability of a matrix. Recall that, if A is an m×n matrix
and R ⊂ [m], C ⊂ [n], then A(R, C) denotes the submatrix on rows R and
columns C. We will say that A(R,C) is row-inclusive in A iff ∀r ∈ [m],
A(r, C) ∈ row(A(R,C)) ⇒ r ∈ R; in other words, A(R,C) contains all the
rows of A([m], C) in its own row span.

Recall that a set of columns form a circuit exactly when they are linearly
dependent and every proper subset of them is linearly independent. We will
say that A(R,C) is a candidate submatrix, written A(R, C) � A, iff the
columns of A(R,C) form a circuit and A(R,C) is row-inclusive. The name
“candidate submatrix” is inspired by the following facts, which reveal that
there is a correspondence between each candidate submatrix and each column
combination which might further sparsify a matrix.

Property 30 For any m× n matrix A:

1. If ∃x with i ∈ supp(x) and ||Ax||0 = m − p, then ∃A(R,C) � A with
|R| = p and i ∈ C ⊂ supp(x).

2. If ∃A(R,C) � A, then ∃x with supp(x) = C and ||Ax||0 = m− |R|.

In order to gain an intuitive foothold on the meaning of this property, we
first present

Corollary 31 The m×n matrix A is optimally sparse iff there is no candidate
submatrix A(R,C) � A with m− |R| < ||ac||0 for some c ∈ C.

Proof of the corollary. First suppose A is not optimally sparse. Then
by lemma 29, there is an x with i ∈ supp(x) and ||Ax||0 < ||ai||0. Let p =
m − ||Ax||0. By part 1 of the property we immediately have a candidate
submatrix A(R,C) with |R| = p so that m − |R| = m − p = ||Ax||0 < ||ai||0
with i ∈ C.

Now suppose we have A(R,C) � A with m − |R| < ||ai||0 and i ∈ C. By
part 2 of the property, we can find a nonzero x with ||Ax||0 = m−|R| < ||ai||0

52

and i ∈ supp(x). This means (by lemma 29) that A is not optimally sparse.
2

Now we are ready for the

Proof of property 30.
(Part 1) We have a vector x with i ∈ supp(x) and ||Ax||0 = m − p. Let

b = Ax and R = [m] − supp(b), so that r ∈ R iff br = 0, and ||Ax||0 =
|supp(b)| = m − |R|. Since its null space is nonempty, the columns of matrix
A(R, supp(x)) are linearly dependent. It is an easy fact that if i ∈ X and
A(R,X) is a linearly dependent set of columns, then there is a subset C ⊂ X
so that the columns of A(R,C) form a circuit, and i ∈ C. Choose such a
subset C ⊂ supp(x). Let Ã = A(R,C); we claim that Ã is then the desired
candidate submatrix — we already see that its columns form a circuit, so we
simply need to show that it is row-inclusive.

By our choice of C, rank(Ã) = |C| − 1 and we can choose a nonzero vector
x̃ ∈ null(Ã). Then dim(null(x̃T)) = |C| − 1 = dim(col(ÃT)) and col(ÃT) ⊂
null(x̃T) together imply that col(ÃT) = null(x̃T). So if any row α = A(r, C)
has α ∈ row(Ã), then αT ∈ null(x̃T) so that αx̃ = 0 ⇒ br = 0 ⇒ r ∈ R; and
thus Ã is row-inclusive. So indeed A(R,C) � A.

Our choice of R provides that |R| = p, and we have chosen C so that
i ∈ C ⊂ supp(x). So we have confirmed part 1 of the property.

(Part 2) Now suppose we are given Ã = A(R,C) � A.
Since dim(null(Ã)) = 1, we can choose a nonzero x with supp(x) ⊂ C

and A(R, [n])x = 0. The columns of A(R, supp(x)) are linearly dependent, so
that by the minimal-dependency of the columns of A(R,C), it must be that
supp(x) = C.

If x̃ = x(C) so that no coordinate of x̃ is zero. As above, dim null(x̃T)) =
|C|−1 = dim(col(ÃT)) and col(ÃT) ⊂ null(x̃T) together give us that col(ÃT) =
null(x̃T).

If row α = A(r, C) 6∈ row(Ã), then by the row-inclusiveness of Ã, αT 6∈
col(ÃT) = null(x̃T), so that αx̃ 6= 0. That is, A(r, C)x̃ = 0 iff r ∈ R so that
supp(A([m], C)x̃) = [m]−R. Then

||Ax||0 = |supp(Ax)| = |supp(A([m], C)x̃)| = m− |R|.

Thus x is indeed the vector guaranteed to exist by part 2. 2

We are now ready for the

Proof of theorem 28.

53

We will see that any m × n matrix A, with m ≥ n and no singular sub-
squares is of rank n, and, for any C

c∼ A, ||C||0̃ ≥ (m− n + 1)n; that is, A is
completely unsparsifiable.

We will show this by working with the matrix

B =

(
I
A

)
,

where I is the n× n identity matrix. We will see that B is optimally sparse.
Notice that ||A||0̃ = mn since any zero entry would be a singular subsquare
(of size 1). Thus ||B||0̃ = (m + 1)n. If there existed an invertible matrix T
with ||AT ||0̃ < (m− n + 1)n, then

||BT ||0̃ =

∣∣∣∣∣∣∣∣ (T
AT

) ∣∣∣∣∣∣∣∣
0

< n2 + (m− n + 1)n = (m + 1)n,

contradicting that B is (as we have yet to show) optimally sparse. In other
words, showing that B is optimally sparse suffices to verify that A itself is
completely unsparsifiable.

First, it is easy to see that rank(A) = n; otherwise any n× n subsquare of
A would be singular.

Now, we will see that any candidate submatrix only preserves the number
of nonzeros in B; none can reduce it. To proceed, let us suppose we have a
candidate submatrix B(R, C) � B. By property 30, we also have a vector x
with supp(x) = C and ||Bx||0 = m + n− |R|.

Let RI = R ∩ [n]; these are the rows in R which are in the identity matrix
part of B. Let RA = R−RI ; these are the rows in the “A part” of B.

Since the columns of B(RI , C) are dependent, it must be the case that
B(RI , C) = 0. This, along with the fact that the columns of B(R,C) form
a circuit, ensure that the columns of B(RA, C) also form a circuit. Thus
rank(B(RA, C)) = |C| − 1.

We now claim that |RA| = |C|−1. If |RA| < |C|−1, then rank(B(RA, C)) <
|C| − 1, which is not the case. On the other hand, if |RA| ≥ |C|, then any
|C| × |C| subsquare of B(RA, C) must be singular, since it is rank-deficient —
and this would contradict that every subsquare of A is nonsingular. The only
consistent case is |RA| = |C| − 1.

We saw above that that RI ⊂ {r|B(r, C) = 0}. By the row-inclusiveness
of any candidate submatrix, we also have that {r|B(r, C) = 0} ⊂ RI , so that
these two sets are in fact equivalent. And the largest all-zero submatrix in I
with |C| columns has exactly n− |C| rows. That is, |RI | = n− |C|.

54

Then

||Bx||0 = m + n− |R| = m + n− (|RI |+ |RA|)
= m + n− (n− |C|+ |C| − 1) = m + 1.

In other words, we have seen that no candidate submatrix can strictly reduce
the number of nonzeros in any column of B; by corollary 31, this suffices to
demonstrate that B is optimally sparse. This completes the proof. 2

55

Chapter 7

Exact matrix sparsification

In this section, we’ll focus on the problem of exact sparsification, as opposed
to approximate or probabilistic attempts, which will be considered next (§8).

First we’ll highlight some of the key reductions showing the NP-hardness
of matrix sparsification, sparse null space, and related problems. These re-
ductions will be expanded in the next section. We will then outline a pair of
incremental algorithms to track the null space of an evolving matrix of time
series. Although these algorithms in themselves can only provide weak guar-
antees of generating some sparsity, they can maintain sparsity well, which we
will take advantage of in a modified version examined in the next section.

7.1 NP-hardness and other reductions

Here we’ll look at the four problems Sparse Null Space (first defined in §1.2),
Matrix Sparsification, Sparsest Vector, and Sparsest Independent Vector; we’ll
formally define each of these shortly. We’ll see that the first two are equivalent,
and that all of them are NP-hard.

The following figure depicts with solid arrows the reductions we will con-
structively show. The dashed arrow indicates an implied (though not explicitly
described) reduction. All reductions are polynomial-time.

56

Sparse Null Space Matrix Sparsification

Sparsest Independent Vector ∈ NP

Sparsest Vector

-�
�

�
�3

H
HHHY

?

Let’s review the definition of our fundamental problem:

Sparse Null Space Given a matrix A, find an optimally sparse full null
matrix N for A.

Our first pair of reductions will be between Sparse Null Space and

Matrix Sparsification Given a matrix A, find a matrix B which solves{
min ||B||0̃
s.t. B

c∼ A.

Sparse Null Space reduces to Matrix Sparsification

Suppose we want to find a sparse full null matrix for A. We can easily compute
an arbitrary (non-sparse) full null matrix N ′ for A. For example, we may
column reduce

(
A
I

)
as follows:(

A

I

)
→
(

U 0
V N ′

)
,

where U has all nonzero columns (and is psychologically lower-triangular).
Then it can be seen that N ′ is a full null matrix for A. More carefully: we
may decompose AT = LŨT , where L is invertible and ŨT is psychologically
(up to a column permutation) in reduced row echelon form. Then A = ŨLT ,

so that
(

A
I

)
L−T =

(
Ũ

L−T

)
. From here it is clear that the rightmost corank(A)

columns of Ũ are all zero, and that the corresponding columns of L−T form a
full null matrix N ′ for A.

From here, simply apply Matrix Sparsification to N ′ to arrive at output N ,
which will be an optimally sparse full null matrix for A.

57

Matrix Sparsification reduces to Sparse Null Space

If we want to instead sparsify an arbitrary matrix B, then we can begin by
choosing an m × n matrix B̃ whose columns are a subset of those of B with
col(B̃) = col(B) and rank(B̃) = rank(B) = n; in other words, we throw out the
redundant columns of B since these will become zero columns in the optimally
sparse output.

Now we may, in polynomial time, compute an arbitrary (non-sparse) full
null matrix AT for B̃T , so that B̃T AT = 0. Then A is (m − n) × m with
rank(A) = m − n ⇒ corank(A) = n = rank(B̃). Since AB̃ = 0, we can
conclude that B̃ is a full null matrix of A.

Hence if we solve Sparse Null Space on A, we will simultaneously be solving
Matrix Sparsification on B̃. To derive the final answer for our original matrix
B, we need only augment the correct number of zero columns.

Sparsest Vector reduces to Matrix Sparsification

This reduction and the next have both been pointed out earlier in [9]. First
let’s formally state the problem

Sparsest Vector Given a matrix A, find a nonzero vector v ∈ col(A) which
minimizes ||v||0.

To show the reduction, suppose we have a matrix A and we want to find a
nonzero vector v ∈ col(A) which minimizes ||v||0.

Let B be the optimally sparse matrix we get from solving Matrix Sparsifica-
tion on A. If there is a nonzero vector v ∈ col(A) = col(B) with ||v||0 < ||bi||0
for all columns bi of B, then we could replace one of the columns of B (choos-
ing carefully which column to replace to avoid shrinking col(B)) to arrive at
an even sparser matrix B′ c∼ A. But this contradicts optimal sparsity. Hence
the sparsest column of B also solves Sparsest Vector.

Matrix Sparsification reduces to Sparsest Independent Vector

The stronger version of Sparsest Vector is

Sparsest Independent Vector Given a matrix A with independent
columns {a1, . . . , an}, and an integer 0 ≤ j < n, find a nonzero vector
v ∈ col(A) which minimizes ||v||0 while keeping the set {a1, . . . , aj, v} lin-
early independent.

58

If j = 0, this is exactly Sparsest Vector.
The following greedy algorithm solves Matrix Sparsification using Sparsest

Independent Vector. It assumes A is of full column rank — if not, we can
simply run Matrix Sparsification on Ã, a full rank subset of the columns of A
with col(Ã) = col(A); the other columns will become all-zero in the sparsified
output. In the pseudocode below, the function SIV(A, j) returns a vector which
solves Sparsest Independent Vector on inputs A and j; and bj denotes the jth

column of B.

Greedy Matrix Sparsification
(using Sparsest Independent Vector)

Let B := A
For j := 1 to n

Let bj :=SIV(B, j − 1)
Next j
Return B

In general, it is not clear that greedy algorithms ever guarantee finding a
global optimum — however, in the case of matroids, this has been proven, as
we shall recall in theorem 32 below.

Remember that a matroid can be characterized by its ground set X and a
set I ⊂ 2X of independent sets (whose intuition is analogous to that of linearly
independent sets of vectors) which must obey the following rules:

• ∅ ∈ I,

• (hereditary property) A ∈ I & B ⊂ A =⇒ B ∈ I, and

• (exchange property) A, B ∈ I with |A| > |B| =⇒ ∃a ∈ A − B :
B ∪ {a} ∈ I.

Suppose that we would like to find a maximally-sized independent set B ∈
I for which f(B) is maximized. Also suppose that f(B) :=

∑
b∈B f(b), so that

f is characterized by its values on the ground set X. Let’s call such a function
an additive weight function.

Finally, let’s formalize the greedy algorithm on a matroid (X, I) as an
incremental algorithm which at each step begins with set B ∈ I and augments

59

it to form a new independent set B ∪{x} by choosing a particular x ∈ X−B.
This element x is chosen simply so that it maximizes the value f(x) over all
elements of X−B which maintain the independence of B∪{x}. The algorithm
terminates when the size of B is maximal.

Theorem 32 Any run of the greedy algorithm on a matroid using an additive
weight function produces a maximally-sized independent set B which satisfies
f(B) ≥ f(C) for all other maximally-sized sets C ∈ I.

A proof (and other related information) can be found in §1.8 of [26].
In our case, we simply have to notice that the column space of any matrix

A can form the ground set of a matroid in which the independent sets are
exactly the linearly independent subsets of vectors. Clearly, the number of
nonzero entries in our subset is an additive weight function, and our problem
Sparsest Independent Vector lends itself immediately to the greedy algorithm.

7.1.1 Sparsest Independent Vector ∈ NP

We will show that Sparsest Independent Vector can be solved in terms of the
following bounded version of the problem:

k−Sparse Independent Vector Given matrix A with independent
columns {a1, . . . , an}, integer j with 0 ≤ j < n, and k ∈ N, find a nonzero
vector v ∈ col(A) so that ||v||0 ≤ k and {a1, . . . , aj, v} is linearly independent.
If no such v exists, return “none.”

Clearly we can solve Sparsest Independent Vector on an m × n matrix A
with at most m calls to k−Sparse Independent Vector (just start with k = 1
and proceed until we don’t get a “none” reply).

Let’s find an NP algorithm to solve k−Sparse Independent Vector on an m×
n matrix A with rank(A) = n. First, nondeterministically choose an arbitrary
submatrix Ã = A(R,C) of A. We want to check the following properties of Ã
— if any property is not met, this branch of the nondeterministic algorithm
terminates (returns “none”):

1. Check that C 6⊂ [j]

2. Check that m− |R| ≤ k

3. Check that Ã � A

60

We can check each property in polynomial time. If C 6⊂ [j], then we are
guaranteed that any linear combination involving all the vectors in C will be
independent of the first j vectors {a1, . . . , aj}; otherwise we would have a linear
dependence among columns.

If the other two conditions are also met, then part 2 of property 30 ensures
us of the existence of our desired vector v. To compute the actual vector, we
can simply solve Ãx̃ = 0 for some nonzero x̃ and return v = A([m], C)x̃.

Certainly any returned v will satisfy the requirements. But how do we
know this algorithm is guaranteed to find such a v if one exists? This time
refer to part 1 of property 30 to see that any existing v which depends on some
ai with i > j has a candidate submatrix Ã = A(R,C) � A with i ∈ C which
will allow us to compute a vector as sparse as v and still depending on ai.

7.1.2 Sparsest Vector is NP-hard

Since Sparsest Independent Vector ∈ NP, we need only show that Sparsest Vector
is NP-hard in order to (non-constructively) prove that the former is reducible
to the latter in polynomial time.

Larry Stockmeyer is given credit for the original proof of this fact, although
he himself never published it. A version of his proof can be found in [18].

7.2 Algorithms

In this section, we’ll consider a series of algorithms designed to solve Sparse
Null Space. First in §7.2.1 we enumerate and briefly analyze three previous
algorithms: back substitution, the turnback algorithm, and an algorithm which
assumes the input matrix satisfies the Haar condition, given by Alan Hoffman
and Tom McCormick in [21]. Then in §7.2.2 we will present some new ideas
focused on taking advantage of the incrementally changing nature of time series
data.

7.2.1 Previous algorithms

Back Substitution and Column Reduction

Perhaps the most naive approach to solving Sparse Null Space is to simply find
a full null matrix and column reduce it. Another simple method, which we
will refer to as back substitution, would be to use Gaussian elimination to find

61

a set of independent null vectors, trying to induce sparsity by including many
zeros in the free variables. We will see here how much sparsity can be expected
from these routines (a minimal amount) and that these two techniques are in
fact different perspectives of essentially the same approach.

The linear algebraic reader is likely to be very familiar the content of the
next few paragraphs, in which we carefully describe the classical method for
solving the standard matrix equation Ax = b. We justify this brief exposition
by using it to show the equivalence between back substitution and column
reduction, as well as quantifying the relatively weak guarantees which can be
provided by either of these methods.

Let’s describe the back substitution technique in some detail. We are
interested in finding a sparse full null matrix for the m × n matrix A. If
A = LU , where L is invertible and U is in reduced row echelon form, then x
solves Ux = 0 iff it solves Ax = 0. Recall that a matrix U is in reduced row
echelon form iff

• there is an increasing sequence P = {p1, . . . , pr} ⊂ [n] of
column indices so that column upi

= ei, the ith column of
the identity matrix; and

• for i ≤ r, j < pi =⇒ uij = 0; and

• for all i > r, uij = 0.

(7.1)

The set of columns indexed by P are the pivot columns, which correspond
to the basic variables in x, while the other variables are referred to as free
variables. Notice that |P | = r = rank(U) since the pivot columns span col(U).

The back substitution method consists of using the equation Ux = 0 to
find a sequence η1, . . . , ηc of independent vectors with Uηk = 0 ∀k. We find
columns ηk in such a way that forces them to each contain at least c− 1 zeros.

Specifically, we assign ηk(F) = ek, where F = [n]− P are the coordinates
of our free variables, and ek denotes the kth column of the identity matrix. We
may then use the equation uix = 0 to solve for coordinate pi of x for 1 ≤ i ≤ r,
where ui is the ith row of U . This is possible since uij = 0 whenever j < pi, so
that we need only know the values xj for j > pi in order to solve for xpi

itself.
In the following pseudocode, the notation (ui − jth) represents the ith row

of U with the jth coordinate removed. We use this notation to indicate that
the product (ui − jth)x is well defined even if x has not yet been defined on
coordinates j or j′ for which uij′ = 0.

62

Back Substitution

Decompose m× n matrix A = LU
Choose F := {f1, . . . , fc} (c = corank(A))

so that fi ∈ F corresponds to the ith free variable in U
And P := {p1, . . . , pr} (r = rank(A) = n− c)

so that pi ∈ P corresponds to the ith pivot column in U
For k := 1 to c

Let x(F) := ek

For i := r down to 1
Let xpi

:= −(ui − pi
th)x

Next i
Let ηk := x

Next k

Return N :=

(
η1 η2 · · · ηc

)

One thing which becomes clear in this algorithm is that xpi
is defined only

in terms of xj for j > pi; this follows since uij = 0 for j < pi. This means that

(xj = 0 ∀ j > pi) =⇒ xpi
= 0,

so that, when x = ηk, x(f`) = 0 ∀ ` > k, and

xj = ηjk = 0 ∀ j > fk. (7.2)

We will now use this observation to show

Property 33 Suppose the n × c matrix N = (ηij) is the output of a run of

back substitution on the m× n matrix U . Define matrix N̂ = (η̂ij) by setting
η̂ij = ηn−i,j; in other words, we are just swapping each pair {i, n− i} of rows

in N to arrive at N̂ .
Then N̂ is in reduced column echelon form.

Proof. Recall that matrix N̂ is in reduced column echelon form iff N̂T is
in reduced row echelon form. This translates, from definition (7.1), to

• ∃ increasing sequence {p1, . . . , pc} ⊂ [n] : ∀j, row ηpj = eT
j ,

63

• i < pj =⇒ η̂ij = 0, and

• j > c =⇒ η̂ij = 0.

First we claim that letting p̂j = fj suffices for the first bullet, where the
increasing sequence F = {f1, . . . , fc} are the free variables of U . In order to
verify this, let’s also define pj = n− p̂j. By the above algorithm, we can clearly
see that column ηk(F) = ek, so that the submatrix N(F, :) is the c×c identity,
and thus row

η̂p̂j = ηpj = ηfj = eT
j ,

as claimed.
For the second bullet, we can use observation (7.2) to see that

i < p̂j =⇒ n− i > n− p̂j = fj
(7.2)
=⇒ η(n−i)j = 0 =⇒ η̂ij = 0,

as required.
Finally, the third bullet is trivial since there no columns in N with j > c.

Thus we have confirmed that N̂ is indeed in reduced column echelon form. 2

We are now ready to evaluate the sparsity achieved by these methods.

Property 34 If an n×c full null matrix N is found by either back substitution
or column reduction, then

||N ||0̃ ≤ (n− c + 1)c.

This property follows from the fact that any N generated in this way must
contain a c × c identity matrix, which has c(c − 1) zeros, so that ||N ||0̃ ≤
nc − c(c − 1) = (n − c + 1)c. (Note that this bound is just a special case of
property 27.)

A slightly more careful analysis allows us to see

Theorem 35 If n× c matrix N̂ of rank c is in reduced column echelon form
with pivot rows p̂1, . . . , p̂c, then

||N̂ ||0̃ ≤
(∑

i

pi

)
−
(

c

2

)
,

where pi = n− p̂i.

64

Retaining the notation from the proof of property 33, this means that back
substitution on U gives

||N ||0̃ ≤
(∑

i

fi

)
−
(

c

2

)
,

where fi is the ith free variable in U .
How useful is this bound? Unless we can provide some bounds on the values

for p1, . . . , pc, it is no better than property 34. In particular, if pi = n− c + i
then

∑
pi = (n− c)c +

(
c+1
2

)
so that

∑
pi = (n− c)c +

(
c + 1

2

)
−
(

c

2

)
= (n− c + 1)c.

How efficient are these bounds? They are tight – it is not too hard to find
matrices which achieve the worst case. In the case of back substitution, any
matrix of the form U = (I X) works, where I is the m×m identity and X is
any m× (n−m) matrix with no zeros; that is, performing back substitution
on such a U will result in an N with (m + 1)(n−m) nonzeros, which is equal
to (n − c + 1)c here since c = corank(U) = n − m. In the case of column
reduction, we may simply notice that N =

(
I
X

)
is in reduced column echelon

form, where I is the c× c identity and (n− c)× c matrix X has no zeros.
We will consider these techniques and bounds as a minimum level of spar-

sity which future algorithms should strive to improve upon.

The Turnback Algorithm

The Turnback Algorithm is a slightly modified version of back substitution
in which we are sure to achieve some kind of band structure in the resulting
null matrix. The original idea was proposed by A. Topcu in his 1979 doctoral
dissertation [30], and has since been improved a bit. The version we present
here was introduced by M.W. Berry et al in 1985 as the Refined Turnback
Algorithm [3].

If A is an m × n matrix, then any m + 1 columns must contain a linear
dependency. The turnback algorithm takes advantage of this fact to achieve
its banded structure. Intuitively, the algorithm row reduces A, finds its free
variables J , and then for each free variable finds a linear dependency from a
set of at most m + 1 previous columns.

65

In the following pseudocode, bi is the ith column of matrix B, and the
expression X 〈p〉 denotes the first p vectors from X, whether X is a sequence
of vectors or a matrix (in which case take the first p columns).

Turnback Algorithm

Row reduce m× n matrix A→ U
Choose F := {f1, . . . , fc} (c = corank(A))

so that fi ∈ F corresponds to the ith free variable in U
For i := 0 to f1 − 1

Let βi := f1 − i
Next i
For i := 1 to c

Let Ei := [bβ1|bβ2| · · · |bβt]
where t := min{|β|, m + 1}

Row reduce Ei → Ẽi

Let ui := index of first nonpivot column in Ẽi

Let Êi := Ẽi 〈ui〉
Find nonzero η̂i so that Êiη̂i = 0
Let ηi := 0; then set ηi(β 〈ui〉) := η̂i

so that Uηi = 0
Remove βui

from β
Prepend (fi+1, fi+1 − 1, . . . , fi + 1) to β

(so that β1 = fi+1)
Next i

Return N :=

(
η1 η2 · · · ηc

)

See [3] for a proof of the correctness of this algorithm.
Each column ni of N has its support supp(ni) contained in the column

indices of Êi. This means that each column has at most m+1 nonzero entries,
so that ||N ||0̃ ≤ (m + 1)k. Solving Sparse Null Space on full rank matrices
only makes sense when m ≤ n, in which case corank(A) = k = n −m. Then
(m+1)k = (n−k+1)k, so that this analysis of the turnback algorithm reveals
no further sparsification when compared to back substitution via property 34.

As stated above, the real advantage comes in the band structure of N .

66

However, it is difficult to give a general bound on the size of this band —
partially because it depends on the unpredictable values of the ji’s and ui’s.
The authors in [3] do not even attempt such an inequality, although they do
provide experimental evidence supporting the intuition that a banded struc-
ture in A assists in maintaining the banded structure in N when using this
algorithm.

It is not too difficult to verify that the worst-case example given for back
substitution also demonstrates the potentially poor performance of the turn-
back algorithm. In particular, suppose we let the m × n matrix A = (I X),
where I is the m×m identity matrix and X is any m×c matrix without zeros,
and c = corank(A) = n−m. Then η̂i, the possibly nonzero components of col-
umn ηi of output N from the turnback algorithm, are in the nullspace of (I xi)
up to a column permutation, where xi is the ith column of X. This clearly
means that ||ηi||0 = m + 1, so that each column of N has m + 1 nonzeros, and

||N ||0̃ = (m + 1)c = (n− c + 1)c,

which is the worst case for any n× c matrix such as N .
Notice that the above worst-case example still holds even when A has a

very sparse null space — for example, we could let X have all ones as its
entries. In this case, all but one of the vectors in a basis of the null space may
be of the form ei − ei+1, so that

||N ||0̃ = m + 1 + 2(c− 1) = n + c− 1 ≺ (n− c + 1)c

for n � kc for some k > 1 as n→∞.

The Haar Condition

A matrix A satisfies the Haar condition when every square submatrix of A
either has no psychological diagonal with all nonzero elements, or is nonsingu-
lar. A psychological diagonal of an n × n matrix B is a subset {bi,π(i)} of its
entries described by a permutation π : [n] → [n]. Intuitively, a psychological
diagonal is a set of entries which, under the proper row- or column-swaps,
form the diagonal of the matrix. We may also give intuition for matrix A
satisfying the Haar condition as being exactly when every square submatrix
which appears-by-zero-nonzero-structure to be invertible actually is invertible.

Hoffman et al, in [21], have given a polynomial-time algorithm which op-
timally sparsifies this class of matrices. However, as we have seen in the idea

67

of candidate submatrices (such as in theorem 28 and corollary 31), a matrix
will offer little sparsification unless we can find square submatrices which have
many nonzeros yet are singular.

7.2.2 New incremental algorithms

In this section, we will outline two incremental versions of a general algorithm,
which we refer to as null track, for tracking the exact nullspace of a set of time
series considered as a matrix. These methods, originally published by the
author in [36], have the advantage of both speed and flexibility. In addition, we
will see experimental evidence that they provide levels of sparsity comparable
with those of the previous, non-incremental algorithms.

Throughout this section, suppose we are given n time series of length t
each; we model this as a sequence of matrices A1, A2, . . . , At such that matrix
At is t × n in size and each is a “super-matrix” of the previous, in the sense
that

At =

(
At−1

at

)
,

where at is the row vector representing a single datum from each time series
at time t.

Tracking full history time series

The full history version of null track operates on a set of time series by main-
taining a full null matrix Nt for At. Since At is constantly growing over time,
the sequence of null spaces col(Nt) can only decrease in dimension over time.
Depending on the data, it is very conceivable that col(Nt)→ ∅ quickly. How-
ever, we will still find it useful to know how to track Nt since it is an essential
component of the more stable partial history sliding window version described
in the next section.

The algorithm here is very simple to describe, although we will have to
explain (in a moment) why it truly maintains a full null matrix, as well as why
it encourages sparsity.

68

Null track: full history

// incremental: assume Nt−1 is a sparse full null matrix for At−1

Let ηt := nmat(atNt−1)
Let Nt := Nt−1ηt

Note that, above, ηt is a matrix, whereas in earlier pseudocode it had been
simply a column vector. Here we have used the subroutine:

nmat(r): null space for a row vector

// exactly solve Sparse Null Space for the nonzero single-row matrix r
// without loss of generality, rn 6= 0

For i := 1 to n− 1
Let ηi := rnei − rien

Next i

Return N :=

(
η1 η2 · · · ηn−1

)

Although, Sparse Null Space is NP-hard in general, we can in fact solve it
exactly in linear time when the input is a row vector, as nmat does. We’ll
discuss this subroutine in more detail momentarily — first, let’s observe the
key fact behind this version of null track:

Theorem 36 Suppose that A =
(

A1

A2

)
. Also suppose N1 is a full null matrix

for A1, and N2 for A2N1. Then N1N2 is a full null matrix for A.
We could abbreviate this fact by writing:

col(N1) = null(A1) and col(N2) = null(A2N1) =⇒ col(N1N2) = null

(
A1

A2

)
.

This fact precisely justifies that the above algorithm for null track main-
tains exactly a full null matrix Nt for At.

69

Proof. First we’ll check that η ∈ col(N1N2) =⇒ Aη = 0.
Notice that Aη = 0 iff both A1η = 0 and A2η = 0. Since η ∈ col(N1) =

null(A1), it immediately follows that A1η = 0. At the same time, if νi is the ith

column of N2, then A2N1νi = 0 by the definition of N2. If ηi is the ith column
of N1N2, then ηi = N1νi so that A2ηi = A2N1νi = 0. That is, for any column
η of N1N2, we have A1η = A2η = 0 =⇒ Aη = 0.

It’s almost as easy to verify the other direction: that Aη = 0 =⇒ η ∈
col(N1N2).

Accordingly, suppose η ∈ null(A). Then η ∈ null(A1) =⇒ η ∈ col(N1), so
that there is a vector y with η = N1y. We also have η ∈ null(A2) so it must be
that y ∈ null(A2N1) = col(N2). Then there must be a vector z with y = N2z,
and η = N1N2z, so that in fact η ∈ col(N1N2) as claimed. 2

Sparsity of full history null track Let’s consider the subroutine nmat —
we’ll confirm that its output N is in fact a full null matrix for input r, and
further that N is optimally sparse.

Since the length n row vector r is nonzero, it must have some nonzero
entry. If rn = 0, we can permute its coordinates to arrive at r̂ with r̂n 6= 0;
then the columns of N̂ = nmat(r̂) may be unpermuted to arrive at full null
matrix N with rN = 0, and which is optimally sparse iff N̂ is. This is why we
can assume rn 6= 0 without loss of generality.

It is easy to see that, if ηi = rnei − rien, then rηi = rnri − rirn = 0, for
any i ∈ [n − 1]; that is, N is indeed a null matrix for r. At the same time,
if i < n, then the ith row of N has exactly one nonzero in the ith column.
Thus the columns of N are independent, so the n× (n−1) matrix N has rank
n− 1 = corank(r); this verifies that N is a full null matrix.

Now for the sparsity: if ||x||0 ≥ 2, then ||Nx||0 ≥ 2 since each column ηi of
N has the only nonzero in the ith row. Yet we already know that each column
of N has at most two nonzeros. So by lemma 29, matrix N must be optimally
sparse.

Next we can use theorem 26 to justify that this sparsity is maintained
to some degree at each iteration. In particular, the algorithm sets ηt =
nmat(atNt−1) and Nt = Nt−1ηt so that

||Nt||0̃ ≤ c(Nt−1)r(ηt)

≤ c1 + c2 + . . . + ci−1 + ||at||0ci + ci+1 + . . . + ck

≤ ||c(Nt−1)||1 + ||at||0ci = ||Nt−1||0̃ + ||at||0ci,

70

where k is the number of columns in Nt−1, ci denotes the number of nonzeros
in the ith column of Nt−1, and i is the pivot used by nmat to build ηt. Thus
we would be wise to ask nmat to choose its actual pivot i ∈ [n] as the element
of supp(r) which minimizes ci.

In our experiments, null track seems to do slightly better than this bound.

Time complexity of full history null track For this analysis, we assume
that all matrices are stored in a sparse format, so that operations on zero
entries may be skipped.

Subroutine nmat will only require time linear in the size of its input. This
size, at time step t, is the number of columns of Nt−1; id est, corank(At−1).

The time to compute the matrix product for Nt can be bounded above by
||Nt−1||0̃ + ci||at||0 since this is an upper bound for the number of elements in
Nt which need to be computed.

Since ||Nt||0̃ ≤ ncorank(At) ≤ n2 and ||at||0 ≤ n where n is the number
of time series, we can safely say that the time needed for a single iteration
is O(n2). Of course better speed is achieved when the algorithm manages to
maintain some sparsity in Nt.

Before moving on to the partial history version, let us note that this al-
gorithm could be slightly modified to execute a statement of the form Let
Nt := sparsify(Nt) at the end of each iteration, where sparsify(A) is any func-
tion which returns a matrix B

c∼ A with ||B||0̃ ≤ ||A||0̃. The point is that this
version of null track requires nothing special about Nt to work except that Nt

is a full null matrix for At, so modifying Nt in the meantime will not destroy
the incremental action of the algorithm. Thus, if one could derive an O(n2)
time algorithm to significantly increase the sparsity of any matrix, it would be
useful to augment null track with this technique.

Tracking partial history sliding windows

The partial history version of null track operates on time series by maintaining
a full null matrix Nt for the last (bottom-most) m time units of our time series.
This number m is constant over time. If at is the row of time series values at
time t, then we will now (re-)define the m × n matrix At to consist of rows
(from top to bottom) at through at+m−1.

This algorithm actually maintains a decomposition AtBt = Ct, where Bt

is invertible and Ct is in column echelon form. Thus, the last c = corank(At)

71

columns of Ct are exactly the zero columns of Ct; from this it follows that the
last c columns of Bt, which we denote as Nt, form a full null matrix for At.

The algorithm operates by updating Bt → Bt+1 and Ct → Ct+1 based on
the new incoming row at+m. We first give pseudocode, and then justify the
algorithm in more detail:

Null track: partial history sliding window

// based on (at+s, Bt, Ct), calculate (Bt+1, Ct+1)

ct+s := at+sBt

Define C̃t+1 so that
(

Ct

ct+s

)
=
(

ct

C̃t+1

)
X := col reduce(C̃t+1)
Bt+1 := Bt ·X
Ct+1 := C̃t+1 ·X

The subroutine col reduce(Y) returns a matrix X so that Y X is in column
echelon form.

To describe the algorithm in more detail, it will be convenient to define
matrix A′

t as the last m − 1 rows of At, so that At =
(

at

A′
t

)
and At+1 =

(
A′

t

at+s

)
.

Notice that At+1Bt =
(

A′
t

at+s

)
Bt =

(
A′

tBt

at+sBt

)
=
(

C′
t

ct+s

)
, where C ′

t are the last m− 1

rows of Ct and ct+s = at+sBt (which is set in the first line of the algorithm).

So far, if we let C̃t+1 =
(

C′
t

ct+s

)
(as is consistent with the algorithm), then

we have
At+1Bt = C̃t+1.

All that remains is to column reduce C̃t+1 → Ct+1 to maintain that Ct+1 is in
column echelon form. By performing the same column operations on both Bt

and C̃t+1 simultaneously, we can maintain the desired matrix decomposition;
this is represented by the last three lines of pseudocode. More practically, we
can carry out these actions by column reducing(

C̃t+1

Bt

)
→

(
Ct+1

Bt+1

)
.

Figure 7.1 illustrates an example iteration of this algorithm.

72

figures/c33.pdf

Figure 7.1: One iteration of the partial history null track algorithm

At first sight, this algorithm may appear to be a relatively näıve way to
track the null space of a sliding window of time series. To be sure, we have not
yet introduced any non-elementary sparsity heuristics; but we will see that this
algorithm, when properly implemented, has the advantages of encouraging the
conservation of sparsity as well as enabling a faster time complexity when the
involved matrices are sparse.

Conservation of sparsity In any single increment At → At+1, the corank
may either decrease by one, remain the same, or increase by one. We claim
that the sparsity is well maintained when the corank does not increase, and
that one relatively dense column may be added to Nt in the remaining case.

The key is to notice that C̃t+1 is almost already in column echelon form,
since we know that Ct was.

In particular, the bottom row of C̃t+1 may have many nonzeros, but among
the rightmost columns corresponding with the null space of At, each column
will have at most one nonzero (in the bottom row), since in Ct these columns
were all zero. Thus we may choose the one of these columns with the most
sparse corresponding column in Bt, and use that as a pivot in reducing C̃t+1.

73

Thus our loss of sparsity (that is, the increase from ||Nt−1||0̃ to Nt) is bounded
above by n(` + 1), where ` is the number of nonzeros in the pivot column —
the “+1” is to compensate for the fact that a new (relatively dense) column
may be added to Nt if the corank of At has increased.

Time Complexity Computing ct+s = at+sBt requires time of order ||Bt||0̃ ≤
n(n− c) + ||Nt||0̃ ≤ n2.

We can also give a quadratic bound for the time required to column reduce
C̃t+1. In the worst case, C̃t+1 has all nonzeros on the superdiagonal cij, j =
i+1. Then we must perform O(n) column operations, one for each consecutive
pair of nonzero columns in C ′

t, in order to column reduce the leftmost (non-
nullspace) rows of C̃t+1. As discussed above, the remaining rightmost columns
will all have at most one nonzero in the bottom row; hence these may also be
handled using O(n) column operations.

Since each column in
(

C̃t+1

Bt

)
has at most m + n rows, to perform O(n)

column operations will take time at most O(n(m+n)); this is an upper bound
for the overall time complexity of this algorithm.

Note that, as in the full history version of null track, it is possible to
augment this algorithm with a sparsify subroutine at each step. The invariant
AtBt = Ct would still be maintained since we could rewrite this equation as

At(B̂tNt) = (Ĉt0),

where Ĉt is composed of all nonzero columns in Ct, and B̂t are the correspond-
ing leftmost columns of Bt. Then Nt could be replaced by any matrix M

c∼ Nt,
and we still would have AM = 0, so that

At(B̂tM) = (Ĉt0),

and our new matrix Bt = (B̂tM) works as well. Thus, adding a final statement
of the form Let Nt = sparsify(Nt) could help increase sparsity while maintaining
the integrity of the algorithm.

We also point out that this algorithm really is an extension of our full
history version because it operates on the null matrix Nt in essentially the
same way whenever corank(At) is not increasing; that is, we modify Nt by
choosing a pivot column, as nmat did in the first version, and using this pivot
column to re-align the old null columns with the updated data. We may even
choose the pivot in the same manner: by minimizing the density among all
our choices of a potential pivot. Of course, the partial history version can also
deal with increasing corank(At) at the cost of some time complexity.

74

Experimental results

We used both real (stock prices) and simulated data to test each of these two
algorithms (full or partial history sliding window). Our real data is from the
NYSETAQ stock database, and contains trade prices of a randomly selected
subset of 500 stocks. The data was normalized so that 100 time ticks corre-
spond to 1 full day (9am–4pm) of trading. The simulated data consists of time
series which were mostly random linear combinations of the several previous
values (as rows), and occasionally a completely new random set of values (a
new random row).

Our algorithm is compared with (nonincremental) back substitution. The
back substitution is performed at each time tick on the full sliding window.
Recall that the turnback algorithm does not guarantee any increase in sparsity
over back substitution (although it does encourage a banded structure); hence
these sparsity comparisons should be similar to those from a turnback experi-
ment as well (unless the data in question becomes naturally further sparsified
in band-form).

Although time comparisons between these two algorithms are somewhat
unfair, it is useful to see how well the sparsity of our much faster incremental
algorithms fares against that of the slower nonincremental algorithm. (The au-
thor is unaware of any other incremental sparse null space tracking algorithms
to compare against.)

Initially, both algorithm versions (full or partial history sliding windows)
achieve sparsity nearly as efficiently as back substitution. However, the sta-
bility and sparsity of the partial history sliding window algorithm deteriorates
slightly over time. To compensate, we periodically restarted the tracked de-
composition AB = C. Luckily, when the need to periodically recalibrate is
anticipated, we can do so in an incremental fashion (using essentially the full
history technique in parallel), without any awkward pauses in computation.

• Figure 7.2 shows how the density (percentage of the null matrix which is
nonzero) evolves over 60 iterates of our algorithm on the simulated data.
Notice the significant improvement we gain by periodically recalibrating
our decomposition (which occurs every 20 iterations in the figures).

• Figure 7.3 compares the average number of nonzero entries per column
between our algorithm and back substitution run on the stock price data.
Although back substitution consistently does at least as well, the factor
of improvement is small – in this experiment, the average ratio is 1.11 and

75

figures/null_fig2.pdf

Figure 7.2: Density of null space comparison on simulated data. Back sub-
stitution remains between 3–6% while our periodically recalibrated algorithm
achieves between 3–7%.

the maximum is 1.25. In practice, a factor of 1.11 would mean that the
linear identities we are finding contain 11% more terms than they would
with the (much slower) back substitution method. For example, in the
stock market application of tracking an index, the larger dependent set
would mean that 11% more stocks would be needed to track the index.

• Figure 7.4 illustrates how the time complexity of our algorithm grows
with respect to the width of the partial history sliding window. Each data
point is the ratio between one iteration of our algorithm in proportion to
back substitution on 1000 columns of simulated data. (In this experiment
our algorithm always ran at least 49 times faster than the alternative.)

In summary, these incremental algorithms are time efficient and maintain
sparsity well in comparison with back substitution. In addition, they are easily

76

figures/null_fig3.pdf

Figure 7.3: Average number of nonzeros per column in stock price data. A full
column could have contained up to 500 nonzeros. Back substitution alternated
between 38–41 while our algorithm accomplished between 41–49.

extensible with augmented null matrix manipulation via an optional sparsify
function.

77

figures/null_fig4.pdf

Figure 7.4: Relative speedup factor between our algorithm and back substitu-
tion over partial history sliding windows of increasing width. Tests were run
on 1000 streams of simulated data. The factor represents the time efficiency
gained over one iteration.

78

Chapter 8

Probabilistic and approximate
sparsification

8.1 Hardness of approximation

In this section, we’ll see that the problems we care about — Matrix Sparsifica-
tion, as well as P0, an affine version of Sparsest Vector — are both NP-hard to
approximate within a certain factor of the optimal answer. We’ll also examine
two techniques for probabilistically approximating these problems. The first,
originally published by Piotr Berman and Marek Karpinski [2], justifies that a
certain method of “random sparsification” is likely to achieve an answer within
a factor of n/c of optimal, for some fixed c. The second technique is to use L1

minimization as a convex optimization alternative to L0 minimization. David
Donoho et al. [13], [14], [8], [6] have provided some theoretical justification for
this idea. The L1 minimization has the disadvantage of failing completely on
a certain class of inputs; but it has the advantage of often achieving the exact
optimal answer when it does work, and it does work “often” in a certain sense.
Because of these advantages, our incremental algorithm presented in §8.2 will
use L1 minimization rather than the “random sparsification” technique.

8.1.1 Equivalence and APX-hardness of Min-Unsatisfy

We’ll begin by formally stating problems P0 and Min-Unsatisfy, and showing
that they are equivalent. Previous work has shown that Min-Unsatisfy is hard
to approximate, so this equivalence reveals that P0 is hard as well.

Problem P0 is a slight variant to Sparsest Vector:

79

P0 Given matrix A and column vector b 6= 0, find nonzero x which solves

P0

{
min ||x||0
s.t. Ax = b,

or indicate that no such x exists.

If we required that b = 0, then this problem would be equivalent with
Sparsest Vector.

Our other problem of interest is:

Min Unsatisfy Given matrix A and vector b 6= 0, find y which solves

min ||Ay − b||0.

Suppose x∗ are y∗ are optimal answers for P0and Min Unsatisfy, respectively.
In the approximation version of these problems, we are then attempting to
minimize the approximation factors

||x||0
||x∗||0

and
||Ay − b||0
||Ay∗ − b||0

.

In the following, we write P0(A, b) and Min Unsatisfy(C, d) to denote the
solutions x and y to these problems on inputs (A, b) and (C, d).

Property 37 Problems P0 and Min Unsatisfy are equivalent. That is, for ev-
ery instance (A, b) of input to P0, there is a polynomial-time computable in-
stance (C, d) of input for Min Unsatisfy such that

P0(A, b) = Min Unsatisfy(C, d).

Symmetrically, there is also a polynomial-time reduction in the other direction.

We’ll give the proof in a moment.
In their 1998 paper [11], Irit Dinur, Guy Kindler, and Shmuel Safra showed

that Min-Unsatisfy is NP-hard to approximate within a factor of nΩ(1)/ log log n

over any finite field. For arbitrary fields, Sanjeev Arora et al [1] have shown
it to be quasi-NP-hard to approximate Min-Unsatisfy within a factor of ρ =
2log1−γ n for any γ ∈ (0, 1); a problem prob is quasi-NP-hard when prob ∈

80

P =⇒ NP ⊂ DTIME(npoly(log(n))). To get a better feel for this factor
ρ, notice that elog1−γ n = n1/ logγ n. Asymptotically, writing f(n) ≺ g(n) to
indicate that f(n)/g(n)→ 0 as n→∞, we can see that

log1−γ(n) ≺ ρ = n1/ logγ n ≺ n1/ log log n ≺ n.

Since these problems (P0 and Min-Unsatisfy) are equivalent, any inapprox-
imability result for one also holds for the other. This is interesting to us
because, in §8.2, our main algorithm relies on solving P0; since we know it is a
hard problem, we are justified in using a probabilistic-approximate approach.
The hardness of Min Unsatisfy is also interesting to us because we may reduce
it to Matrix Sparsification in a gap-preserving way (as we will see in a moment);
thus knowing that Min Unsatisfy is quasi-NP-hard to approximate suffices to
inform us that Matrix Sparsification, and thus the equivalent problem Sparse
Null Space, are both also hard to approximate.

Proof of property 37.
The main idea behind the equivalence is essentially the same as that behind

the reduction between Matrix Sparsification and Sparse Null Space; indeed, in
both cases we are trying to find a vector in an affine space with maximal
sparsity.

Given input (A, b) to P0, we would like to find an input (C, d) to Min Unsatisfy
so that

{x|x = Cy − d for some y} = {x|Ax = b}. (8.1)

If Ax = b has no solutions, then no reduction is necessary. Otherwise, choose d
so that Ad = −b and matrix C so that col(C) = null(A). (To confirm that we
can find d and C in polynomially time, please refer to the Linear Computations
appendix at the end of this thesis.) Then

x = Cy − d =⇒ Ax = ACy + b = b

and

Ax = b =⇒ A(x + d) = 0 =⇒ x + d ∈ col(C)

=⇒ x = Cy − d for some y,

confirmed that equation 8.1 holds, as we wanted. This shows that the solution
y to Min Unsatisfy(C, d) immediately gives us the solution x = Cy − d to
P0(A, b).

81

Now suppose we are given input (C, d) to Min Unsatisfy; our reduction is
essentially unchanged. We choose A so that col(C) = null(A), and let b = −Ad
(again, the Linear Computations appendix explains how this may be found in
polynomial time). As above, equation 8.1 still holds, and the solution x to
P0(A, b) allows us to solve Cy = x+d for y, the solution to Min Unsatisfy(C, d)
— again, we know that x + d ∈ col(C) = null(A) since A(x + d) = b − b = 0.
This completes the equivalence. 2

8.1.2 APX-hardness of Matrix Sparsification

We will see that Matrix Sparsification is at least as hard to approximate (up
to an additive ε term) as Min Unsatisfy by reducing the latter to the former in
a gap-preserving manner. This theorem is a result of joint work between the
author and Lee-Ad Gottlieb.

First we’ll define precisely our approximation factors, and then we’ll pro-
ceed with the statement and proof of the reduction. In the following, we use
the phrase “minimization version” to emphasize that we are focused on mini-
mizing the number of nonzero elements, as opposed to maximizing the number
of zeros. Although the exact solutions to these optimization perspectives are
identical, their approximation factors are significantly different. In our case,
the minimization (of nonzeros) perspective is more interesting than maximiza-
tion (of zeros) since we care about those solutions which are very sparse —
indeed, when a matrix may be sparsified so that it contains 98% zeros, an
approximating matrix with twice as many nonzeros (and thus 96% sparsity) is
much more interesting than an approximating matrix with half as many zeros
(and thus 49% sparsity).

We will say that an algorithm f is a ρ-approximation for the min-
imization version of Matrix Sparsification when, for any matrix C, algo-
rithm f computes matrix E = f(C) in polynomial time with E

c∼ C and
||E||0̃ ≤ ρ||D||0̃, where D is an optimal answer to Matrix Sparsification(C).
Thus ρ ≥ 1 and a smaller ρ indicates a better approximation algorithm. We
will allow ρ to depend on the size of the input.

Similarly, we will say that an algorithm g is a κ-approximation for the
minimization version of Min Unsatisfy when, for any matrix-vector instance
(A, b) with an optimal answer x (so that ||Ax− b||0 is minimized), algorithm
g computes y = g(A, b) in polynomial time with ||Ay − b||0 ≤ κ||Ax− b||0.

We are now ready to state our result.

82

Theorem 38 Suppose there exists a ρ-approximation algorithm for the min-
imization version of Matrix Sparsification, for some ρ = ρ(m,n) where the in-
stance matrix A is of size m×n. Then, for any fixed ε > 0, there also exists a
(ρ+ε)-approximation algorithm for the minimization version of Min Unsatisfy.

Proof. Suppose Min Unsatisfy is given instance (A, b), where A is m× n
in size. We assume without loss of generality that the columns of A are linearly
independent (otherwise we may throw out dependent columns) and that there
is no x for which Ax = b exactly (otherwise this problem instance is trivial);
these conditions may easily be handled in polynomial time.

We will create an instance C of Matrix Sparsification, such that any
ρ−approximation to its answer will give us a (ρ + ε)-approximation to the
optimal answer ||Ax− b||0 to Min Unsatisfy(A, b).

We’ll begin by creating the large matrix

C =

s 0
s

. . .
0

0 s
x11b x12b · · · x1qb A 0

. . . A
.

xq1b xqqb 0 A

.

Here, s is the m × 1 column vector of all ones and X denotes some q × q
completely unsparsifiable matrix. We remind the reader that, as we saw in
theorem 28, X being completely unsparsifiable implies that∣∣∣∣∣∣∣∣(I

X

)∣∣∣∣∣∣∣∣
0̃

≤
∣∣∣∣∣∣∣∣(I

X

)
Y

∣∣∣∣∣∣∣∣
0̃

for any invertible matrix Y . We leave q as an unspecified quantity until it
becomes clear which value we should choose.

Let us introduce the notation ‘A ∗ B,’ indicating the matrix obtained by
replacing each entry a of A by matrix aB. Then we could succinctly write our
large matrix as

C =

(
I ∗ s 0
X ∗ b I ∗ A

)
. (8.2)

83

Here, I denotes the q×q identity matrix. We will analyze this matrix in terms
of these four blocks. We will say “top part,” “left part,” and so on to indicate
the top two blocks, (I ∗ s 0), or the left two blocks,

(
I∗s
X∗b

)
, of C respectively

(and likewise for “right” and “bottom”). We will use the word “subcolumn”
to indicate one of the m × 1 submatrices in the lower-left block of the form
xijb.

Let D
c∼ C denote an optimal answer to Matrix Sparsification, and let

u = ||Ax− b||0 be the size of an optimal answer x to Min Unsatisfy(A, b). Also
let E

c∼ C denote our ρ-approximation to D. We now give an outline for the
remainder of our argument:

1. No sparsification can take place within the left part of C.

2. The top part of C remains essentially unchanged, and most of the spar-
sification in D can occur only in the lower-left block by replacing each
xijb subcolumn with another of the form Aw + λb; thus each subcolumn
will optimally have exactly u nonzeros.

3. So we can determine bounds on ||E||0̃ in terms of u (and ρ).

4. These bounds allow us to build g(A, b) from E, so that it is a (ρ + ε)-
approximation for u.

We may write the left part of C as
(

I∗s
X∗b

)
. Any column sparsification of this

matrix may also be performed on
(

I
X

)
to reach the same fraction of sparsifi-

cation. By our choice of X as completely unsparsifiable, this means that no
linear combination of columns just within the left part can help sparsify any
column within this part of C; this is part 1 of our proof outline.

We will now argue that the upper-left part of C remains unchanged in D.
Using theorem 28, we can see that, for every all-zero subcolumn in the lower-
left part of D, there must be an added nonzero subcolumn in the upper-left
part. Yet by elementary linear algebra the optimal answer y = Ax − b to
Min Unsatisfy(A, b) must have u = ||y||0 < m. Thus, for each subcolumn of
the lower-left part of D, we may either essentially move these nonzeros to the
upper-left part, or replace them by some vector (such as y) which has strictly
less than m nonzeros. Clearly, by the optimal sparsity of D, it must be the
case that no new nonzero subcolumns have been added in the upper-left, and
each subcolumn in the lower-left has been replaced by some vector of the form
Av + λb with u nonzeros. This justifies step 2 of our outline.

84

So the lower-left part of D will have exactly q2u nonzeros. The upper-left
part will have exactly qm nonzeros, and the lower-right part will have between
0 and qmn nonzeros. That is,

q2u + qm ≤ ||D||0̃ ≤ q2u + qm(n + 1).

If matrix E
c∼ C is an approximate answer to Matrix Sparsification with ||E||0̃ ≤

ρ||D||0̃, this means that

q2u + qm ≤ ||E||0̃ ≤ ρ(q2u + qm(n + 1)).

These are the bounds mentioned in step 3 of our outline.
Notice that each of the subcolumns in the lower-left block of E are still of

the form Av+λb. Then there must exist some nonzero subcolumn z = Av+λb
which has

||z||0 ≤ ρ

(
u +

m(n + 1)

q

)
,

otherwise ||E||0̃ > q2ρ
(
u + m(n+1)

q

)
= ρ(q2u + qm(n + 1)), which contradicts

the above inequality. Using this z, we now define g(A, b) = w where Aw−b = z.
From the above bounds it follows that

u ≤ ||Aw − b||0 = ||z||0 ≤ ρu + ρ
m(n + 1)

q
.

Now we know to choose q = ρm(n + 1)/ε, so that

u ≤ ||Aw − b||0 ≤ ρu + ε ≤ (ρ + ε)u,

since 1 ≤ u, which is our final step (4) in the proof. 2

8.1.3 An approximation algorithm in RP

In 2001, Piotr Berman and Marek Karpinski published a proof [2] that a type
of random guessing procedure which estimates Min Unsatisfy(A, b) is likely to
approximate the optimal answer within a factor of (n/c) + 2 for any fixed
constant c, where n is the number of columns in input A. In particular, for
any fixed probability p and constant c, we can run enough iterations of the
algorithm (explained below) so that with probability at least p, the result
returned is within a factor of (n/c) + 2 of the optimal.

85

Because we will extend this approximability result to Matrix Sparsification,
we’ll present here a slightly more rigorous version of their proof in a style
consistent with this thesis.

First we present the algorithm itself:

Random Guess toward Min Unsatisfy(A, b)

// Grow a set Bi of independent row indices of A,
// with |Bi| = i at the end of the ith iteration.
// Matrix A has size m× n.

Let B0 = ∅
Let r = rank(A)
For i = 1 to r

Let Ii−1 :=
{t ∈ [m]−Bi−1| row t is independent of rows Bi−1}

Randomly choose one t ∈ Ii−1

Let Bi := Bi−1 ∪ {t}
Next i
Solve for x in A(Br, :)x = b
Return x

It is important to notice that the reduced system A(Br, :)x = b is guaran-
teed to have a solution x since the rows of A(Br, :) are linearly independent.

We now claim that

Theorem 39 With probability at least e−d, Random Guess returns an answer
within a factor of (n/d) + 2 of the optimal (measured in terms of number of
nonzeros), where n is the number of columns in input (A, b).

Proof. We will argue in terms of the (shrinking) size of the set Ii−1.
Intuitively, if I is large and the optimal answer is very sparse, then most of
the guesses in I are “good;” if I is very small at any point, then we can give
an upper bound on the ratio between the size of this answer x and the optimal
x∗.

In more detail: let x∗ denote a solution which minimizes ||Ax∗ − b||0, and
U∗ the support of Ax∗− b (so that |U∗| = ||Ax∗− b||0). Analogously, x will be

86

the vector returned by Random Guess, and we’ll let u = supp(Ax − b). Our
goal is then to show that

P

(
|U |
|U∗|

<
n

d
+ 2

)
> e−d.

Our first claim is that, for any α > 1,(
Bi−1 ⊂ [m]− U∗ and |Ii−1| < α|U∗|

)
=⇒ |U | < (1 + α)|U∗|. (8.3)

The first part, Bi−1 ⊂ [m] − U∗, means that the rows selected thus far by
Random Guess represent satisfied equations in the optimal answer x∗; that is,
if t ∈ Bi−1 ⊂ [m]− U∗, then row at satisfies equation atx∗ = bt.

So we now suppose that Bi−1 ⊂ [m]−U∗. Recall that our eventual output
x will solve A(Bi−1, :)x = b and u will be the set of row indices t for which
atx 6= bt (this is the support of vector Ax − b). Although at step i of the
algorithm we can’t know x, we can still know certain of its properties.

If row at is dependent on the rows Bi−1, then equation atx = bt is either
consistent or inconsistent with system A(Bi−1, :)x = b. If they are consistent,
then any solution x to the system will also solve atx = bt. If they are inconsis-
tent, then no solution to the system will solve atx = bt. Thus if t ∈ u (that is,
if atx 6= bt), it must be the case that they are inconsistent, and it follows that t
must also be in u∗ since we have supposed that x∗ also solves A(Bi−1, :)x

∗ = b.
In other words, (

t ∈ U and t 6∈ Ii−1

)
=⇒ t ∈ U∗.

From this it is easy to see that

U − Ii−1 ⊂ U∗

=⇒ |U | ≤ |Ii−1|+ |U∗|.

This verifies equation (8.3).
We now note that

|Ii−1| ≥ α|U∗| =⇒ |U∗|
|Ii−1|

≤ 1

α
,

which is trivially true.

87

Now suppose that Bi−1 ⊂ [m] − U∗ and we are about to add a new row
to create Bi. If |Ii−1| ≥ α|U∗|, then, by the above equation, we will choose
another row in [m]−U∗ with probability at least 1−1/α. On the other hand, if
|Ii−1| < α|U∗|, then equation (8.3) shows that, no matter how Random Guess
finishes, we have already achieved an approximation factor at least as good as
α + 1. Thus, with probability at least (1− 1/α)r, Random Guess will achieve
an approximation factor at least as good as α+1. Since r = rank(A) ≤ n, this
probability is at least (1− 1/α)n.

A little extra analysis allows us to turn this inequality into the form stated
in the theorem.

We claim that, for any positive n and any α > 1,(
1− 1

α

)n

≥ e−n/(α−1).

We’ll prove this below as a lemma.
Using this inequality, we can set α = n/d + 1 to see that

P

(
|U |
|U∗|

< 1 + α =
n

d
+ 2

)
> e−n/(α−1) = e−d,

as claimed. This completes the proof. 2

Lemma 40 For x > 0,

log(x) ≥ 1− 1

x
.

From this we can see that (
1− 1

α

)n

≥ e−n/(α−1)

for any n > 0 and α > 1.

Proof. The first part is easy. We know that

∀y, 1 + y ≤ ey,

so that
∀y > −1, log(1 + y) ≤ y.

88

From here, set x = 1/(1 + y) to see that

∀x > 0, log(x) ≥ 1− 1/x.

Then, setting x = 1− 1/α,

x ≥ e1−1/x =⇒ (1− 1/α) ≥ e−1/(α−1)

=⇒ (1− 1/α)n ≥ e−n/(α−1),

for α > 1 and n > 0 as claimed. 2

We will see below (§8.2.1) that this technique can also give an equally good
approximation for Matrix Sparsification.

8.1.4 L1 minimization approximates L0 minimization

In this section, we state one of the main results supporting the idea that
L1 minimization gives a useful approximation for L0 minimization. First, we
define problem P1:

P1 Given matrix A and column vector b 6= 0, find x = P1(A, b) which
solves

P1

{
min ||x||1
s.t. Ax = b.

This is very similar to P0 — the only difference being the norm we minimize
over. However, P1 is a convex optimization problem, so it can be solved in
polynomial time. In fact, by setting x = u− v where u, v ≥ 0, we can restate
P1 as the linear programming problem

min 1T u + 1T v

s.t. (A − A)
(

u
v

)
= b

and
(

u
v

)
≥ 0.

The surprising outcome is that, in many cases, the solution to P1 is often
exactly the same as the solution to P0 for the same (A, b) pair.

This following result is proven by Donoho as Theorem 1 in [13]. Here,
Sm−1 = {x ∈ Rm : ||x|| = 1} denotes the set of unit vectors in Rm.

89

Theorem 41 Suppose we have a sequence of random matrices A1, A2, . . .,
such that Am is of size m × bαmc for some fixed aspect ratio α > 1, and
each column of Am is drawn uniformly from Sm−1. Then there exists a frac-
tion ρ = ρ(α) ∈ (0, 1) so that, for any sequence b1, b2, . . . with bm ∈ Rm,

P
(
||x∗m||0 < ρm =⇒ P1(Am, bm) = x∗m

)
→ 1 as m→∞,

where x∗ denotes an optimal answer to x∗ = P0(Am, bm).

Intuitively, this gives strong evidence that for input (A, b), when an optimal
answer of size ||x∗||0 = o(m) exists, it is likely that

P1(A, b) = P0(A, b),

so that we may discover x∗ by solving the tractable problem P1. The precondi-
tion that ||x∗||0 be small is not a significant drawback (to some extent), since
we are not usually interested in non-sparse answers. The primary drawback
of this result is that the probability distribution is over the input (A, b) to
the algorithm, rather than over different runs of the algorithm (P1). Thus,
P1 will fail altogether on some inputs, and give us no immediate hints as to
whether or not it has even failed. However, considering the NP-hardness of
even approximating this problem, it seems necessary (modulo the P 6= NP
conjecture) that any polynomial-time heuristic for P0will require some sacrifice
in whatever guarantees it can provide on how often it finds the exact answer.

8.2 Algorithms

In this section, we will first describe (in §8.2.1) a way in which any heuristic for
P0, such as P1, may be used to also approximate Matrix Sparsification. We then
continue to describe (in §8.2.2) a relatively fast incremental technique which
tracks a sparse linear estimator of a particular time series in terms of n others
over a sliding window of size m. This new algorithm utilizes a natural extension
of the null space, which we call an ε−space (in §8.2.3), to allow a degree of
error tolerance in finding a sparse linear approximator. It also relies on the
block power iteration technique of computing the singular value decomposition,
which we briefly review for the reader (in §8.2.4). Finally (in §8.2.5), we show
that this new algorithm runs in time O(k2n+`) per step, where k is an a priori
reduced dimension to use (so k � n), n is the number of time series, and `

90

is the time complexity needed for a linear programming solver to complete a
warm-started version of P1. We leave the variable ` indirectly defined because
in practice it is much better than the best polynomial time bounds known.
This time complexity is particularly nice because it is completely independent
of m, the size of the sliding window.

8.2.1 Heuristics for solving Matrix Sparsification

As we saw in property 37, P0 and Min Unsatisfy are dual versions of essentially
the same problem; analogous to the matrix versions Sparse Null Space and
Matrix Sparsification (whose equivalence was shown in §7.1). We will see here
how any approximator to the vector versions (Min Unsatisfy or P0) can be
extended to its respective matrix version (Matrix Sparsification or Sparse Null
Space).

Approximating Matrix Sparsification Berman and Karpinski, in [2], con-
clude by giving a derandomized version of their Random Guess approxi-
mator for Min Unsatisfy. They show that for any fixed c, there is a de-
terministic polynomial-time algorithm x =Approx Min Unsatisfy(A, b) so that
||Ax − b||0 < (n/c + 2)||Ax∗ − b||0, where x∗ is an optimal solution. It is not
too difficult to extend this approximation to Matrix Sparsification:

(n
c

+ 2) Approximation for Matrix Sparsification

// Matrix A has size m× n.
// Ai denotes the m× (n− 1) matrix we achieve by
// removing ai, the ith column of A

For i := 1 to n
Let x :=Approx Min Unsatisfy(Ai, ai)
Replace ai by ai − Aix

Next i
Return A

We will argue that this algorithm does indeed achieve the claimed approx-
imation factor: suppose D = AY is an optimally sparse matrix with D

c∼ A.

91

Since Y is invertible, there must be some column permutation P so that every
element on the diagonal of Y P is nonzero. From here it is possible to replace
D with DP and Y with Y P ; so we will assume, without loss of generality, that
every element on the diagonal of Y is nonzero. Intuitively, this means that
every column di of D is a linear combination of columns, including ai, from A.

Thus by solving x :=Approx Min Unsatisfy(Ai, ai), we will find a column
ãi = ai−Aix with ||ãi||0 ≤ (n

c
+ 2)||di||0 and thus, for any output E from this

approximation algorithm,

||E||0̃ ≤
(n

c
+ 2
)∑

i

||di||0 =
(n

c
+ 2
)
||D||0̃,

as desired.
While this approximation scheme is the most “theoretically satisfying”

presented in this thesis, it is not as pragmatically useful as L1 minimization
since it tends to achieve less sparse results in practice.

We may easily extend this approximation result to our equivalent problem
Sparse Null Space. Given an instance A of Sparse Null Space, simply find any
full null matrix N for A, and then proceed by solving Matrix Sparsification on
N itself.

8.2.2 Fast incremental algorithms with high sparsity

Here we present two related algorithms which track over time a sparse vector
x so that Ãx = b, where Ã is our sliding window data, and b is the target
time series. For example, we may set b as a time-delayed stock price for a
particular symbol, and choose Ã as a set of other stock prices. Then any
solution to Ãx = b in effect is predicting the value of b using a small number
of symbols in Ã.

It will be easier to replace the matrix/column pair (Ã, b) by a single matrix
A, in which our target vector (formerly b) is simply the ith column ai, for a
particular i. If we write Ai for matrix A without column ai, then we could state
the objective of this algorithm as approximating, at each step, the solution to
P0(Ai, ai).

The algorithms assume that there is an m× n sliding window A, which is
being updated to the new window Â (in general, we will use the hat accent X̂
to denote the incrementally-updated version of variable X). We assume that
α is the new incoming data (as a row), and β is the old outgoing row. We

92

summarize this by writing (
A

α

)
=

(
β

Â

)
.

Our first version incrementally maintains matrices B and Q so that B =
AT A is n × n and the rows of k × n matrix Q are the k eigenvectors of
B with the largest eigenvalues. In the following pseudocode, the subroutine
most sig eig(B̂, QT , k) returns the k most significant eigenvectors of B̂ — since
a converging iterative method could be used to implement this subroutine,
most sig eig also accepts the input QT as a starting point for this convergence.
We will see in the next section why tracking this matrix Q allows us to essen-
tially apply a constraint of the form Aix ≈ ai.

We refer to this first version as the stable one in contrast with our second,
which we will see is less stable although faster.

Incrementally Approximate P0(Ai, ai): Stable version

// m× n matrix A is the old sliding window
// We have the input:
// α is the new row of data, β is the old row
// τ is the taper factor, τ ∈ (0, 1]
// n× n matrix B = AT A
// rows of k × n matrix Q are the k most significant eigenvectors of B

// Also, Q̂i denotes matrix Q̂ without its ith column q̂i

Let B̂ = τB + αT α− τmβT β

Compute Q̂T = most sig eig(B̂, QT , k)

Solve

{
min ||x||1
s.t. Q̂ix = q̂i

Keep (B̂, Q̂, x) for the next time step
Return x

We will see that the above algorithm guarantees to provide an upper bound
on both the sparsity of x as well as the accuracy of the approximation Ax ≈ 0
(although this latter bound is data-dependent). If we are willing to sacrifice
some certainty in the accuracy bound (concerning the quality of Ax ≈ 0), then

93

we may obtain a significant increase in speed which can be achieved by our very
fast version below (it would be misleading to call it simply the “fast version”
since in fact both algorithms are fast relative to any naive implementation).

In the fast version, we no longer track B, although we still maintain a k×n
matrix Q whose rows should approximate the most significant eigenvectors
of AT A. We also keep track of the k × n matrix S, which approximates
S ≈ QAT A. The motivation for maintaining the pair (S, Q) is to perform, at
each time step, a single iteration of the block power iteration method toward
computing the singular value decomposition of A; we will explain this idea in
more detail in §8.2.4 below.

Incrementally Approximate P0(Ai, ai): Very fast version

// m× n matrix A is the old sliding window
// We have the input:
// α is the new data, β is the old
// k × n matrix Q are the first k right singular vectors for A
// S = QAT A

// Also, Q̂i denotes matrix Q̂ without its ith column q̂i

Let Ŝ := S + Q(αT α− βT β)

Let Q̂ := orthonormalize rows(Ŝ)

Solve

{
min ||x||1
s.t. Q̂ix = q̂i

Keep (Ŝ, Q̂, x) for the next time step
Return x

In the following sections, we’ll see why these algorithms work and examine
how quickly and accurately they each operate.

8.2.3 Idea of the ε−space

We are all familiar with the idea of the null space of a matrix (or linear operator
in general). The idea of this section is to extend this idea to a natural set of

94

vectors v for which
||Av||
||v||

< ε (8.4)

for some ε > 0 which we may specify.
One might be tempted to consider the set

S = {v : ||Av|| ≤ ε||v||}.

However, it is often the case that S is not a vector space. For example, if we
let

A =

(
−1 3
−2 3

)
x =

(
−1

0

)
y =

(
1

1

)
,

then

||Ax||
||x||

=
√

5 < 3,
||Ay||
||y||

=
√

5/2 < 3, but
||A(x + y)||
||x + y||

= 3
√

2 > 3.

In other words, when ε = 3 we have x, y ∈ S but x + y 6∈ S.
In order to arrive at a vector space (which is of course closed under addition)

that satisfies equation (8.4) for nonzero v, we will need to select a particular
subset of S. The following choice seems natural:

Definition 42 For any ε > 0 and m × n matrix A, find the singular value
decomposition A = UΣV T for A; let σi denote the ith singular value along the
diagonal of Σ.

Then we define the ε-space Nε of A as the vector space spanned by those
columns of V corresponding to singular values σi ≤ ε.

Notice that, by definition, the null space is always a subset of the ε-space.

Property 43 If v ∈ Nε, the ε-space of A, then ||Av|| ≤ ε||v||.

Proof.
It suffices to see that

||Ax|| ≤ ε (8.5)

for all unit vectors x ∈ Nε, so this is what we will show.
First, we recall in more detail what the singular value decomposition is

composed of for real matrices: A = UΣV T . Here, U and V are real unitary
matrices (so UT = U−1, or, equivalently, the columns of U form an orthonormal

95

basis). Matrix Σ is diagonal, with entries σ1, . . . , σn from upper-left to lower-
right, with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.

If V is unitary, then ||V x|| = ||
∑

i vixi|| =
√∑

i x
2
i = ||x||. Let w = V T x.

Notice that V −1 = V T is unitary iff V is unitary. Then clearly ||w|| = 1 iff
||x|| = 1.

Also notice that, for x ∈ Nε and w such that x = V w, it must be case that
wi = 0 for any i with σi > ε; otherwise, x would not be a linear combination
of the right singular vectors corresponding with σi ≤ ε, as stipulated by the
definition of the ε-space. In other words, wi 6= 0 =⇒ σi ≤ ε.

If w = V T x, then Ax = UΣw = U(
∑

i σiwiei) =
∑

i(σiwiui). Therefore,

||Ax|| =
√∑

i

σ2
i w

2
i . (8.6)

We may now combine these observations to confirm equation (8.5) for an
arbitrary unit vector x ∈ Nε. We still have w = V T x. Then

||x|| = 1 =⇒ ||w|| = 1

and
(x ∈ Nε & wi 6= 0) =⇒ σi ≤ ε

together, along with (8.6), give us

||Ax|| =

√∑
i

σ2
i w

2
i ≤ ε

√∑
i

w2
i = ε,

which completes the proof. 2

How does the idea of an ε−space apply to our algorithm? Let us begin
by defining the first k right singular vectors of a matrix A as the first k
columns of matrix V in the singular value decomposition A = UΣV T . Now
notice that, if A = UΣV T , then B = AT A = V Σ2V T . It follows that if the
singular values — the diagonal entries σ1, σ2, . . . of Σ — are distinct, then the
eigenvectors of B are exactly the right singular vectors of A. From this point
on, we assume that the singular values of A are distinct, so that the rows of
matrix Q, originally defined as the k most significant eigenvectors of A, are
also the first k right singular vectors of A.

96

Now let ε = σk+1 and define matrix Nε so that

V =

(
QT Nε

)
, (8.7)

where V are all the right singular vectors of A (recall that A = UΣV T), and
Q are the first k right singular vectors. Notice that x is in the ε-space of A,
by definition, iff x ∈ col(Nε). Equation (8.7) also reveals to us that col(QT)
and col(Nε) are complementary vector spaces in Rn. This gives us a nice
characterization of those vectors x in the ε-space of A in terms of Q. We may
summarize this by writing

x ∈ col(Nε) ⇔ Qx = 0.

Since the algorithm returns a vector x with Qix = qi, we may write x̂ for
the augmented vector with x̂([n]− i) = x and x̂(i) = −1 to see that Qx̂ = 0,
and x̂ ∈ col(Nε).

Therefore the stable version of our algorithm bounds the error of the ap-
proximation Aix ≈ ai by

||Aix− ai|| = ||Ax̂|| ≤ ε||x̂|| ≤ ε(1 + ||x||1),

where ε = σk+1. Since we have minimized the value ||x||1, we have also imposed
a degree of minimization on this bound as well.

The very fast version also attempts to maintain the same matrix Q, so that
the above bound is also approximated in this case, although the bound is no
longer guaranteed to hold.

8.2.4 The block power iteration

Here we will see the main idea behind how our very fast algorithm incremen-
tally tracks the matrix Q as part of the singular value decomposition of sliding
window A.

The block power iteration is a simple method of computing either the left-
or right-singular vectors of a matrix A. We present the traditional version
of the algorithm, which computes matrix U , the left singular vectors, in the
reduced singular value decomposition.

97

Block Power Iteration

Let U = orthonormalize columns(A)
Repeat

Let U := AAT U
Let U := orthonormalize columns(U)

Until U converges
Return U

If A = UΣV T , then AT = V ΣT UT is a singular value decomposition for AT .
In other words, running the above algorithm on AT will allow us to compute
matrix V . In that case, the main step in each iteration would be

Let V T := orthonormalize rows(V T AT A).

In our case, assuming m � n, this iteration has the advantage of multi-
plying at each step by AT A, of size n×n, rather than by AAT , of size m×m.

Another advantage is that we may run the above iteration on only the first
k rows of V T if we wish. As is consistent with our pseudocode in §8.2.2, we
will let Q denote the top k × n submatrix of V T . Now our iteration takes the
form

Let Q := orthonormalize rows(QAT A).

Now suppose, as in the pseudocode, that S = QAT A and that Q are the
right singular values of A (so that Q = orthonormalize columns(S)). Also recall
that α and β are the incoming and outgoing rows of data as A → Â, which
we summarize with (

A

α

)
=

(
β

Â

)
.

Then
QÂT Â = Q(AT A− βT β + αT α)

= S + Q(αT α− βT β), (8.8)

so that the first line of our pseudocode effectively computes Ŝ = QÂT Â. Then
Q̂ = orthonormalize rows(Ŝ) completes this iteration of the block power method
in our incremental algorithm.

98

8.2.5 Time complexity

In this section we will summarize those time complexity bounds which are
available for our algorithms. These bounds do not appear to be optimal,
primarily due to the difficulty in anticipating how many iterations will be
required by our convergence techniques — finding eigenvectors or using the
simplex method to solve our linear programming problem.

We claim that a single iteration of our stable algorithm runs in time
O(ckn2 + LPtime). As above, k is the number of eigenvectors of B that we
track, and n is the number of time series in our data window A. We have
also introduced the variable c as the number of iterations needed to compute
subroutine most sig eig, and LPtime as the amount of time needed to solve our
linear programming problem.

It is clear that updating B → B̂ takes at most time O(n2). There are
several implementations of most sig eig available to use (see, e.g., [31] or
[19]). If we use the block power method, then each block power iteration
involves a matrix multiplication S = QB followed by an orthonormalization
Q =orthonormalize rows(S); together a single step will take time O(kn2). If
there are c block power iterations, then certainly this portion of the algorithm
requires time O(ckn2).

Narendra Karmarkar [23] provides a linear programing algorithm which
runs in time O(n3.5 log(n)), although in practice we expect even better per-
formance than this. In addition, we can expect better incremental speed if
we use a warm-start technique, in which the previous time step’s coefficient
vector x is used as a starting point to converge to the current time step’s new
coefficient vector. Thus we simply summarize this portion of the time com-
plexity as O(LPtime), and leave further evidence of incremental speedup to the
experiments.

Now we claim that our very fast version runs in time O(kn + LPtime) per
time step.

The first line of this version’s pseudocode, captured again as (8.8) above,
may be computed in time O(kn) by first computing X = QαT and Y = QβT ,
and then adding Xα− Y β to S to arrive at S ′.

Our next line orthonormalizes the rows of S ′. Any common method, such as
Householder triangularization, can be used to perform this step in time O(k2n).
If we also track the k × k upper-triangular matrix R so that ST = QT R is a
QR-decomposition of ST , then we may incrementally update the pair (Q,R)
in time O(kn). This technique, detailed in §12.6 of [19], relies on the fact that

99

our update to S can be considered as a pair of rank-one changes.
As above, we have purposefully left the linear programming time state

ambiguously as O(LPtime), and recall that, in practice, this portion of the
algorithm experiences a significant increase in speed by utilizing a warm-start
initialization.

Thus far we have outlined pseudocode for our algorithms, demonstrated
bounds on the accuracy in the stable version, and briefly analyzed the time
complexity of both versions. We are now ready to empirically test these ideas
on real data.

100

Chapter 9

Conclusion

9.1 Summary

The goal of this thesis was to explore the power and applicability of sparse
linear classifiers to learning problems. In particular, we have seen a general
learning theoretical perspective about why sparsity-based hypotheses might
provide better predictions, as well as how one may reasonably compute such
patterns in an incremental fashion on time series data.

We have achieved a number of new results including the following, which
are roughly ordered by importance:

1. A new bound on the VC-dimension of sparse linear classifiers, which is
based upon:

2. A strongly improved version of Warren’s theorem in the linear case.

3. A series of incremental algorithms for either exactly or approximately
tracking a portion or all of a sparse null space for a set of time series,
which could then be used to predict future behavior of the time series.

4. The fact that most matrices in any nonatomic probability distribution
are completely unsparsifiable, which allowed us to show that:

5. Matrix Sparsification (and thus also Sparse Null Space) is quasi-NP-hard
to approximate within a certain factor ρ(n).

6. A simplified proof of the existence of size d labeled sample compression
schemes, based upon:

101

7. A new characterization of finite maximum concept classes, which also
allows for an elegant decomposition theorem of these classes (although
this theorem also follows easily from several results in Sally Floyd’s thesis
[16]).

8. The fact that not all maximum concept classes are maximal.

9. That, for some concept classes, no faithful unlabeled sample compression
scheme can possibly exist.

10. And that there does in fact exist an unlabeled sample compression scheme
for the concept class of positive halfspaces in the plane, despite the fact
that this is not a maximum concept class.

These contributions have been mentioned in this thesis in the following
reader-friendly order:

In chapters 1 and 1.3, we motivated and introduced the primary problems,
surrounding Sparse Null Space, addressed in this thesis. Then in chapter 2 we
briefly reviewed the elements of learning theory to gently carry the reader into
chapter 3, in which we assayed the idea of sample compression schemes. As our
most abstract outlook on sparsity in learning, the existence of small sample
compression schemes demonstrates that sparsity in learning is often possible;
moreover, we saw that any learning algorithm based on a size d compression
scheme would achieve asymptotic learning performance close to optimal.

In chapter 4, our scope narrowed to focus on sparse linear patterns, and
we saw here our VC dimension bound based upon our strengthened version of
Warren’s theorem.

We then turned our attention, in chapter 5, to understanding what infor-
mation a solution to Sparse Null Space would give us, and how it might be used
for prediction. Before giving hardness results for these problems, we charac-
terized in chapter 6 what it means for a matrix to be sparsifiable — the crown
result of this chapter being that any matrix with no singular subsquares is
completely unsparsifiable. Next, in chapter 7, we saw a series of reductions
and equivalences among exact (non-approximating) versions of our algorith-
mic challenges; analyzed several previous exact algorithms; and proposed two
versions of the null track algorithm for efficiently and incrementally computing
a sparse null space for a set of time series. At this point, it was quite natural
to consider analogous results, in chapter 8, in the realm of probabilistic and

102

approximate approaches. There we used our completely unsparsifiable matri-
ces result to derive a gap-preserving reduction from Min Unsatisfy to Matrix
Sparsification, revealing the hardness of approximating the latter. In addition,
we saw a deterministic approximating algorithm with theoretically nontrivial,
although not practically useful, bounds on the approximating factor. On a
more utilitarian note, we then witnessed the possibility of L1 minimization
as a probabilistic approximator for L0 minimization, which we then combined
with the idea of an ε−space, a natural application of the singular value de-
composition to our purposes, in order to unveil a fast very sparse incremental
technique for tracking a sparse linear approximator of a particular stream from
within a given set of time series.

9.2 Future Work

This work provides many opportunities for future research:

Sample compression schemes With respect to sample compression schemes,
it remains undecided as to whether or not there exist size d schemes, labeled
or not, for arbitrary maximal concept classes (this question originally posed
by Manfred Warmuth et al [17]). We also raise the question as to whether or
not our decomposition theorem (theorem ??) may be extended to the infinite
case. One may attempt to do this by first looking for an infinite version of the
Alon-Frankl theorem (theorem 14).

VC dimension bounds Our proof of theorem 20, giving an upper bound for
the VC dimension of sparse linear classifiers, might offer an easy generalization
to a broader set of concept classes which are in some sense “sparse.” We invite
the reader to explore the depths of these proof ideas.

Incremental Sparsification The null track algorithms, although preserv-
ing sparsity well without an augmenting sparsify subroutine, could be improved
significantly with the presence of such an algorithm. In particular: suppose
a fast method X = sparsify(Y) could be found which returns X

c∼ Y such
that ||X||0̃ is close to minimal, and utilizes the fact that Y was already highly
sparse. Then the null track algorithms might become superior to our L1−based
incremental algorithms since null track follows the entire null space, while the
L1 technique focuses on a single time series to approximate.

103

9.3 Conclusion

Sparsity can clearly help achieve better compression rates and lower compu-
tational costs in many learning scenarios. We have seen here that sparsity can
also help achieve better generalization error by lowering the VC dimension of
the concept class within which we choose our hypothesis.

In the context of linear prediction problems, it is thus desirable to discover
part or all of a Sparse Null Space for the matrix representing our data. Solving
this problem in polynomial time, even approximately, appears very hard (in
fact impossible depending on certain conjectures in complexity class theory);
we are thus justified in applying probabilistic approximation heuristics via a
new fast and efficient incremental algorithm which usually obtains excellent
sparsity in a linear approximator of evolving time series data.

104

Notation

Sets For A, B ⊂ X,

A ∆ B := (A−B) ∪ (B − A).

When A ∩B = ∅,
A ·∪B := A ∪B,

where the dot simply emphasizes that this is a union of disjoint sets.
For any set X and integer d ≥ 0,{

X

k

}
:= {i ⊂ X : |i| = k},

and {
X

≤ k

}
:= {i ⊂ X : |i| ≤ k}.

For any positive integer n,

[n] := {1, 2, . . . , n}.

Concept Classes On base set X, if we have a concept class C ⊂ 2X and a
set of points A ⊂ X, then the restriction of C to A is defined as

C|A := {c ∩ A|c ∈ C}.

We may also define

C − A := {c− A|c ∈ C}, and

CA := {c− A|∀a ⊂ A, c ∪ a ∈ C}.

105

The VC dimension of C is

V Cdim(C) := max
A⊂X
{|A| : C|A = 2A}.

For integers k ≤ n, (
n

≤ k

)
:=

k∑
i=0

(
n

i

)
.

Vectors and Matrices

ei := ith column of the identity matrix I

Suppose x is a vector in Rn.

supp(x) := {i : xi 6= 0}

||x||0 := #supp(x)

(This “norm” obeys the triangle inequality, is nonnegative, and zero exactly
when x is zero, but ||λx||0 6= |λ| · ||x||0 except when λ = 1, so || · ||0 is not
technically a norm.)

Suppose A is an m× n matrix.
If i ∈ [m], then ai is the ith column of A.
If i ∈ [n], then ai is the ith row of A.
Given r ⊂ [m] and c ⊂ [n], we write

A(r, c) := the submatrix of A on rows r and columns c.

The abbreviations A(r, :) or A(:, c) indicate that c = [n] or r = [m], respec-
tively.

A subsquare of A is any submatrix A(R,C) with |R| = |C|.
A candidate submatrix of A, written

A(R,C) � A,

has columns which form a circuit and is row-inclusive in A.

||A||0̃ := #{aij : aij 6= 0}.

106

Matrices A and B are column equivalent, written

A
c∼ B

iff there is an invertible matrix C so that A = BC.
Matrix A is optimally sparse when, ∀B

c∼ A, ||B||0̃ ≥ ||A||0̃.
An m× n matrix A of rank r is completely unsparsifiable iff

∀B
c∼ A, ||B||0̃ ≥ (m− r + 1)r.

107

Linear Algebra Glossary

An m× n matrix A has m rows and n columns. An n× 1 matrix x consisting
of one column is a column vector, and written x ∈ Rn. If ai is the ith column
of A, then we may write the product Ax as

Ax =
n∑

i=1

aixi,

where xi is the ith coordinate of x.
If B is an n×p matrix, and C = AB, then we may write ci, the ith column

of C as
ci = Abi,

where bi is the ith column of B.
The column-row expansion form for C = AB is

C =
n∑

i=1

aib
i,

where bi is the ith row of B. Note that each term aib
i here is an m× p matrix,

not to be confused with aibi, which is just a scalar (here ai is the ith row of
A).

By col(A), called the column space of A, we indicate the vector space
spanned by the columns of matrix A. Specifically,

col(A) = {Ax : x ∈ Rn}.

Similarly, row(A) indicates the row space of A:

row(A) = {yA : y is a row vector in Rm}.

A row vector is a 1×m matrix (any matrix with only one row).

108

The null space of a matrix A, written null(A), is the vector space given
by

null(A) = {x ∈ Rn : Ax = 0}.
The columns of A are linearly independent iff null(A) contains only the zero
vector.

The rank of a matrix A, written rank(A), is the dimension of col(A),
defined rigorously as the size of the largest set of linearly independent vectors
in col(A). It is a fact that

dim(col(A)) = dim(row(A))

for all matrices A. A matrix has full rank when rank(A) = min(m, n) (this
makes sense since necessarily rank(A) ≤ min(m, n)).

The corank of a matrix A is the dimension of null(A). It is a fact that,
for all m× n matrices A,

rank(A) + corank(A) = n.

For some matrix A, it is traditional to write aij to indicate the value in the
ith row and jth column. A matrix is diagonal iff (i 6= j =⇒ aij = 0); that
is, all entries not on the diagonal are zero. A matrix is upper-triangular iff
(i > j =⇒ aij = 0).

Given a matrix A, we say that B = AT is the transpose of A iff bij = aji.
We say that A is lower-triangular iff AT is upper-triangular.

The n× n identity matrix, usually denoted with the particular letter I,
has entry Iij in row i and column j given by

Iij =

{
1 if i = j

0 otherwise.

It is also traditional to write ei for the ith column of this matrix.
An m× n matrix A is invertible iff it is square (m = n) and there exists

another matrix, written A−1 such that AA−1 = A−1A = I. It is a fact that
A is invertible iff its columns are linearly independent iff rank(A) = n iff
null(A) = {~0}.

The columns of a matrix Q are called orthonormal iff

qT
i qj =

{
1 if i = j

0 otherwise,

109

where qi is the ith column of Q. A real square matrix Q is unitary iff its
columns are orthonormal. It is a fact that a real matrix is unitary iff QT = Q−1

iff its rows are orthonormal.
Matrix U is in reduced row echelon form iff

• there is an increasing sequence P = {p1, . . . , pr} ⊂ [n] of column indices
so that column upi

= ei, the ith column of the identity matrix; and

• for i ≤ r, j < pi =⇒ uij = 0; and

• for all i > r, uij = 0,

where r = rank(U). The set of columns indexed by P are the pivot columns
in U . This form is what we reduce a matrix to by Guassian elimination. Notice
that any U in reduced row echelon form is also upper-triangular.

Reduced row echelon example An elementary row operation on a matrix
A is a simple operation such as

• switching two rows,

• multiplying a row by a scalar, or

• replacing a row r by r + s, where s is another row in the matrix.

It is a fact that matrix B may be derived from matrix A by elementary row
operations iff there is an invertible matrix X such that B = XA. Thus we
may always algebraically represent a series of row operations by some matix
X which is to be left multiplied by A (that is, our result is given by XA).

As a quick example, consider

A =

1 2 1
2 4 4
3 6 5

 .

We can use the upper-left entry as a pivot in Guassian elimination to arrive
at

B =

1 2 1
0 0 2
0 0 2

 .

110

This matrix is upper-triangular but not yet in row echelon form — although
the first column qualifies as a pivot column, the third does not, and there is
no assignment of pivot columns which would allow this matrix to meet the
conditions of being in reduced row echelon form. Intuitively, the problem is
that the third column “goes down by two” at a time, which is not allowed in
row echelon form.

So our next step will be to exercise another row operation in order to clean
up the third column:

C =

1 2 1
0 0 2
0 0 0

 .

Technically, this is still not in reduced row echelon form since the third column
is still not of the form ei, although we could easily solve a system of the form
Cx = b at this point.

Let’s eliminate the upper-right nonzero, and then divide the third column
by 2 in order to arrive at:

D =

1 2 0
0 0 1
0 0 0

 .

At last, we have reached reduced row echelon form. Indeed, let p1 = 1 and
p2 = 3 be our pivot columns. No column “goes down” by more than one row at
a time, and those columns which do (the pivot columns) are identity columns
(from an identity matrix).

Decompositions The QR decomposition of m× n matrix A is

A = QR,

where Q is m ×m and unitary, and R is upper triangular. Every matrix has
a QR decomposition.

The LU decomposition of m× n matrix A is

A = LU,

where L is invertible and U is in reduced row echelon form. As we have defined
it, every matrix has an LU decomposition. (Many authors prefer to require
that L is also lower-triangular, in which case this decomposition may not exist,

111

although it will when one allows a row permutation to take place. For the sake
of simplicity within this thesis, we will not require L to be lower-triangular
when using the LU decomposition.)

The singular value decomposition (SVD) of m× n matrix A is

A = UΣV T ,

where U is m ×m and unitary, V is n × n and unitary, and Σ is m × n and
diagonal. In addition, if σi indicates the ith value along the diagonal of Σ, we
require that σ1 ≥ σ2 ≥ . . . and that each σi be nonnegative. All real matrices
have a real singular value decomposition. We refer to σi as the ith singular
value of A.

Norms Given two column vectors x and y, their inner product, sometimes
written as 〈x, y〉, or just x · y, is simply the matrix product

〈x, y〉 = xT y.

A norm is a function mapping Rn → R which is nonnegative, zero only
when input x is zero, scales linearly with the input, and obeys the triangle
inequality. In notation:

• ||x|| ≥ 0 and ||x|| = 0 iff x = 0;

• ||λx|| = |λ| · ||x|| for any scalar λ; and

• ||x + y|| ≤ ||x||+ ||y||.
The standard norm, which we denote simply by ||x|| is defined as

||x|| =

(∑
i

x2
i

)1/2

.

This may also be written as ||x||2 in cases where the context may suggest
otherwise.

The Cauchy-Schwarz inequality tells us that

〈x, y〉 ≤ ||x|| · ||y||

for any pair of vectors x, y.
Another norm we will use occasionally is given by

||x||1 =
∑

i

|xi|.

112

Linear computations

We will briefly argue that certain key linear algebraic operations are com-
putable in polynomial time.

Row reduction First, given matrix A, we may use Gaussian elimination to
compute its decomposition A = LU in polynomial time, where L is invertible
and U is in reduced row echelon form.

Solving a system Next, suppose we are attempting to solve the system
Ax = b, where A is a matrix and x, b are column vectors. Then we may
decompose A = LU as above, so that our system has the same set of solutions
x as Ux = L−1b. Due to the specific form of U , we may immediately decide if
there is a solution x, and if so, compute the value of one such solution.

That is, in polynomial time we can both determine if system Ax = b has
any solutions, and find the value of a particular solution x if one exists.

Computing the null space We will say that U is in reduced column
echelon form iff UT is in reduced row echelon form. Since a row echelon
matrix has exact r = rank(U) nonzero rows, it follows that a column echelon
matrix has exactly r nonzero columns.

Given matrix A, compute the decomposition AT = LT UT , where LT is
invertible and UT is in reduced row echelon form. Then A = UL, where U is
in reduced column echelon form. We may write this as AL−1 = U . Since the
left r = rank(U) = rank(A) columns of U are nonzero, we know that the right
c = corank(A) columns of U must be zero. This means that the c rightmost
columns of L−1 are linearly independent columns in the null space of A.

In summary, decomposing AT = LT UT , the rightmost c = corank(A)
columns N of L−1 form a full null matrix for A. This procedure clearly runs
in polynomial time.

Given N , finding A with null(A) = col(N) Given matrix N , let AT be
a full null matrix for NT . We may find such a matrix using the procedure
described immediately above. Then NT AT = 0 =⇒ AN = 0, so that the
columns of N are in the null space of N — that is, we know that col(N) ⊂
null(A). To show that null(A) ⊂ col(N), it will suffice to demonstrate that
dim(null(A)) = corank(A) = rank(N) = dim(col(N)).

113

Suppose N is n× c in size. Then A must be m× n for some m. Since AT

is a full null matrix for NT , we know that

rank(AT) = corank(NT).

But rank(AT) = rank(A) = n− corank(A) and corank(NT) = n− rank(NT) =
n− rank(N) so that indeed corank(A) = rank(N).

In summary, we have shown that choosing AT as a full null matrix for NT

provides a matrix A with null(A) = col(N); moreover, this procedure runs in
polynomial time.

114

Bibliography

[1] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approxi-
mate optima in lattices, codes and linear equations. In Proceedings of the
34th IEEE FOCS, pages 724–733, 1993.

[2] Piotr Berman and Marek Karpinski. Approximating minimum unsat-
isfiability of linear equations. Electronic Colloquium on Computational
Complexity (ECCC), 8(25), 2001.

[3] M. Berry, M. Heath, I. Kaneko, M. Lawo, R. Plemmons, and R. Ward.
An algorithm to compute a sparse basis of the null space. Numer. Math.,
47:483–504, 1985.

[4] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. Technical Report UCSC-CRL-
87-20, UC Santa Cruz, 1987.

[5] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam’s
Razor. Inf. Proc. Let., 24:377–380, 1987.

[6] Emmanuel Candes and Terence Tao. Decoding by linear programming.
IEEE Transactions on Information Theory, 51(12):4203–4215, December
2005.

[7] S. Frank Chang and S. Thomas McCormick. A hierarchical algorithm for
making sprase matrices sparser. Mathematical Programming, 56(1–3):1–
30, August 1992.

[8] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic
decomposition by basis pursuit. SIAM Review, 43(1):129–159, 2001.

115

[9] T.F. Coleman and A. Pothen. The null space problem I. complexity.
SIAM Journal on Algebraic and Discrete Methods, 7(4):527–537, October
1986.

[10] T.F. Coleman and A. Pothen. The null space problem II. algorithms.
SIAM Journal on Algebraic and Discrete Methods, 8(4):544–563, October
1987.

[11] I. Dinur, G. Kindler, and S. Safra. Approximating CVP to within almost
polynomial factors is NP-hard. In Proceedings of the 39th IEEE FOCS,
pages 99–109, 1998.

[12] P. Domingos. The role of Occam’s Razor in knowledge discovery. Data
Mining and Knowledge Discovery, 3:409–425, 1999.

[13] David L. Donoho. For most large underdetermined systems of linear
equations, the minimal l1-norm solution is also the sparsest. http://www-
stat.stanford.edu/˜ donoho/Reports/2004/l1l0EquivCorrected.pdf, 2004.

[14] David L. Donoho and Jared Tanner. Sparse nonnegative solutions of
underdetermined linear equations by linear programming. http://www-
stat.stanford.edu/˜ donoho/Reports/2005/NonNegative-R5.pdf, 2005.

[15] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Ma-
trices. Oxford University Press, 1986.

[16] S. Floyd. On space-bounded learning and the Vapnik-Chervonenkis di-
mension. Technical report TR-89-061, International Computer Science
Institute, Berkeley, California, 1989.

[17] S. Floyd and M. Warmuth. Sample compression, learnability, and the
Vapnik-Chervonenkis dimension. Machine Learning, 21(3):269–304, De-
cember 1995.

[18] J.R. Gilbert and M.T. Heath. Computing a sparse basis for the null
space. SIAM Journal on Algebraic and Discrete Methods, 8(3):446–459,
July 1987.

[19] Gene H. Golub and Charles F. Van Loan. Matrix Computations, 2nd Ed.
The Johns Hopkins University Press, 1989.

116

[20] T. Grapel, R. Herbrich, and J. Shawe-Taylor. Generalization error bounds
for sparse linear classifiers. In Thirteenth Annual Conference on Compu-
tational Learning Theory, 2000. Morgan Kaufmann, 2000.

[21] A.J. Hoffman and S.T. McCormick. A fast algorithm that makes matrices
optimally sparse. In Progress in Combinatorial Optimization. Academic
Press, 1984.

[22] W. Johnson and J. Lindenstrauss. Extensions of lipschitz maps into a
hilbert space. Contemp. Math., 26:189–206, 1984.

[23] N. Karmarkar. A new polynomial-time algorithm for linear programming.
In Proceedings of the 16th annual ACM symposium on theory of comput-
ing, pages 302–311. ACM press, 1984.

[24] T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. A faster algo-
rithm for minimum cycle basis of graphs. In Automata, Languages, and
Programming: 31st International Colloquium, ICALP 2004 Proceedings,
Lecture Notes in Computer Science, pages 846–857. Springer, 2004.

[25] D. Kuzmin and M. Warmuth. Unlabeled compression schemes for maxi-
mum classes. In Proceedings of the 18th Annual Conference on Computa-
tional Learning Theory (COLT ’05), pages 591–605, June 2005. Bertinoro,
Italy.

[26] J.G. Oxley. Matroid Theory. Oxford University Press, 1992.

[27] L. Rónyai, L. Babai, and M. Ganapathy. On the number of zero-patterns
of a sequence of polynomials. J. of the Amer. Math. Soc., 14(3):717–735,
2001.

[28] N. Sauer. On the density of families of sets. J. Combinatorial Theory,
Series A, 13:145–147, 1972.

[29] S. Shelah. A combinatorial problem; stability and order for models and
theories in infinitary languages. Pacific J. Mathematics, 41:247–261, 1972.

[30] A. Topcu. A contribution to the systematic analysis of finite element
structures through the force method. PhD thesis, University of Essen,
Essen, Germany, 1979. In German.

117

[31] Lloyd N. Trefethen and III David Bau. Numerical Linear Algebra. Society
for Industrial and Applied Mathematic (SIAM), 1997.

[32] L. Valiant. A theory of the learnable. Comm. ACM, 27(11):1134–1142,
1984.

[33] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and its
Applications, 16(2):264–280, 1971.

[34] Vladimir Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[35] Eric W. Weisstein. CRC Concise Encyclopedia of Mathematics, 2nd Edi-
tion. CRC Press, 2002.

[36] X. Zhao, X. Zhang, T. Neylon, and D. Shasha. Incremental methods
for simple problems in time series: Algorithms and experiments. In Ninth
International Database Engineering and Applications Symposium (IDEAS
2005), pages 3–14, 2005.

118

